1
|
Blocker SJ, Cook J, Mowery YM, Everitt JI, Qi Y, Hornburg KJ, Cofer GP, Zapata F, Bassil AM, Badea CT, Kirsch DG, Johnson GA. Ex Vivo MR Histology and Cytometric Feature Mapping Connect Three-dimensional in Vivo MR Images to Two-dimensional Histopathologic Images of Murine Sarcomas. Radiol Imaging Cancer 2021; 3:e200103. [PMID: 34018846 DOI: 10.1148/rycan.2021200103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose To establish a platform for quantitative tissue-based interpretation of cytoarchitecture features from tumor MRI measurements. Materials and Methods In a pilot preclinical study, multicontrast in vivo MRI of murine soft-tissue sarcomas in 10 mice, followed by ex vivo MRI of fixed tissues (termed MR histology), was performed. Paraffin-embedded limb cross-sections were stained with hematoxylin-eosin, digitized, and registered with MRI. Registration was assessed by using binarized tumor maps and Dice similarity coefficients (DSCs). Quantitative cytometric feature maps from histologic slides were derived by using nuclear segmentation and compared with registered MRI, including apparent diffusion coefficients and transverse relaxation times as affected by magnetic field heterogeneity (T2* maps). Cytometric features were compared with each MR image individually by using simple linear regression analysis to identify the features of interest, and the goodness of fit was assessed on the basis of R2 values. Results Registration of MR images to histopathologic slide images resulted in mean DSCs of 0.912 for ex vivo MR histology and 0.881 for in vivo MRI. Triplicate repeats showed high registration repeatability (mean DSC, >0.9). Whole-slide nuclear segmentations were automated to detect nuclei on histopathologic slides (DSC = 0.8), and feature maps were generated for correlative analysis with MR images. Notable trends were observed between cell density and in vivo apparent diffusion coefficients (best line fit: R2 = 0.96, P < .001). Multiple cytoarchitectural features exhibited linear relationships with in vivo T2* maps, including nuclear circularity (best line fit: R2 = 0.99, P < .001) and variance in nuclear circularity (best line fit: R2 = 0.98, P < .001). Conclusion An infrastructure for registering and quantitatively comparing in vivo tumor MRI with traditional histologic analysis was successfully implemented in a preclinical pilot study of soft-tissue sarcomas. Keywords: MRI, Pathology, Animal Studies, Tissue Characterization Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Stephanie J Blocker
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - James Cook
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Yvonne M Mowery
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Jeffrey I Everitt
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Yi Qi
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Kathryn J Hornburg
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Gary P Cofer
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Fernando Zapata
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Alex M Bassil
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - Cristian T Badea
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - David G Kirsch
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| | - G Allan Johnson
- From the Departments of Radiology (S.J.B., J.C., Y.Q., K.H., G.P.C., F.Z., C.T.B., G.A.J.), Radiation Oncology (Y.M.M., A.M.B., D.G.K.), and Pathology (J.I.E.), Duke University Medical Center, Center for In Vivo Microscopy, Bryan Research Building, 311 Research Dr, Durham, NC 27710
| |
Collapse
|
2
|
Solnes LB, Jacobs AH, Coughlin JM, Du Y, Goel R, Hammoud DA, Pomper MG. Central Nervous System Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Renard D, Collombier L, Laurent-Chabalier S, Mura T, Le Floch A, Fertit HE, Thouvenot E, Guillamo JS. 18F-FDOPA-PET in pseudotumoral brain lesions. J Neurol 2020; 268:1266-1275. [PMID: 33084938 DOI: 10.1007/s00415-020-10269-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION 3,4-Dihydroxy-6-[18F]-fluoro-L-phenylalanine (FDOPA) positron emission tomography (PET) is sensitive for identifying primary brain tumors. However, increased FDOPA uptake has been reported in pseudotumoral brain lesions. Our aim was to analyse FDOPA-PET in patients with pseudotumoral brain lesions and to compare them with patients with brain tumors. METHODS We retrospectively analysed consecutively recruited patients with suspected primary brain tumor (based on clinical and magnetic resonance imaging findings) referred for FDOPA-PET in our centre between November 2013 and June 2019 (n = 74). FDOPA-PET parameters (maximum and mean lesion standardised uptake values [SUV] and ratios comparing lesion with different background uptake SUV) and thresholds were evaluated to determine which offered optimal discrimination between pseudotumoral and tumoral lesions. RESULTS Overlapping PET values were observed between pseudotumoral (n = 26) and tumoral (n = 48) lesion, particularly for low-grade tumors. Based on receiver operating characteristic (ROC) analyses, the optimal PET parameters to discriminate pseudotumoral from tumoral lesions were SUVmax lesion/basal ganglia, SUVmax lesion/grey matter, SUVmean lesion/grey matter, and SUVmax lesion/mirror area in contralateral hemisphere (all ratios showing area under the curve [AUC] 0.85, 95% CI). The narrowest 95% sensitivity-95% specificity window was observed for SUVmax lesion/basal ganglia ratio, with ratio values of 0.79 and 1.35 corresponding to 95% sensitivity and 95% specificity, respectively. CONCLUSION FDOPA-PET uptake should be interpreted with caution in patients with suspected primary brain tumor, especially in patients showing low or intermediate SUV values and ratios. CLINICAL TRIAL REGISTRATION-URL: https://www.clinicaltrials.gov . Unique identifier: NCT04306484.
Collapse
Affiliation(s)
- Dimitri Renard
- Department of Neurology, CHU Nîmes, University Montpellier, Nîmes, France.
| | - Laurent Collombier
- Department of Nuclear Medicine, CHU Nîmes, University Montpellier, Nîmes, France
| | - Sabine Laurent-Chabalier
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, CHU Nîmes, University Montpellier, Nîmes, France
| | - Thibault Mura
- Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, CHU Nîmes, University Montpellier, Nîmes, France
| | - Anne Le Floch
- Department of Neurology, CHU Nîmes, University Montpellier, Nîmes, France
| | - Hassan El Fertit
- Department of Neurosurgery, CHU Nîmes, University Montpellier, Nîmes, France
| | - Eric Thouvenot
- Department of Neurology, CHU Nîmes, University Montpellier, Nîmes, France.,Institut de Génomique Fonctionnelle, UMR5203, INSERM 1191, University Montpellier, Montpellier, France
| | | |
Collapse
|
4
|
Pronin IN, Khokhlova EV, Konakova TA, Maryashev SA, Pitskhelauri DI, Batalov AI, Postnov AA. [Positron emission tomography with 11C-methionine in primary brain tumor diagnosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:51-56. [PMID: 32929924 DOI: 10.17116/jnevro202012008151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the variations in 11C-methionine uptake in the intact brain tissue and in glial brain tumors of different types. MATERIAL AND METHODS Forty patients (21 men, 19 women) with gliomas, Grade I-IV, underwent 11C-methionine PET-CT and contrast-enhanced MRI. Standardized uptake value (SUV), tumor-to-normal (T/N) ratios and tumor volume were analyzed. RESULTS The high inter-subject variability was detected in the intact brain tissue (SUV in the frontal lobe (FL) varies from 0.47 to 1.73). Amino acid metabolism was more active in women than in men (FL SUV 1.32±0.22 and 1.05±0.24, respectively). T/N ratio better differentiates gliomas by the degree of anaplasia compared to SUV. Gliomas of Grade III (T/N=2.64±0.98) were significantly different (p<0.05) from those of Grade IV (T/N=3.83±0.75). The lowest level of methionine uptake was detected in diffuse astrocytomas (T/N=1.52±0.57), which was lower than with anaplastic astrocytomas (T/N=2.34±0.77, p<0.05). CONCLUSIONS 11C-methionine PET-CT was informative in the high/low degree of malignancy differentiation (T/N 1.66±0.71 for Grade I-II and 3.18±1.06 for Grade III-IV, p<0.05). The method was also useful in separating astrocytomas of Grade II and III. The considerable variation of SUV in the intact brain tissue as well as the difference in uptake between selected areas of the brain were revealed.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - E V Khokhlova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - T A Konakova
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - S A Maryashev
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - D I Pitskhelauri
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A I Batalov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia
| | - A A Postnov
- Burdenko National Medical Scientific Center for Neurosurgery, Moscow, Russia.,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia.,Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Gembruch O, Junker A, Mönninghoff C, Ahmadipour Y, Darkwah Oppong M, Sure U, El Hindy N, Lemonas E. Liponeurocytoma: Systematic Review of a Rare Entity. World Neurosurg 2018; 120:214-233. [DOI: 10.1016/j.wneu.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 11/25/2022]
|
6
|
Poetsch N, Woehrer A, Gesperger J, Furtner J, Haug AR, Wilhelm D, Widhalm G, Karanikas G, Weber M, Rausch I, Mitterhauser M, Wadsak W, Hacker M, Preusser M, Traub-Weidinger T. Visual and semiquantitative 11C-methionine PET: an independent prognostic factor for survival of newly diagnosed and treatment-naïve gliomas. Neuro Oncol 2018; 20:411-419. [PMID: 29016947 PMCID: PMC5817953 DOI: 10.1093/neuonc/nox177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Few data exist regarding the prognostic value of L-[S-methyl-11C]methionine (MET) PET for treatment-naïve gliomas. Methods A total of 160 glioma patients (89 men, 71 women; mean age: 45, range 18-84 y) underwent a MET PET prior to any therapy. The PET scans were evaluated visually and semiquantitatively by tumor-to-background (T/N) ratio thresholds chosen by analysis of receiver operating characteristics. Additionally, isocitrate dehydrogenase 1-R132H (IDH1-R132H) immunohistochemistry was performed. Survival analysis was done using Kaplan-Meier estimates and the Cox proportional hazards model. Results Significantly shorter mean survival times (7.2 vs 8.6 y; P = 0.024) were seen in patients with amino acid avid gliomas (n = 137) compared with visually negative tumors (n = 33) in MET PET. T/N ratio thresholds of 2.1 and 3.5 were significantly associated with survival (10.3 vs 7 vs 4.3 y; P < 0.001). Mean survival differed significantly using the median T/N ratio of 2.4 as cutoff, independent of histopathology (P < 0.01; mean survival: 10.2 ± 0.8 y vs 5.5 ± 0.6 y). In the subgroup of 142 glioma patients characterized by IDH1-R132H status, METT/N ratio demonstrated a significant prognostic impact in IDH1-R132H wildtype astrocytomas and glioblastoma (P = 0.001). Additionally, multivariate testing revealed semiquantitative MET PET as an independent prognostic parameter for treatment-naïve glioma patients without (P = 0.031) and with IDH1-R132H characterization of gliomas (P = 0.024; odds ratio 1.57). Conclusion This retrospective analysis demonstrates the value of MET PET as a prognostic parameter on survival in treatment-naïve glioma patients.
Collapse
Affiliation(s)
- Nina Poetsch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dorothee Wilhelm
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georgios Karanikas
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute of Applied Diagnostics, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Kanoto M, Kirii K, Hiraka T, Toyoguchi Y, Sugai Y, Matsuda K, Sakurada K, Sonoda Y, Hatazawa J, Hosoya T. Correlation between hypoxic area in primary brain tumors and WHO grade: differentiation from malignancy using 18F-fluoromisonidazole positron emission tomography. Acta Radiol 2018; 59:229-235. [PMID: 28534419 DOI: 10.1177/0284185117711474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background 18F-fluoromisonidazole positron emission tomography (FMISO-PET) has been used for identification of hypoxic areas in tumors, and since hypoxia causes hypoxia-inducible factor-1 and enhancement of tumor growth, identifying the hypoxic area in the tumor tissue is important. Purpose To evaluate the usefulness of FMISO-PET in the grading of primary brain tumors. Material and Methods FMISO-PET was performed preoperatively on 41 consecutive patients with pathologically confirmed brain tumor. A neuroradiologist retrospectively measured both maximum standardized uptake value (SUVmax) and mean SUV (SUVmean) in the tumor and normal cerebellar parenchyma. Maximum tumor/normal control ratio (T/Nmax) and mean tumor/normal control ratio (T/Nmean) were calculated and analyzed. Results There was a positive correlation between World Health Organization (WHO) grade and both T/Nmax and T/Nmean (r = 0.731 and 0.713, respectively). When all cases were divided into benign (WHO grade II) and malignant groups (III and IV), there were significant differences between the two groups in both T/Nmax and T/Nmean ( P < 0.001). If the cutoff value was defined as T/Nmax = 1.25 and T/Nmean = 1.23, T/Nmax had a sensitivity of 90.0% and a specificity of 90.9% while T/Nmean had a sensitivity of 93.3% and a specificity of 90.9% in differentiating the benign group from the malignant group. Conclusion Both T/Nmax and T/Nmean in FMISO-PET have a positive correlation with primary brain tumor grading, making FMISO-PET useful in diagnosing the malignancy of primary brain tumors.
Collapse
Affiliation(s)
- Masafumi Kanoto
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kazukuni Kirii
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Toshitada Hiraka
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuuki Toyoguchi
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yukio Sugai
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kenichiro Matsuda
- Department of Neurosurgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Kaori Sakurada
- Department of Neurosurgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takaaki Hosoya
- Department of Diagnostic Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
8
|
Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, la Fougère C, Pope W, Law I, Arbizu J, Chamberlain MC, Vogelbaum M, Ellingson BM, Tonn JC. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016; 18:1199-208. [PMID: 27106405 DOI: 10.1093/neuonc/now058] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/14/2016] [Indexed: 12/30/2022] Open
Abstract
This guideline provides recommendations for the use of PET imaging in gliomas. The review examines established clinical benefit in glioma patients of PET using glucose ((18)F-FDG) and amino acid tracers ((11)C-MET, (18)F-FET, and (18)F-FDOPA). An increasing number of studies have been published on PET imaging in the setting of diagnosis, biopsy, and resection as well radiotherapy planning, treatment monitoring, and response assessment. Recommendations are based on evidence generated from studies which validated PET findings by histology or clinical course. This guideline emphasizes the clinical value of PET imaging with superiority of amino acid PET over glucose PET and provides a framework for the use of PET to assist in the management of patients with gliomas.
Collapse
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Michael Weller
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Bogdana Suchorska
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Norbert Galldiks
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Riccardo Soffietti
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Michelle M Kim
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Christian la Fougère
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Whitney Pope
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Ian Law
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Javier Arbizu
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Marc C Chamberlain
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Michael Vogelbaum
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Ben M Ellingson
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| | - Joerg C Tonn
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.L.A.); Department of Neurology, University Hospital Zurich, Zurich, Switzerland (M.W.); Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany (B.S., J.C.T.); Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany (N.G.); Department of Neurology, University of Cologne, Cologne, Germany (N.G.); Department of Neuro-Oncology, University of Turin, Turin, Italy (R.S.); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (M.M.K.); Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Tübingen, Tübingen, Germany (C.l.F.); Radiological Sciences, University of California Los Angeles, Los Angeles, California (W.P.); Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (I.L.); Department of Nuclear Medicine, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain (J.A.); Department of Neurology, University of Washington, Seattle, Washington (M.C.); Department of Neurological Surgery, Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Radiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California (B.M.E.)
| |
Collapse
|
9
|
Van Den Bent MJ, Bromberg JEC, Buckner J. Low-grade and anaplastic oligodendroglioma. HANDBOOK OF CLINICAL NEUROLOGY 2016; 134:361-80. [PMID: 26948366 DOI: 10.1016/b978-0-12-802997-8.00022-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Anaplastic oligodendrogliomas have long attracted interest because of their sensitivity to chemotherapy, in particular in the subset of 1p/19q co-deleted tumors. Recent molecular studies have shown that all 1p/19q co-deleted tumors have IDH mutations and most of them also have TERT mutations. Because of the presence of similar typical genetic alterations in astrocytoma and glioblastoma, the current trend is to diagnose these tumors on the basis of their molecular profile. Further long-term follow-up analysis of both EORTC and RTOG randomized studies on (neo)adjuvant procarbazine, lomustine, vincristine (PCV) chemotherapy have shown that adjuvant chemotherapy indeed improves outcome, and this is now standard of care. It is also equally clear that benefit to PCV chemotherapy is not limited to the 1p/19q co-deleted cases; potential other predictive factors are IDH mutations and MGMT promoter methylation. Moreover, a recent RTOG study on low-grade glioma also noted an improved outcome after adjuvant PCV chemotherapy, thus making (PCV) chemotherapy now standard of care for all 1p/19q co-deleted tumors regardless of grade. It remains unclear whether temozolomide provides the same survival benefit, as no data from well-designed clinical trials on adjuvant temozolomide in this tumor type are available. Another question that remains is whether one can safely leave out radiotherapy as part of initial treatment to avoid cognitive side-effects of radiotherapy. The current data suggest that delaying radiotherapy and treatment with chemotherapy only may be detrimental for overall survival.
Collapse
Affiliation(s)
- Martin J Van Den Bent
- Neuro-Oncology Unit, The Brain Tumor Center at Erasmus MC Cancer Center, Rotterdam, The Netherlands.
| | - Jacolien E C Bromberg
- Neuro-Oncology Unit, The Brain Tumor Center at Erasmus MC Cancer Center, Rotterdam, The Netherlands
| | - Jan Buckner
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Kim D, Kim W, Lee J, Ki Y, Lee B, Cho K, Kim S, Nam J, Lee J, Kim D. Pretreatment maximum standardized uptake value of (18)F-fluorodeoxyglucose positron emission tomography as a predictor of distant metastasis in adenoid cystic carcinoma of the head and neck. Head Neck 2015; 38:755-61. [PMID: 25524466 DOI: 10.1002/hed.23953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The purpose of this study was to determine whether the maximum standardized uptake value (SUVmax) of the primary tumor on pretreatment (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has prognostic significance in patients with adenoid cystic carcinoma (ACC) of the head and neck. METHODS A retrospective review was carried out on 34 patients with ACC of the head and neck who underwent pretreatment (18)F-FDG PET imaging from June 2005 through July 2009. All patients underwent surgery with curative intent, and 26 of them received adjuvant radiotherapy (RT). RESULTS When subjects were stratified into 2 groups according to a cutoff value for SUVmax of 4.15, the risk of distant metastasis was significantly high in patients with high SUVmax (p = .014). Multivariate analysis showed that high SUVmax and histologic grade 3 were independent poor prognostic factors for distant metastasis-free and disease-free survival. CONCLUSION Pretreatment SUVmax of the primary tumor is an independent prognostic factor in patients with ACC of the head and neck.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| | - Wontaek Kim
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| | - Joohye Lee
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| | - Yongkan Ki
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| | - Byungjoo Lee
- Department of Otorhinolaryngology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| | - Kyusup Cho
- Department of Otorhinolaryngology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| | - Seongjang Kim
- Department of Nuclear Medicine, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| | - Jiho Nam
- Department of Radiation Oncology, Yangsan Pusan National University Hospital, Yangsan, Korea
| | - Jinchoon Lee
- Department of Otorhinolaryngology, Yangsan Pusan National University Hospital, Yangsan, Korea
| | - Dongwon Kim
- Department of Radiation Oncology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Pusan National University, Busan, Korea
| |
Collapse
|
11
|
Findings from positron emission tomography and genetic analyses for cerebellar liponeurocytoma. Brain Tumor Pathol 2014; 32:210-5. [DOI: 10.1007/s10014-014-0210-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/08/2014] [Indexed: 02/05/2023]
|
12
|
Hutterer M, Nowosielski M, Putzer D, Jansen NL, Seiz M, Schocke M, McCoy M, Göbel G, la Fougère C, Virgolini IJ, Trinka E, Jacobs AH, Stockhammer G. [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 2013; 15:341-51. [PMID: 23335162 DOI: 10.1093/neuonc/nos300] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND To assess the sensitivity and specificity of [(18)F]-fluoro-ethyl-l-tyrosine ((18)F-FET) PET in brain tumors and various non-neoplastic neurologic diseases. METHODS We retrospectively evaluated (18)F-FET PET scans from 393 patients grouped into 6 disease categories according to histology (n = 299) or distinct MRI findings (n = 94) (low-grade/high-grade glial/nonglial brain tumors, inflammatory lesions, and other lesions). (18)F-FET PET was visually assessed as positive or negative. Maximum lesion-to-brain ratios (LBRs) were calculated and compared with MRI contrast enhancement (CE), which was graded visually on a 3-point scale (no/moderate/intense). RESULTS Sensitivity and specificity for the detection of brain tumor were 87% and 68%, respectively. Significant differences in LBRs were detected between high-grade brain tumors (LBR, 2.04 ± 0.72) and low-grade brain tumors (LBR, 1.52 ± 0.70; P < .001), as well as among inflammatory (LBR, 1.66 ± 0.33; P = .056) and other brain lesions (LBR, 1.10 ± 0.37; P < .001). Gliomas (n = 236) showed (18)F-FET uptake in 80% of World Health Organization (WHO) grade I, 79% of grade II, 92% of grade III, and 100% of grade IV tumors. Low-grade oligodendrogliomas, WHO grade II, had significantly higher (18)F-FET uptakes than astrocytomas grades II and III (P = .018 and P = .015, respectively). (18)F-FET uptake showed a strong association with CE on MRI (P < .001) and was also positive in 52% of 157 nonglial brain tumors and nonneoplastic brain lesions. CONCLUSIONS (18)F-FET PET has a high sensitivity for the detection of high-grade brain tumors. Its specificity, however, is limited by passive tracer influx through a disrupted blood-brain barrier and (18)F-FET uptake in nonneoplastic brain lesions. Gliomas show specific tracer uptake in the absence of CE on MRI, which most likely reflects biologically active tumor.
Collapse
Affiliation(s)
- Markus Hutterer
- Department of Neurology, Wilhelm-Sander Neurooncology Therapy Unit, University Hospital of Regensburg, Universitätsstrasse 84, D-93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Viel T, Talasila KM, Monfared P, Wang J, Jikeli JF, Waerzeggers Y, Neumaier B, Backes H, Brekka N, Thorsen F, Stieber D, Niclou SP, Winkeler A, Tavitian B, Hoehn M, Bjerkvig R, Miletic H, Jacobs AH. Analysis of the growth dynamics of angiogenesis-dependent and -independent experimental glioblastomas by multimodal small-animal PET and MRI. J Nucl Med 2012; 53:1135-45. [PMID: 22689925 DOI: 10.2967/jnumed.111.101659] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The hypothesis of this study was that distinct experimental glioblastoma phenotypes resembling human disease can be noninvasively distinguished at various disease stages by imaging in vivo. METHODS Cultured spheroids from 2 human glioblastomas were implanted into the brains of nude rats. Glioblastoma growth dynamics were followed by PET using (18)F-FDG, (11)C-methyl-l-methionine ((11)C-MET), and 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) and by MRI at 3-6 wk after implantation. For image validation, parameters were coregistered with immunohistochemical analysis. RESULTS Two tumor phenotypes (angiogenic and infiltrative) were obtained. The angiogenic phenotype showed high uptake of (11)C-MET and (18)F-FLT and relatively low uptake of (18)F-FDG. (11)C-MET was an early indicator of vessel remodeling and tumor proliferation. (18)F-FLT uptake correlated to positive Ki67 staining at 6 wk. T1- and T2-weighted MR images displayed clear tumor delineation with strong gadolinium enhancement at 6 wk. The infiltrative phenotype did not accumulate (11)C-MET and (18)F-FLT and impaired the (18)F-FDG uptake. In contrast, the Ki67 index showed a high proliferation rate. The extent of the infiltrative tumors could be observed by MRI but with low contrast. CONCLUSION For angiogenic glioblastomas, noninvasive assessment of tumor activity corresponds well to immunohistochemical markers, and (11)C-MET was more sensitive than (18)F-FLT at detecting early tumor development. In contrast, infiltrative glioblastoma growth in the absence of blood-brain barrier breakdown is difficult to noninvasively follow by existing imaging techniques, and a negative (18)F-FLT PET result does not exclude the presence of proliferating glioma tissue. The angiogenic model may serve as an advanced system to study imaging-guided antiangiogenic and antiproliferative therapies.
Collapse
Affiliation(s)
- Thomas Viel
- Westfälische Wilhelm-University Münster (WWU), European Institute for Molecular Imaging (EIMI), Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Colavolpe C, Chinot O, Metellus P, Mancini J, Barrie M, Bequet-Boucard C, Tabouret E, Mundler O, Figarella-Branger D, Guedj E. FDG-PET predicts survival in recurrent high-grade gliomas treated with bevacizumab and irinotecan. Neuro Oncol 2012; 14:649-57. [PMID: 22379188 DOI: 10.1093/neuonc/nos012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prognosis of recurrent high-grade glioma (HGG) is poor, although bevacizumab has been documented in that context. This study aimed to determine the independent prognostic value of fluorodeoxyglucose (FDG)-PET on progression-free survival (PFS) and overall survival (OS) of recurrent HGG after combined treatment with bevacizumab and irinotecan, compared with other documented prognostic variables. Twenty-five adult patients with histologically proven HGG were included at recurrence. Brain FDG-PET imaging was performed within 6 weeks of starting chemotherapy with bevacizumab and irinotecan. Response based on MRI was assessed every 2 months according to revised assessment in Neuro-Oncology (RANO) criteria. Median PFS and OS were 4 months (range, 0.9-10.4 months) and 7.2 months (range, 1.2-41.7 months), respectively. At 6 months, PFS and OS rate were 16.0% and 72.0%. FDG uptake was the most powerful predictor of both PFS and OS, using either univariate or multivariate analysis, among all variables tested: histological grade, Karnofsky performance status, steroid intake, and number of previous treatments. Moreover, FDG uptake was also prognostic of response to bevacizumab-based therapy. This study provides the first evidence that pretreatment FDG-PET can serve as an imaging biomarker in recurrent HGG for predicting survival following anti-angiogenic therapy with bevacizumab.
Collapse
Affiliation(s)
- Cécile Colavolpe
- Service Central de Biophysique et Médecine Nucléaire, Assistance Publique des Hôpitaux de Marseille, CHU Timone,Aix-Marseille University, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Colavolpe C, Metellus P, Mancini J, Barrie M, Béquet-Boucard C, Figarella-Branger D, Mundler O, Chinot O, Guedj E. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J Neurooncol 2011; 107:527-35. [PMID: 22169956 DOI: 10.1007/s11060-011-0771-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/16/2011] [Indexed: 11/29/2022]
Abstract
The prognostic value of PET with (18F)-fluoro-2-deoxy-D: -glucose (FDG) has been shown in high-grade gliomas (HGG), but not compared with consensual prognostic factors. We sought to evaluate the independent predictive value of pre-treatment FDG-PET on overall (OS) and event-free survival (EFS). We retrospectively analyzed 41 patients with histologically-confirmed HGG (31 glioblastomas and 10 anaplastic gliomas). The pre-treatment uptake of FDG was assessed qualitatively by five-step visual metabolic grading, and quantitatively by the ratio between the tumor and contralateral maximal standardized uptake value (T/CL). EFS and OS following PET were compared with FDG uptake by univariate analysis, and by two multivariate analyses: one including main consensual prognostic factors (age, KPS, extent of surgery and histological grade), and the other including the classification system of the Radiation Therapy Oncology Group (Recursive Partitioning Analysis, RPA). Median OS and EFS were 13.8 and 7.4 months, respectively, for glioblastomas, and over 25.8 and 12 months, respectively, for anaplastic gliomas (P = 0.040 and P = 0.027). The T/CL ratio predicted OS in the entire group [P = 0.003; Hazard Ratio (HR) = 2.3] and in the glioblastoma subgroup (P = 0.018; HR = 2), independently of age, Karnofsky performance status, histological grade, and surgery, and independently of RPA classification. T/CL ratio tended to predict EFS in the whole group (P = 0.052). The prognostic value of visual metabolic grade on OS was less significant than T/CL ratio, both in the entire group and in the glioblastoma subgroup (P = 0.077 and P = 0.059). Quantitative evaluation of the ratio between the maximal tumor and contralateral uptake in pre-treatment FDG-PET provides significant additional prognostic information in newly-diagnosed HGG, independently of consensual prognostic factors.
Collapse
Affiliation(s)
- Cécile Colavolpe
- APHM, Hôpital de la Timone, Service Central de Biophysique et Médecine Nucléaire, 13005 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alkonyi B, Chugani HT, Muzik O, Chugani DC, Sundaram SK, Kupsky WJ, Batista CE, Juhász C. Increased L-[1-11 C] leucine uptake in the leptomeningeal angioma of sturge-weber syndrome: a PET study. J Neuroimaging 2011; 22:177-83. [PMID: 21223431 DOI: 10.1111/j.1552-6569.2010.00565.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE We used L-[1-(11) C]leucine (LEU) positron emission tomography (PET) to measure amino acid uptake in children with Sturge-Weber syndrome (SWS), and to relate amino acid uptake measures with glucose metabolism. METHODS LEU and 2-deoxy-2[(18) F]fluoro-D-glucose (FDG) PET were performed in 7 children (age: 5 months-13 years) with unilateral SWS. Asymmetries of LEU uptake in the posterior brain region, underlying the angioma and in frontal cortex, were measured and correlated with glucose hypometabolism. Kinetic analysis of LEU uptake was performed in 4 patients. RESULTS Increased LEU standard uptake value (SUV, mean: 15.1%) was found in the angioma region in 6 patients, and smaller increases in LEU SUV (11.5%) were seen in frontal cortex in 4 of the 6 patients, despite normal glucose metabolism in frontal regions. High LEU SUV was due to both increased tracer transport (3/4 patients) and high protein synthesis rates (2/4). FDG SUV asymmetries in the angioma region were inversely related to LEU SUV asymmetries (r=-.83, P= .042). CONCLUSIONS Increased amino acid uptake in the angioma region and also in less affected frontal regions may provide a marker of pathological mechanisms contributing to chronic brain damage in children with SWS.
Collapse
Affiliation(s)
- Bálint Alkonyi
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim YH, Oh SW, Lim YJ, Park CK, Lee SH, Kang KW, Jung HW, Chang KH. Differentiating radiation necrosis from tumor recurrence in high-grade gliomas: assessing the efficacy of 18F-FDG PET, 11C-methionine PET and perfusion MRI. Clin Neurol Neurosurg 2010; 112:758-65. [PMID: 20619531 DOI: 10.1016/j.clineuro.2010.06.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 05/31/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE The authors analyzed the characteristics of perfusion magnetic resonance imaging (MRI), (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and (11)C-methionine (MET) PET to compare the efficacies of these modalities in making the distinction between radiation necrosis and tumor recurrence of high-grade glioma. PATIENTS AND METHODS Ten patients were evaluated with dynamic susceptibility contrast perfusion MRI, (11)C-MET PET and (18)F-FDG PET to visualize gadolinium-enhanced lesions during the post-radiation follow-up period. In the perfusion MRI, four regions of interest (ROIs) were identified and average values were calculated. A reference ROI of the same size was defined in the contralateral white matter to obtain the relative cerebral blood volume (rCBV). After coregistering the PET images with the MRI, we measured the maximum uptake values of the lesion and of the contralateral cerebral white matter as reference area to calculate the L(max)/R(max) ratio. RESULTS The rCBV was higher in the recurrence group than in the necrosis group (p=0.010). There was no difference between groups in terms of the L(max)/R(max) ratio as derived from the (18)F-FDG and (11)C-MET PET. CONCLUSION A quantitative rCBV as calculated from a perfusion MRI scan might be superior to the L(max)/R(max) ratio as derived from (18)F-FDG and (11)C-MET PET in order to distinguish a recurrence of high-grade glioma from radiation necrosis.
Collapse
Affiliation(s)
- Yong Hwy Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Detection of histological anaplasia in gliomas with oligodendroglial components using positron emission tomography with 18F-FDG and 11C-methionine: report of two cases. J Neurooncol 2010; 101:335-41. [DOI: 10.1007/s11060-010-0262-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/30/2010] [Indexed: 11/25/2022]
|
19
|
Abstract
Imaging plays a key role in the management of low-grade gliomas. The traditional view of these tumours as non-enhancing areas of increased signal on T2-weighted imaging is now accepted as being incorrect. Using new MR and PET techniques that can probe the pathological changes with in these tumours by assessing vascularity (perfusion MR), cellularity and infiltration (diffusion weighted and diffusion tensor MR), metabolism (MR spectroscopy and FDG PET) and proliferation (MR spectroscopy, methionine PET and 18F-fluorothymidine FLT PET). These tools will allow improvements in tumour grading, biopsy/therapy guidance and earlier assessment of the response to therapy.
Collapse
Affiliation(s)
- Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
20
|
Kruer MC, Kaplan AM, Etzl MM, Carpentieri DF, Dickman PS, Chen K, Mathieson K, Irving A. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol 2009; 95:239-245. [PMID: 19506815 DOI: 10.1007/s11060-009-9922-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 05/24/2009] [Indexed: 12/22/2022]
Abstract
Astrocytomas are the most common brain tumors of childhood and adolescence. Low-grade astrocytomas (LGAs), in general, have favorable prognosis, but recurrence or progressive disease with dissemination, malignant transformation, and death occur in some cases. Current clinical and pathological measures including age, sex, imaging characteristics, location and size of the tumor, histopathology, and degree of resection cannot predict with certainty which tumors will demonstrate aggressive behavior. The objective of the study is to determine the predictive value of positron emission tomography (PET) and a proliferation index (PI) in identifying high risk LGAs. We reviewed 46 cases ages 5 months to 17 years with low-grade (WHO I-II) astrocytomas. All patients had PET scans utilizing [(18)F] fluorodeoxyglucose (FDG) and 24 cases had measurements with Ki-67/MIB-1 immunohistochemistry. Review of our data confirmed progressive disease (PD) in 18/46 (39%) of cases with 9/21 (42%) occurring after subtotal resection and 9/25 (36%) after gross total resection. The mortality rate was 5/46 (10.8%). Tumors with FDG hypermetabolism were significantly more likely to demonstrate aggressive behavior and PD. Increased PI values also suggested PD. Progression-free survival and time to progression were significantly longer for patients with hypometabolic scans. Time to progression was significantly longer with lower PI values. Results demonstrate that PET and PI are useful measures in the identification and stratification of high risk LGAs. The ability to identify a subset of progressive LGAs earlier may suggest the need for second-look neurosurgical procedures or more intensified adjuvant treatment that may ultimately improve outcome and survival.
Collapse
Affiliation(s)
- Michael C Kruer
- Division of Pediatrics, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA.,Divisions of Pediatric Neurology and Developmental Pediatrics, Child Development and Rehabilitation Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Allen M Kaplan
- Division of Child Neurology, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.
| | - Michael M Etzl
- Division of Hematology/Oncology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| | | | - Paul S Dickman
- Division of Pathology, Phoenix Children's Hospital, Phoenix, AZ, 85016, USA
| | - Kewei Chen
- Banner Samaritan PET Center, Phoenix, AZ, 85015, USA
| | - Kathleen Mathieson
- Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, 85287, USA
| | - Alison Irving
- Banner Samaritan PET Center, Phoenix, AZ, 85015, USA
| |
Collapse
|
21
|
Nojiri T, Nariai T, Aoyagi M, Senda M, Ishii K, Ishiwata K, Ohno K. Contributions of biological tumor parameters to the incorporation rate of l-[methyl-11C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol 2008; 93:233-41. [DOI: 10.1007/s11060-008-9767-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 12/09/2008] [Indexed: 11/28/2022]
|
22
|
Suh C, Kang YK, Roh JL, Kim MR, Kim JS, Huh J, Lee JH, Jang YJ, Lee BJ. Prognostic value of tumor 18F-FDG uptake in patients with untreated extranodal natural killer/T-cell lymphomas of the head and neck. J Nucl Med 2008; 49:1783-9. [PMID: 18927319 DOI: 10.2967/jnumed.108.053355] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Although 18F-FDG PET has been used to monitor patients with lymphoma, its usefulness has not been determined in patients with extranodal natural killer/T-cell lymphoma (ENKTL). Therefore, we evaluated whether pretreatment 18F-FDG uptake was a predictor of survival in patients with ENKTL of the head and neck. METHODS Pretreatment staging work-ups, including whole-body 18F-FDG PET, were performed on 21 patients with previously untreated head and neck ENKTL. Fourteen patients received combined chemoradiotherapy (n = 14), and 7 received chemotherapy or radiotherapy alone. We assessed the relationship of maximum standardized uptake value (SUVmax) of the tumor to disease-specific survival (DSS) and to clinical parameters, including sex, age, Ann Arbor stage, performance status, International Prognostic Index score, presence of B symptoms, lactate dehydrogenase level, local tumor invasion (LTI), and lymph node involvement. RESULTS Mean tumor SUVmax was 5.5 and was significantly higher in patients with elevated lactate dehydrogenase level, LTI, or poor response to initial therapy (P < 0.05). All 5 nonresponders to therapy had an SUVmax greater than 5.5, whereas 11 of 16 responders (69%) had an SUVmax less than or equal to 5.5 (mean SUVmax, 8.4 vs. 4.5). Univariate analysis showed that an International Prognostic Index score greater than or equal to 2, LTI, and SUVmax category were significant predictors of 3-y DSS, although only the SUVmax category remained an independent determinant of DSS on multivariate analysis (P = 0.023). CONCLUSION High tumor 18F-FDG uptake was closely associated with local tumor invasion, contributing to unfavorable treatment and survival outcomes in patients with ENKTL of the head and neck.
Collapse
Affiliation(s)
- Cheolwon Suh
- Division of Oncology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, Yoshimura S, Maruyama T, Muragaki Y, Iwama T. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol 2008; 29:1176-82. [PMID: 18388218 DOI: 10.3174/ajnr.a1008] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Positron-emission tomography (PET) is a useful tool in oncology. The aim of this study was to assess the metabolic activity of gliomas using (11)C-methionine (MET), [(18)F] fluorodeoxyglucose (FDG), and (11)C-choline (CHO) PET and to explore the correlation between the metabolic activity and histopathologic features. MATERIALS AND METHODS PET examinations were performed for 95 primary gliomas (37 grade II, 37 grade III, and 21 grade IV). We measured the tumor/normal brain uptake ratio (T/N ratio) on each PET and investigated the correlations among the tracer uptake, tumor grade, tumor type, and tumor proliferation activity. In addition, we compared the ease of visual evaluation for tumor detection. RESULTS All 3 of the tracers showed positive correlations with astrocytic tumor (AT) grades (II/IV and III/IV). The MET T/N ratio of oligodendroglial tumors (OTs) was significantly higher than that of ATs of the same grade. The CHO T/N ratio showed a significant positive correlation with histopathologic grade in OTs. Tumor grade and type influenced MET uptake only. MET T/N ratios of more than 2.0 were seen in 87% of all of the gliomas. All of the tracers showed significantly positive correlations with Mib-1 labeling index in ATs but not in OTs and oligoastrocytic tumors. CONCLUSION MET PET appears to be useful in evaluating grade, type, and proliferative activity of ATs. CHO PET may be useful in evaluating the potential malignancy of OTs. In terms of visual evaluation of tumor localization, MET PET is superior to FDG and CHO PET in all of the gliomas, due to its straightforward detection of "hot lesions".
Collapse
Affiliation(s)
- T Kato
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Kizawa Memorial Hospital, Minokamo City, Gifu, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Erb G, Elbayed K, Piotto M, Raya J, Neuville A, Mohr M, Maitrot D, Kehrli P, Namer I. Toward improved grading of malignancy in oligodendrogliomas using metabolomics. Magn Reson Med 2008; 59:959-65. [DOI: 10.1002/mrm.21486] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Walker C, Haylock B, Husband D, Joyce KA, Fildes D, Jenkinson MD, Smith T, Broome J, Kopitzki K, du Plessis DG, Prosser J, Vinjamuri S, Warnke PC. Genetic and metabolic predictors of chemosensitivity in oligodendroglial neoplasms. Br J Cancer 2006; 95:1424-31. [PMID: 17031404 PMCID: PMC2360602 DOI: 10.1038/sj.bjc.6603390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The −1p/−19q genotype predicts chemosensitivity in oligodendroglial neoplasms, but some with intact 1p/19q also respond and not all with 1p/19q loss derive durable benefit from chemotherapy. We have evaluated the predictive and prognostic significance of pretherapy 201Tl and 18F-FDG SPECT and genotype in 38 primary and 10 recurrent oligodendroglial neoplasms following PCV chemotherapy. 1p/19q loss was seen in 8/15 OII, 6/15 OAII, 7/7 OIII, 3/11 OAIII and was associated with response (Fisher-Exact: P=0.000) and prolonged progression-free (log-rank: P=0.002) and overall survival (OS) (log-rank: P=0.0048). Response was unrelated to metabolism, with tumours with high or low metabolism showing response. Increased 18F-FDG or 201Tl uptake predicted shorter progression-free survival (PFS) in the series (log-rank: 201Tl P=0.0097, 18F-FDG P=0.0170) and in cases with or without the −1p/−19q genotype. Elevated metabolism was associated with shorter OS in cases with intact 1p/19q (log-rank: 18F-FDG P=0.0077; 201Tl P=0.0004) and shorter PFS in responders (log-rank: 18F-FDG P=0.005; 201Tl P=0.0132). 201Tl uptake and 1p/19q loss were independent predictors of survival in multivariate analysis. In this initial study, 201Tl and 18F-FDG uptake did not predict response to PCV, but may be associated with poor survival following therapy irrespective of genotype. This may be clinically useful warranting further study.
Collapse
MESH Headings
- Adult
- Aged
- Alleles
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Brain Neoplasms/drug therapy
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 19/genetics
- Disease Progression
- Female
- Fluorodeoxyglucose F18/metabolism
- Genetic Predisposition to Disease
- Genotype
- Humans
- Lomustine/therapeutic use
- Magnetic Resonance Imaging
- Male
- Middle Aged
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Oligodendroglioma/drug therapy
- Oligodendroglioma/genetics
- Oligodendroglioma/pathology
- Procarbazine/therapeutic use
- Prospective Studies
- Survival Rate
- Tomography, Emission-Computed, Single-Photon
- Tomography, X-Ray Computed
- Treatment Outcome
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- C Walker
- JK Douglas Laboratories, Clatterbridge Hospital, Bebington, Wirral, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hamlat A, Saikali S, Chaperon J, Carsin-Nicol B, Calve ML, Lesimple T, Ben-hassel M, Guegan Y. Proposal of a scoring scale as a survival predictor in intracranial oligodendrogliomas. J Neurooncol 2006; 79:159-68. [PMID: 16821091 DOI: 10.1007/s11060-005-9026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Histological, clinical and radiological features, and molecular genetic analysis are among the factors that have been considered in defining the prognosis of oligodendrogliomas (OD), but they have yielded conflicting results. The purpose of this study was to test out a scoring scale based on clinical, radiological, pathological and molecular features. MATERIAL AND METHOD To identify factors with prognostic significance, we analyzed 87 treated patients with a histological diagnosis of OD. Of the parameters analyzed, age, onset, clinical status, radiological enhancement, histological necrosis, mitosis and chromosomal anomalies emerged as significant prognosis factors using univariate analysis. Multivariate analysis revealed age and chromosomal anomalies as independent factors of survival. RESULTS The factors with a significant prognostic value were combined to determine which grouping factors best predict outcome. The proposed score is a pure number resulting from a combination of: 2 major factors: age and chromosomal anomalies (scored 3-0); 5 minor factors: onset, clinical examination, necrosis, mitoses (scored 1-0), and radiological enhancement (scored 2-0). According to our scale, 10 survival curves were produced for overall survival. Recursive partitioning of patients with the nearest score and outcome produced four groups with a significant difference in survival (p=10(-5)). The power of both the scale and the partitioned groups for predicting outcome was more accurate than the WHO and St Anne grading systems, and the molecular sub-classification. CONCLUSIONS Our scale is a plausible way of classifying patients harboring intracranial OD according to expected survival.
Collapse
|
27
|
Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 2006; 246:85-94. [PMID: 16603193 DOI: 10.1016/j.jns.2006.02.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 01/31/2006] [Accepted: 02/10/2006] [Indexed: 11/26/2022]
Abstract
The treatment of the glioma patient depends on the nature of the lesion and on the aggressiveness of the tumor. The management of gliomas continues to be a challenging task, because morphological neuroimaging techniques do not always differentiate them from nontumoral lesions or high grade tumors from low grade lesions. Positron Emission Tomography (PET) offers the possibility of the in vivo quantitative characterization of brain tumors. Despite decades of useful application of PET in the clinical monitoring of gliomas, no consensus has been reached on the most effective image analysis approach for providing the best diagnostic performance under heavy-duty clinical diagnostic circumstances. The main objective of the present study was to find and validate optimal semi-quantitative search strategies for metabolic PET studies on gliomas, with special regard to the optimization of those metabolic tracer uptake ratios most sensitive in predicting histologic grade and prognosis. 11C-Methionine (11C-Met, n = 50) and/or 18F-Fluorodeoxyglucose (18F-FDG, n = 33) PET measurements were performed in 59 patients with primary and recurrent brain gliomas (22 high grade and 37 low grade tumors) in order to correlate the biological behavior and 11C-Met/18F-FDG uptake of tumors. Data were analyzed by region-of-interests (ROI) methods using standard uptake value calculation. Different ROI defining strategies were then compared with each other for two of the most commonly used metabolic radiotracers, 18F-FDG and 11C-Met, in order to determine their usefulness in grading gliomas. The results were compared to histological data in all patients. Both ANOVA and receiver operating characteristic (ROC) analysis indicated that the performance of 18F-FDG was superior to that of 11C-Met for most of the ratios. 18F-FDG is therefore suggested as the tracer of choice for noninvasive semi-quantitative indicator of histologic grade of gliomas. 11C-Methionine has been suggested as a complimentary tracer, useful in delineating the extent of the tumor. The best diagnostic performance was obtained by calculating the ratio of the peak 18F-FDG uptake of the tumor to that of white matter (p < 0.001; ANOVA). This metabolic tracer uptake ratio is therefore suggested as an easily obtained semi-quantitative PET indicator of malignancy and histological grade in gliomas.
Collapse
|
28
|
Abstract
Low-grade gliomas (LGG) are a heterogeneous group of tumors that tend to occur primarily in young adults and children. They are indolent, progressive, and often undergo anaplastic transformation. The prognosis of these tumors is primarily affected by age and pathologic type. Many questions remain in the management of LGGs, including the role of surgical resection (ie, maximal tumor resection), the optimal timing of radiation (ie, postoperative vs at the time of tumor progression), and the role of chemotherapy (ie, salvage after radiotherapy, primary treatment after surgery, concurrent with radiotherapy). Further complicating treatment decisions are concerns about toxicity with any intervention because LGG patients can often lead a relatively normal existence for years with no intervention. In this article we review the pertinent LGG literature published over the past few years and its impact on the management of LGGs.
Collapse
Affiliation(s)
- Paul D Brown
- Department of Oncology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
29
|
Affiliation(s)
- J Gregory Cairncross
- Department of Clinical Neurosciences, University of Calgary and Tom Baker Cancer Centre, Calgary, Alberta, Canada.
| |
Collapse
|