1
|
Collo G, Cavalleri L, Zoli M, Maskos U, Ratti E, Merlo Pich E. Alpha6-Containing Nicotinic Acetylcholine Receptors Mediate Nicotine-Induced Structural Plasticity in Mouse and Human iPSC-Derived Dopaminergic Neurons. Front Pharmacol 2018; 9:572. [PMID: 29910731 PMCID: PMC5992464 DOI: 10.3389/fphar.2018.00572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/14/2018] [Indexed: 12/23/2022] Open
Abstract
Midbrain dopamine (DA) neurons are considered a critical substrate for the reinforcing and sensitizing effects of nicotine and tobacco dependence. While the role of the α4 and β2 subunit containing nicotinic acetylcholine receptors (α4β2∗nAChRs) in mediating nicotine effects on DA release and DA neuron activity has been widely explored, less information is available on their role in the morphological adaptation of the DA system to nicotine, eventually leading to dysfunctional behaviors observed in nicotine dependence. In particular, no information is available on the role of α6∗nAChRs in nicotine-induced structural plasticity in rodents and no direct evidence exists regarding the occurrence of structural plasticity in human DA neurons exposed to nicotine. To approach this problem, we used two parallel in vitro systems, mouse primary DA neuron cultures from E12.5 embryos and human DA neurons differentiated from induced pluripotent stem cells (iPSCs) of healthy donors, identified using TH+ immunoreactivity. In both systems, nicotine 1–10 μM produced a dose-dependent increase of maximal dendrite length, number of primary dendrites, and soma size when measured after 3 days in culture. These effects were blocked by pretreatments with the α6∗nAChR antagonists α-conotoxin MII and α-conotoxin PIA, as well as by the α4β2nAChR antagonist dihydro-β-erythroidine (DHβE) in both mouse and human DA neurons. Nicotine was also ineffective when the primary DA neurons were obtained from null mutant mice for either the α6 subunit or both the α4 and α6 subunits of nAChR. When pregnant mice were exposed to nicotine from gestational day 15, structural plasticity was also observed in the midbrain DA neurons of postnatal day 1 offspring only in wild-type mice and not in both null mutant mice. This study confirmed the critical role of α4α6∗nAChRs in mediating nicotine-induced structural plasticity in both mouse and human DA neurons, supporting the translational relevance of neurons differentiated from human iPSCs for pharmacological studies.
Collapse
Affiliation(s)
- Ginetta Collo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Laura Cavalleri
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Uwe Maskos
- Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, Paris, France
| | - Emiliangelo Ratti
- Neuroscience Therapeutic Area Unit, Takeda Pharmaceuticals International Co., Cambridge, MA, United States
| | - Emilio Merlo Pich
- The Division of Brain Science, Imperial College London, London, United Kingdom.,Neuroscience Therapeutic Area Unit, Takeda Pharmaceuticals International, Zurich, Switzerland
| |
Collapse
|
2
|
Norman H, D'Souza MS. Endogenous opioid system: a promising target for future smoking cessation medications. Psychopharmacology (Berl) 2017; 234:1371-1394. [PMID: 28285326 DOI: 10.1007/s00213-017-4582-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nicotine addiction continues to be a health challenge across the world. Despite several approved medications, smokers continue to relapse. Several human and animal studies have evaluated the role of the endogenous opioid system as a potential target for smoking cessation medications. METHODS In this review, studies that have elucidated the role of the mu (MORs), delta (DORs), and kappa (KORs) opioid receptors in nicotine reward, nicotine withdrawal, and reinstatement of nicotine seeking will be discussed. Additionally, the review will discuss discrepancies in the literature and therapeutic potential of the endogenous opioid system, and suggest studies to address gaps in knowledge with respect to the role of the opioid receptors in nicotine dependence. RESULTS Data available till date suggest that blockade of the MORs and DORs decreased the rewarding effects of nicotine, while activation of the MORs and DORs decreased nicotine withdrawal-induced aversive effects. In contrast, activation of the KORs decreased the rewarding effects of nicotine, while blockade of the KORs decreased nicotine withdrawal-induced aversive effects. Interestingly, blockade of the MORs and KORs attenuated reinstatement of nicotine seeking. In humans, MOR antagonists have shown benefits in select subpopulations of smokers and further investigation is required to realize their full therapeutic potential. CONCLUSION Future work must assess the influence of polymorphisms in opioid receptor-linked genes in nicotine dependence, which will help in both identifying individuals vulnerable to nicotine addiction and the development of opioid-based smoking cessation medications. Overall, the endogenous opioid system continues to be a promising target for future smoking cessation medications.
Collapse
Affiliation(s)
- Haval Norman
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA.
| |
Collapse
|
3
|
Hauser SR, Bracken AL, Deehan GA, Toalston JE, Ding ZM, Truitt WA, Bell RL, McBride WJ, Rodd ZA. Selective breeding for high alcohol preference increases the sensitivity of the posterior VTA to the reinforcing effects of nicotine. Addict Biol 2014; 19:800-11. [PMID: 23496648 PMCID: PMC3715585 DOI: 10.1111/adb.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate of codependency for alcohol and nicotine is extremely high. Numerous studies have indicated that there is a common genetic association for alcoholism and nicotine dependency. The current experiments examined whether selective breeding for high alcohol preference in rats may be associated with increased sensitivity of the posterior ventral tegmental area (pVTA) to the reinforcing properties of nicotine. In addition, nicotine can directly bind to the serotonin-3 (5-HT3 ) receptor, which has been shown to mediate the reinforcing properties of other drugs of abuse within the pVTA Wistar rats were assigned to groups that were allowed to self-infuse 0, 10, 50, 100, 200, 400 or 800 μM nicotine in two-lever (active and inactive) operant chambers. P rats were allowed to self-infuse 0, 1, 10, 50 or 100 μM nicotine. Co-infusion of 5-HT3 receptor antagonists with nicotine into the pVTA was also determined. P rats self-infused nicotine at lower concentrations than required to support self-administration in Wistar rats. In addition, P rats received more self-infusions of 50 and 100 μM nicotine than Wistar rats; including a 5HT3 receptor antagonist (LY-278,584 or zacopride) with nicotine reduced responding on the active lever. Overall, the data support an association between selective breeding for high alcohol preference and increased sensitivity of the pVTA to the reinforcing properties of nicotine. In addition, the data suggest that activation of 5HT3 receptors may be required to maintain the local reinforcing actions of nicotine within the pVTA.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Departments of Psychiatry & Anatomy, Indiana School of Medicine, and Department of Psychology, Purdue School of Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hauser SR, Deehan GA, Toalston JE, Bell RL, McBride WJ, Rodd ZA. Enhanced alcohol-seeking behavior by nicotine in the posterior ventral tegmental area of female alcohol-preferring (P) rats: modulation by serotonin-3 and nicotinic cholinergic receptors. Psychopharmacology (Berl) 2014; 231:3745-55. [PMID: 24599396 PMCID: PMC4516288 DOI: 10.1007/s00213-014-3508-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/12/2014] [Indexed: 12/13/2022]
Abstract
RATIONALE Alcohol and nicotine co-use can reciprocally promote self-administration and drug-craving/drug-seeking behaviors. To date, the neurocircuitry in which nicotine influences ethanol (EtOH) seeking has not been elucidated. Clinical and preclinical research has suggested that the activation of the mesolimbic dopamine system is involved in the promotion of drug seeking. Alcohol, nicotine, and serotonin-3 (5-HT3) receptors interact within the posterior ventral tegmental area (pVTA) to regulate drug reward. Recently, our laboratory has reported that systemic administration of nicotine can promote context-induced EtOH seeking. OBJECTIVES The goals of the current study were to (1) determine if microinjections of pharmacologically relevant levels of nicotine into the pVTA would enhance EtOH seeking, (2) determine if coadministration of nicotinic cholinergic receptor antagonist (nACh) or 5-HT3 receptor antagonists would block the ability of nicotine microinjected into the pVTA to promote EtOH seeking, and (3) determine if 5-HT3 receptors in the pVTA can modulate EtOH seeking. RESULTS Nicotine (100 and 200 μM) microinjected into the pVTA enhanced EtOH seeking. Coinfusion with 200 μM mecamylamine (nACh antagonist) or 100 and 200 μM zacopride (5-HT3 receptor antagonist) blocked the observed nicotine enhancement of EtOH seeking. The data also indicated that microinjection of 1 μM CPBG (5-HT3 receptor agonist) promotes context-induced EtOH seeking; conversely, microinjection of 100 and 200 μM zacopride alone reduced context-induced EtOH seeking. CONCLUSIONS Overall, the results show that nicotine-enhanced EtOH-seeking behavior is modulated by 5-HT3 and nACh receptors within the pVTA and that the 5-HT3 receptor system within pVTA may be a potential pharmacological target to inhibit EtOH-seeking behaviors.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN, 46202-4887, USA,
| | | | | | | | | | | |
Collapse
|
5
|
Collo G, Bono F, Cavalleri L, Plebani L, Mitola S, Merlo Pich E, Millan MJ, Zoli M, Maskos U, Spano P, Missale C. Nicotine-Induced Structural Plasticity in Mesencephalic Dopaminergic Neurons Is Mediated by Dopamine D3 Receptors and Akt-mTORC1 Signaling. Mol Pharmacol 2013; 83:1176-89. [DOI: 10.1124/mol.113.084863] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
6
|
Quik M, Wonnacott S. α6β2* and α4β2* nicotinic acetylcholine receptors as drug targets for Parkinson's disease. Pharmacol Rev 2012; 63:938-66. [PMID: 21969327 DOI: 10.1124/pr.110.003269] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the "gold standard" for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
7
|
Ding ZM, Katner SN, Rodd ZA, Truitt W, Hauser SR, Deehan GA, Engleman EA, McBride WJ. Repeated exposure of the posterior ventral tegmental area to nicotine increases the sensitivity of local dopamine neurons to the stimulating effects of ethanol. Alcohol 2012; 46:217-23. [PMID: 22449786 PMCID: PMC3327828 DOI: 10.1016/j.alcohol.2011.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/17/2011] [Accepted: 11/28/2011] [Indexed: 12/13/2022]
Abstract
Clinical evidence indicates a frequent co-morbidity of nicotine and alcohol abuse and dependence. The posterior ventral tegmental area (pVTA) appears to support the reinforcing and dopamine-stimulating effects of both drugs. The current study tested the hypothesis that repeated exposure of the pVTA to one drug would increase the sensitivity of local dopamine neurons to the stimulating effects of the other drug. Female Wistar rats received repeated daily microinjections of either 100 μM nicotine or vehicle directly into the pVTA for 7 days. On the 8th day, rats received microinjections of either vehicle or ethanol (100 or 200 mg%) into the pVTA while extracellular dopamine samples were collected from the ipsilateral nucleus accumbens shell (NACsh) with microdialysis. Another experiment tested the effects of challenge microinjections of 200 μM nicotine in the pVTA on extracellular dopamine levels in the NACsh following 7 daily pretreatments with 200 mg% ethanol in the pVTA. Nicotine pretreatments increased the dopamine-stimulating effects of ethanol in the pVTA (100 mg% ethanol: 115% vs 160% of baseline in the vehicle and nicotine groups, respectively, p < 0.05; 200 mg% ethanol: 145% vs 190% of baseline in the vehicle and nicotine groups, respectively, p < 0.05). In contrast, ethanol pretreatments did not alter the stimulating effects of nicotine in the pVTA. The results suggest that repeated exposure of the pVTA to nicotine increased the response of local dopamine neurons to the stimulating effects of ethanol, whereas repeated exposure of the pVTA to ethanol did not alter the responses of pVTA dopamine neurons to nicotine.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, 46202-4887, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Orejarena MJ, Herrera-Solís A, Pons S, Maskos U, Maldonado R, Robledo P. Selective re-expression of β2 nicotinic acetylcholine receptor subunits in the ventral tegmental area of the mouse restores intravenous nicotine self-administration. Neuropharmacology 2012; 63:235-41. [PMID: 22480616 DOI: 10.1016/j.neuropharm.2012.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 11/24/2022]
Abstract
Beta-2 (β2) nicotinic acetylcholine receptor subunits have been particularly related with nicotine reinforcement. However, the importance of these subunits in the chronic aspects of nicotine addiction has not been established. In this study we evaluated the role of ventral tegmental area (VTA) β2 receptor subunits in the acquisition and maintenance of nicotine self-administration. We used an operant mouse model of intravenous self-administration of different doses of nicotine (15, 30, and 60 μg/kg/infusion) during 10 days in constitutive knockout mice lacking β2 receptor subunits (β2KO), wild-type (WT) controls, mice with β2 receptor subunits re-expressed in the VTA using a lentiviral vector (β2-VEC), and control knockout mice with a sham injection (KO-GFP). The results showed that β2KO mice did not reliably acquire nicotine self-administration at any of the doses tested, while WT controls showed dose-dependent acquisition of this behaviour. β2-VEC mice readily acquired and maintained nicotine self-administration at the effective dose of 15 μg/kg/infusion, while sham KO-GFP mice did not. The recovery of the WT phenotype by the re-expression of β2 receptor subunits within the VTA supports the role of this specific population in nicotine reinforcement, and reveals that they are sufficient for the acquisition and maintenance of systemic nicotine self-administration.
Collapse
|
9
|
Hauser SR, Getachew B, Oster SM, Dhaher R, Ding ZM, Bell RL, McBride WJ, Rodd ZA. Nicotine modulates alcohol-seeking and relapse by alcohol-preferring (P) rats in a time-dependent manner. Alcohol Clin Exp Res 2011; 36:43-54. [PMID: 21689122 DOI: 10.1111/j.1530-0277.2011.01579.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Alcohol is frequently co-abused with smoking. In humans, nicotine use can increase alcohol craving and consumption. The objectives of the current study were to assess the acute effects of nicotine on alcohol seeking and relapse at 2 different time points. METHODS Adult female alcohol-preferring (P) rats were trained in 2-lever operant chambers to self-administer 15% ethanol (EtOH) (v/v) and water on a concurrent fixed-ratio 5-fixed-ratio 1 (FR5-FR1) schedule of reinforcement in daily 1-hour sessions. Following 10 weeks of daily 1-hour sessions, rats underwent 7 extinction sessions, followed by 2 weeks in their home cages. Rats were then returned to the operant chambers without EtOH or water being present for 4 sessions (Pavlovian Spontaneous Recovery [PSR]). Rats were then given a week in their home cage before being returned to the operant chambers with access to EtOH and water (relapse). Nicotine (0, 0.1, 0.3, or 1.0 mg/kg) was injected subcutaneously immediately or 4 hours prior to PSR or relapse testing. RESULTS Injections of nicotine immediately prior to testing reduced (5 to 10 responses PSR; 50 to 60 responses relapse), whereas injections of nicotine 4 hours prior to testing increased (up to 150 responses for PSR; up to 400 responses for relapse with 1.0 mg/kg dose) responses on the EtOH lever during PSR and relapse tests. CONCLUSIONS The results of this study demonstrate that acute effects of nicotine on EtOH-seeking and relapse behaviors may be time dependent, with the immediate effects being a result of nicotine possibly acting as a substitute for EtOH, whereas with a delay of 4 hours, priming effects of nicotine alterations in nicotinic receptors, and/or the effects of nicotine's metabolites (i.e., cotinine and nornicotine) may enhance the expression of EtOH-seeking and relapse behaviors.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indiana University-Purdue University at Indianapolis, 46202-4887, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Rahman S. Brain nicotinic receptors as emerging targets for drug addiction: neurobiology to translational research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:349-65. [PMID: 21199776 DOI: 10.1016/b978-0-12-385506-0.00008-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug addiction, a chronic relapsing disorder, is a serious public health problem around the world. A growing body of preclinical and clinical evidence suggests that mammalian brain nicotinic acetylcholine receptors (nAChRs), the heterogeneous family of ion channels, play a pivotal role in drug addiction, including nicotine and alcohol dependence. As a result, there is an increasing interest in developing nAChR-based therapies for the treatment of addictive disorders. The current review summarizes the important preclinical and clinical data, demonstrating the ability of nAChR ligands to modulate nicotine and alcohol-induced biobehavioral and neurochemical changes in laboratory animals and humans. Recent studies suggest that partial agonists and antagonists at nAChRs have therapeutic potential for the management of nicotine and alcohol dependence. The complexity of nAChRs and their regulation for the development of nAChR-based drug candidates as novel pharmacotherapy for other addictive disorders will also be discussed. Taken together, this review will provide new insights into nAChR-based compounds and offer innovative translational strategies for combating drug addictive disorders.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
11
|
Corrigall WA. Hypocretin mechanisms in nicotine addiction: evidence and speculation. Psychopharmacology (Berl) 2009; 206:23-37. [PMID: 19529922 DOI: 10.1007/s00213-009-1588-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/01/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND The hypocretin/orexin system has been implicated in arousal mechanisms, sleep, and sleep disorders, including narcolepsy, and more recently in drug addiction. Theoretically, hypocretin (hcrt) mechanisms appear to be potential substrates for nicotine addiction: arousal and attentional mechanisms influence use and withdrawal symptoms, and hcrt systems overlap anatomically with a number of brain regions associated with nicotine addiction. OBJECTIVE This review summarizes the studies that have examined hcrt mechanisms in the effects of nicotine and describes hcrt innervation of, and effects in, several brain regions implicated in nicotine addiction. The review speculates on the possible mechanisms by which hcrt may contribute to nicotine addiction in these regions, with the objective of encouraging research in this area. RESULTS In a small literature, both experimenter-administered and self-administered nicotine have been shown to elicit or depend on hcrt signaling. However, although untested in experimental designs, there is compelling evidence that hcrt mechanisms in the ventral tegmental area, the pontine region, thalamocortical circuits, the prefrontal cortex, and the amygdala could have a broad influence on nicotine addiction. CONCLUSIONS Evidence reviewed leads to the conclusion that hcrt mechanisms could mediate several dimensions of nicotine addiction, including a multi-faceted regulation of mesocorticolimbic dopaminergic function, but beyond dopaminergic mechanisms, hcrt could influence nicotine use and relapse during abstinence through broadly based arousal/attentional effects. These speculative ideas need to be examined experimentally; the potential gains are a more thorough understanding of the pathophysiology of nicotine addiction, and the discovery of novel targets for the development of pharmacotherapeutics.
Collapse
|
12
|
Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 2009; 28:12318-27. [PMID: 19020025 DOI: 10.1523/jneurosci.3918-08.2008] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The identification of the molecular mechanisms involved in nicotine addiction and its cognitive consequences is a worldwide priority for public health. Novel in vivo paradigms were developed to match this aim. Although the beta2 subunit of the neuronal nicotinic acetylcholine receptor (nAChR) has been shown to play a crucial role in mediating the reinforcement properties of nicotine, little is known about the contribution of the different alpha subunit partners of beta2 (i.e., alpha4 and alpha6), the homo-pentameric alpha7, and the brain areas other than the ventral tegmental area (VTA) involved in nicotine reinforcement. In this study, nicotine (8.7-52.6 microg free base/kg/inf) self-administration was investigated with drug-naive mice deleted (KO) for the beta2, alpha4, alpha6 and alpha7 subunit genes, their wild-type (WT) controls, and KO mice in which the corresponding nAChR subunit was selectively re-expressed using a lentiviral vector (VEC mice). We show that WT mice, beta2-VEC mice with the beta2 subunit re-expressed exclusively in the VTA, alpha4-VEC mice with selective alpha4 re-expression in the VTA, alpha6-VEC mice with selective alpha6 re-expression in the VTA, and alpha7-KO mice promptly self-administer nicotine intravenously, whereas beta2-KO, beta2-VEC in the substantia nigra, alpha4-KO and alpha6-KO mice do not respond to nicotine. We thus define the necessary and sufficient role of alpha4beta2- and alpha6beta2-subunit containing nicotinic receptors (alpha4beta2*- and alpha6beta2*-nAChRs), but not alpha7*-nAChRs, present in cell bodies of the VTA, and their axons, for systemic nicotine reinforcement in drug-naive mice.
Collapse
|
13
|
Rahman S, Zhang Z, Papke RL, Crooks PA, Dwoskin LP, Bardo MT. Region-specific effects of N
,N
′-dodecane-1,12-diyl-bis-3-picolinium dibromide on nicotine-induced increase in extracellular dopamine in vivo. Br J Pharmacol 2009. [DOI: https://doi.org/10.1038/sj.bjp.0707612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
14
|
Medication-related pharmacological manipulations of nicotine self-administration in the rat maintained on fixed- and progressive-ratio schedules of reinforcement. Psychopharmacology (Berl) 2009; 201:557-68. [PMID: 18795267 DOI: 10.1007/s00213-008-1321-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/30/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE The use of animal models to study existing medications for smoking cessation can elucidate the mechanism(s) of action of cessation agents and further validate the models for medication development. OBJECTIVE The objective of the study was to evaluate the response of nicotine self-administration (NSA) to pharmacological agents related to the smoking cessation medication bupropion and to nicotine dosing mimicking nicotine replacement on fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement. MATERIALS AND METHODS NSA was maintained at a nicotine dose of 30 microg/kg/infusion i.v. in rats trained on FR5 and PR40% schedules. Pharmacological manipulations related to bupropion were examined by treating animals with a dopamine reuptake inhibitor [GBR 12909 (GBR)], a norepinephrine reuptake inhibitor [nisoxetine (NIS)], and a nicotinic antagonist [dihydro-beta-erythroidine (DHbetaE)]. The effect of nicotine replacement was examined on the PR schedule by chronic dosing with osmotic minipumps. RESULTS Significant treatment effects occurred with NIS and combinations of NIS-DHbetaE and with GBR on response rates. Chronic nicotine dosing reduced self-administration. The two schedules yielded different results with some treatments. CONCLUSIONS Noradrenergic-nicotinic cholinergic interactions and enhanced responding consequent to dopamine reuptake inhibition may be part of the complex behavioral pharmacology of bupropion-like compounds. Observation of differential results with the two schedules has implication for the use of self-administration techniques to elaborate the mechanisms of dependence as well as drug discovery.
Collapse
|
15
|
Comparison of systemic and local methamphetamine treatment on acetylcholine and dopamine levels in the ventral tegmental area in the mouse. Neuroscience 2008; 156:700-11. [PMID: 18760336 DOI: 10.1016/j.neuroscience.2008.07.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/08/2008] [Accepted: 07/22/2008] [Indexed: 11/21/2022]
Abstract
Acetylcholine (ACh) is an important mediator of dopamine (DA) release and the behavioral reinforcing characteristics of drugs of abuse in the mesocorticolimbic pathway. Within the ventral tegmental area (VTA), the interaction of DA with ACh appears to be integral in mediating motivated behaviors. However, the effects of methamphetamine on VTA ACh and DA release remain poorly characterized. The current investigation performed microdialysis to evaluate the effects of methamphetamine on extracellular levels of ACh and DA. Male C57BL/6J mice received an i.p. injection (saline, 2 mg/kg, or 5 mg/kg) and an intra-VTA infusion (vehicle, 100 microM or 1 mM) of methamphetamine. Locally perfused methamphetamine resulted in no change in extracellular ACh compared with vehicle, but caused a strong, immediate and dose-dependent increase in extrasynaptic DA levels (1240% and 2473% of baseline, respectively) during the 20-min pulse perfusion. An i.p. injection of methamphetamine increased extrasynaptic DA to 275% and 941% of baseline (2 mg/kg and 5 mg/kg, respectively). Systemic methamphetamine significantly increased ACh levels up to 275% of baseline for 40-60 min (2 mg/kg) and 397% of baseline for 40-160 min (5 mg/kg) after injection. ACh remained elevated above baseline for 2-3 h post injection, depending on the methamphetamine dose. Methamphetamine-induced locomotor activity was dose-dependently correlated with extrasynaptic VTA ACh, but not DA levels. These data suggest that methamphetamine acts in the VTA to induce a robust and short-lived increase in extracellular DA release but acts in an area upstream from the VTA to produce a prolonged increase in ACh release in the VTA. We conclude that methamphetamine may activate a recurrent loop in the mesocorticolimbic DA system to stimulate pontine cholinergic nuclei and produce a prolonged ACh release in the VTA.
Collapse
|
16
|
Dwoskin LP, Wooters TE, Sumithran SP, Siripurapu KB, Joyce BM, Lockman PR, Manda VK, Ayers JT, Zhang Z, Deaciuc AG, McIntosh JM, Crooks PA, Bardo MT. N,N'-Alkane-diyl-bis-3-picoliniums as nicotinic receptor antagonists: inhibition of nicotine-evoked dopamine release and hyperactivity. J Pharmacol Exp Ther 2008; 326:563-76. [PMID: 18460644 DOI: 10.1124/jpet.108.136630] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.
Collapse
Affiliation(s)
- Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rahman S, Zhang Z, Papke RL, Crooks PA, Dwoskin LP, Bardo MT. Region-specific effects of N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide on nicotine-induced increase in extracellular dopamine in vivo. Br J Pharmacol 2007; 153:792-804. [PMID: 18059317 DOI: 10.1038/sj.bjp.0707612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Systemic administration of N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), an antagonist of nicotinic acetylcholine receptors (nAChRs) attenuated the nicotine-induced increase in dopamine levels in nucleus accumbens (NAcc). EXPERIMENTAL APPROACH Using in vivo microdialysis, we investigated the effects of local perfusion of the novel nAChR antagonist bPiDDB into the NAcc or ventral tegmental area (VTA) on increased extracellular dopamine in NAcc, induced by systemic nicotine. We also examined the concentration-dependent effects of bPiDDB on the acetylcholine (ACh)-evoked response of specific recombinant neuronal nAChR subtypes expressed in Xenopus oocytes, using electrophysiological methods. KEY RESULTS Nicotine (0.4 mg kg(-1), s.c.) increased extracellular dopamine in NAcc, which was attenuated by intra-VTA perfusion of mecamylamine (100 microM). Intra-VTA perfusion of bPiDDB (1 and 10 microM) reduced nicotine-induced increases in extracellular dopamine in NAcc. In contrast, intra-NAcc perfusion of bPiDDB (1 or 10 microM) failed to alter the nicotine-induced increase in dopamine in NAcc. Intra-VTA perfusion of bPiDDB alone did not alter basal dopamine levels, compared to control, nor the increased dopamine in NAcc following amphetamine (0.5 mg kg(-1), s.c.). Using Xenopus oocytes, bPiDDB (0.01-100 microM) inhibited the response to ACh on specific combinations of rat neuronal nAChR subunits, with highest potency at alpha3beta4beta3 and lowest potency at alpha6/3beta2beta3. CONCLUSIONS AND IMPLICATIONS bPiDDB-Sensitive nAChRs involved in regulating nicotine-induced dopamine release are located in the VTA, rather than in the NAcc. As bPiDDB has properties different from the prototypical nAChR antagonist mecamylamine, further development may lead to novel nAChR antagonists for the treatment of tobacco dependence.
Collapse
Affiliation(s)
- S Rahman
- Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
18
|
Rahman S, Neugebauer NM, Zhang Z, Crooks PA, Dwoskin LP, Bardo MT. The effects of a novel nicotinic receptor antagonist N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on acute and repeated nicotine-induced increases in extracellular dopamine in rat nucleus accumbens. Neuropharmacology 2007. [DOI: https://doi.org/10.1016/j.neuropharm.2006.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Zanetti L, Picciotto MR, Zoli M. Differential effects of nicotinic antagonists perfused into the nucleus accumbens or the ventral tegmental area on cocaine-induced dopamine release in the nucleus accumbens of mice. Psychopharmacology (Berl) 2007; 190:189-99. [PMID: 17061109 DOI: 10.1007/s00213-006-0598-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 09/21/2006] [Indexed: 11/29/2022]
Abstract
RATIONALE The mesolimbic dopamine (DA) system is considered a principal site for nicotine-cocaine interactions. OBJECTIVES AND METHODS The aim of this paper is to study the effects of local perfusions (through the microdialysis cannula) of nicotinic acetylcholine receptor (nAChR) antagonists in the ventral tegmental area (VTA, where mesolimbic DA cell bodies are located) or nucleus accumbens (nAc, where mesolimbic DA nerve terminals project) on cocaine-elicited increase in DA levels in the nAc of mice using intracerebral microdialysis. RESULTS Intra-nAc perfusion of mecamylamine (a nonselective central nicotinic antagonist) or coperfusion of methyllycaconitine (MLA, 10 nM) and dihydro-beta-erythroidine (DHbetaE, 10-100 muM) decreased cocaine-elicited increase in DA perfusate levels. In contrast, intra-nAc perfusion of MLA alone (a relatively selective antagonist of alpha7 subunit-containing nAChRs) increased, while DHbetaE (a relatively selective antagonist of heteromeric nAChR subtypes) did not alter, cocaine-elicited increase in DA perfusate levels. Intra-VTA perfusion of MLA (100 nM) or DHbetaE (100 micro M) significantly increased the cocaine-elicited increase of DA levels in the nAc or VTA, whereas DHbetaE and MLA coperfusion or mecamylamine perfusion had no significant effect. CONCLUSIONS These results show that intra-nAc and intra-VTA perfusion of nAChR antagonists differentially affect cocaine-elicited increase in DA levels in a region and subtype-specific manner. This suggests that multiple cholinergic/nicotinic pathways influence the effects of cocaine on mesolimbic DA neurons in complex, and sometimes opposing, patterns.
Collapse
Affiliation(s)
- Lara Zanetti
- Department of Biomedical Sciences, Section of Physiology, University of Modena and Reggio Emilia, via Campi 287, 41100, Modena, Italy
| | | | | |
Collapse
|
20
|
Rahman S, Neugebauer NM, Zhang Z, Crooks PA, Dwoskin LP, Bardo MT. The effects of a novel nicotinic receptor antagonist N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) on acute and repeated nicotine-induced increases in extracellular dopamine in rat nucleus accumbens. Neuropharmacology 2006; 52:755-63. [PMID: 17097117 DOI: 10.1016/j.neuropharm.2006.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 09/04/2006] [Accepted: 09/25/2006] [Indexed: 11/28/2022]
Abstract
The present study examined the effects of the novel nicotinic acetylcholine receptor (nAChR) antagonist, N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), after acute and repeated nicotine treatment on extracellular dopamine (DA) levels in rat nucleus accumbens (NAcc), using in vivo microdialysis. Acute nicotine (0.4mg/kg, sc) injection produced an increase (232% of basal) in extracellular DA, which was attenuated by pretreatment with the nAChR antagonist mecamylamine (4mg/kg, sc). Pretreatment with bPiDDB (1 or 3mg/kg, sc) dose-dependently reduced the increase in extracellular DA produced by nicotine (0.4mg/kg, sc), but not by amphetamine (0.5mg/kg, sc). Basal levels of NAcc DA increased in animals that had been pretreated with nicotine (0.4mg/kg, sc) for 5 days compared to saline. In addition, nicotine challenge further increased extracellular DA (237% of basal). The increase in DA in NAcc following repeated nicotine was blocked by pretreatment with mecamylamine (4mg/kg, sc) and bPiDDB (1 or 3mg/kg, sc). These results indicate that bPiDDB likely acts as an antagonist at neuronal nAChRs to inhibit DA release in NAcc after acute or repeated nicotine administration. The ability of bPiDDB to inhibit the effect of nicotine in NAcc, combined with previous studies showing decreased nicotine self-administration in rats provides support for bPiDDB as a potential lead compound for the development of a novel pharmacotherapy for nicotine dependence.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | |
Collapse
|
21
|
Campos F, Durán R, Vidal L, Faro LRF, Alfonso M. In vivo Effects of the Anatoxin-a on Striatal Dopamine Release. Neurochem Res 2006; 31:491-501. [PMID: 16758357 DOI: 10.1007/s11064-006-9042-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2006] [Indexed: 10/24/2022]
Abstract
Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of anatoxin-a on striatal in vivo dopamine release by microdialysis.The results of this work show that anatoxin-a evoked dopamine release in a concentration-dependent way. Atropine had not any effect on dopamine release evoked by 3.5 mM anatoxin-a. However, perfusion of nicotinic antagonists mecamylamine and alpha-bungarotoxin induced a total inhibition of the striatal dopamine release. Perfusion of alpha7*-receptors antagonists, metillycaconitine or alpha-bungarotoxin, partially inhibits the release of dopamine stimulated by anatoxin-a. These results show that anatoxin-a can be used as an important nicotinic agonist in the study of nicotinic receptor by in vivo microdialysis technique and also support further in vivo evidences that alpha7*nicotinic AChRs are implicated in the regulation of striatal dopamine release.
Collapse
Affiliation(s)
- F Campos
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Pontevedra, Spain.
| | | | | | | | | |
Collapse
|