1
|
Chen Y, Yang X, Kitajima S, Quan L, Wang Y, Zhu M, Liu E, Lai L, Yan H, Fan J. Macrophage elastase derived from adventitial macrophages modulates aortic remodeling. Front Cell Dev Biol 2023; 10:1097137. [PMID: 36704203 PMCID: PMC9871815 DOI: 10.3389/fcell.2022.1097137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is pathologically characterized by intimal atherosclerosis, disruption and attenuation of the elastic media, and adventitial inflammatory infiltrates. Although all these pathological events are possibly involved in the pathogenesis of AAA, the functional roles contributed by adventitial inflammatory macrophages have not been fully documented. Recent studies have revealed that increased expression of matrix metalloproteinase-12 (MMP-12) derived from macrophages may be particularly important in the pathogenesis of both atherosclerosis and AAA. In the current study, we developed a carrageenan-induced abdominal aortic adventitial inflammatory model in hypercholesterolemic rabbits and evaluated the effect of adventitial macrophage accumulation on the aortic remodeling with special reference to the influence of increased expression of MMP-12. To accomplish this, we compared the carrageenan-induced aortic lesions of transgenic (Tg) rabbits that expressed high levels of MMP-12 in the macrophage lineage to those of non-Tg rabbits. We found that the aortic medial and adventitial lesions of Tg rabbits were greater in degree than those of non-Tg rabbits, with the increased infiltration of macrophages and prominent destruction of elastic lamellae accompanied by the frequent appearance of dilated lesions, while the intimal lesions were slightly increased. Enhanced aortic lesions in Tg rabbits were focally associated with increased dilation of the aortic lumens. RT-PCR and Western blotting revealed high levels of MMP-12 in the lesions of Tg rabbits that were accompanied by elevated levels of MMP-2 and -3, which was caused by increased number of macrophages. Our results suggest that adventitial inflammation constitutes a major stimulus to aortic remodeling and increased expression of MMP-12 secreted from adventitial macrophages plays an important role in the pathogenesis of vascular diseases such as AAA.
Collapse
Affiliation(s)
- Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Xiawen Yang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Longquan Quan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Wang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Maobi Zhu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi’an Jiaotong University School of Medicine, Xi’an, China
| | - Liangxue Lai
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haizhao Yan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,*Correspondence: Haizhao Yan, ; Jianglin Fan,
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China,Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan,*Correspondence: Haizhao Yan, ; Jianglin Fan,
| |
Collapse
|
2
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
3
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
4
|
Chen Y, Waqar AB, Nishijima K, Ning B, Kitajima S, Matsuhisa F, Chen L, Liu E, Koike T, Yu Y, Zhang J, Chen YE, Sun H, Liang J, Fan J. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med 2020; 24:4261-4274. [PMID: 32126159 PMCID: PMC7171347 DOI: 10.1111/jcmm.15087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase‐9 (MMP‐9), or gelatinase B, has been hypothesized to be involved in the progression of atherosclerosis. In the arterial wall, accumulated macrophages secrete considerable amounts of MMP‐9 but its pathophysiological functions in atherosclerosis have not been fully elucidated. To examine the hypothesis that macrophage‐derived MMP‐9 may affect atherosclerosis, we created MMP‐9 transgenic (Tg) rabbits to overexpress the rabbit MMP‐9 gene under the control of the scavenger receptor A enhancer/promoter and examined their susceptibility to cholesterol diet‐induced atherosclerosis. Tg rabbits along with non‐Tg rabbits were fed a cholesterol diet for 16 and 28 weeks, and their aortic and coronary atherosclerosis was compared. Gross aortic lesion areas were significantly increased in female Tg rabbits at 28 weeks; however, pathological examination revealed that all the lesions of Tg rabbits fed a cholesterol diet for either 16 or 28 weeks were characterized by increased monocyte/macrophage accumulation and prominent lipid core formation compared with those of non‐Tg rabbits. Macrophages isolated from Tg rabbits exhibited higher infiltrative activity towards a chemoattractant, MCP‐1 in vitro and augmented capability of hydrolysing extracellular matrix in granulomatous tissue. Surprisingly, the lesions of Tg rabbits showed more advanced lesions with remarkable calcification in both aortas and coronary arteries. In conclusion, macrophage‐derived MMP‐9 facilitates the infiltration of monocyte/macrophages into the lesions thereby enhancing the progression of atherosclerosis. Increased accumulation of lesional macrophages may promote vascular calcification.
Collapse
Affiliation(s)
- Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ahmed Bilal Waqar
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kazutoshi Nishijima
- Bioscience Education-Research Support Center, Akita University, Akita, Japan
| | - Bo Ning
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Fumikazu Matsuhisa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Lu Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tomonari Koike
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ying Yu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yuqing Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Huijun Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jingyan Liang
- Research Center for Vascular Biology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
5
|
Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res 2016; 53:1-16. [PMID: 27327039 PMCID: PMC7196926 DOI: 10.1159/000446703] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/07/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of atherosclerotic disease continues to increase, and despite significant reductions in major cardiovascular events with current medical interventions, an additional therapeutic window exists. Atherosclerotic plaque growth is a complex integration of cholesterol penetration, inflammatory cell infiltration, vascular smooth muscle cell (VSMC) migration, and neovascular invasion. A family of matrix-degrading proteases, the matrix metalloproteinases (MMPs), contributes to all phases of vascular remodeling. The contribution of specific MMPs to endothelial cell integrity and VSMC migration in atherosclerotic lesion initiation and progression has been confirmed by the increased expression of these proteases in plasma and plaque specimens. Endogenous blockade of MMPs by the tissue inhibitors of metalloproteinases (TIMPs) may attenuate proteolysis in some regions, but the progression of matrix degeneration suggests that MMPs predominate in atherosclerotic plaque, precipitating vulnerability. Plaque neovascularization also contributes to instability and, coupling the known role of MMPs in angiogenesis to that of atherosclerotic plaque growth, interest in targeting MMPs to facilitate plaque stabilization continues to accumulate. This article aims to review the contributions of MMPs and TIMPs to atherosclerotic plaque expansion, neovascularization, and rupture vulnerability with an interest in promoting targeted therapies to improve plaque stabilization and decrease the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Jean Marie Ruddy
- Division of Vascular Surgery, Department of Surgery, Medical University of South Carolina, Charleston, S.C., USA
| | | | | |
Collapse
|
6
|
Barna BP, Judson MA, Thomassen MJ. Carbon Nanotubes and Chronic Granulomatous Disease. NANOMATERIALS 2014; 4:508-521. [PMID: 25525507 PMCID: PMC4267561 DOI: 10.3390/nano4020508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Use of nanomaterials in manufactured consumer products is a rapidly expanding industry and potential toxicities are just beginning to be explored. Combustion-generated multiwall carbon nanotubes (MWCNT) or nanoparticles are ubiquitous in non-manufacturing environments and detectable in vapors from diesel fuel, methane, propane, and natural gas. In experimental animal models, carbon nanotubes have been shown to induce granulomas or other inflammatory changes. Evidence suggesting potential involvement of carbon nanomaterials in human granulomatous disease, has been gathered from analyses of dusts generated in the World Trade Center disaster combined with epidemiological data showing a subsequent increase in granulomatous disease of first responders. In this review we will discuss evidence for similarities in the pathophysiology of carbon nanotube-induced pulmonary disease in experimental animals with that of the human granulomatous disease, sarcoidosis.
Collapse
Affiliation(s)
- Barbara P. Barna
- Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Brody Medical Sciences Building, 600 Moye Blvd. Rm. 3E-149, Greenville, NC 27834, USA; E-Mail:
| | - Marc A. Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, MC-91, 47 New Scotland Avenue, Albany, NY 12208, USA; E-Mail:
| | - Mary Jane Thomassen
- Division of Pulmonary, Critical Care and Sleep Medicine, East Carolina University, Brody Medical Sciences Building, 600 Moye Blvd. Rm. 3E-149, Greenville, NC 27834, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-252-744-1117; Fax: +1-252-744-4887
| |
Collapse
|
7
|
Wang Y, Johnson JA, Fulp A, Sutton MA, Lessner SM. Adhesive strength of atherosclerotic plaque in a mouse model depends on local collagen content and elastin fragmentation. J Biomech 2012; 46:716-22. [PMID: 23261250 DOI: 10.1016/j.jbiomech.2012.11.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 11/26/2022]
Abstract
Atherosclerotic plaque rupture is a major cause of myocardial infarction and ischemic stroke. The adhesive strength of the bond between a plaque and the vascular wall, measured as local energy release rate, G, is used for quantitative plaque stability estimation. We tested the hypothesis that adhesive strength varies with plaque composition. Matrix metalloproteinase-12 (MMP12) deficiency was previously reported to alter lesion composition. To estimate G values, peeling experiments are performed on aortic plaques from apolipoprotein E knockout (apoE KO) and apoE MMP12 double knockout (DKO) male mice after 8 months on high-fat diet. For plaques in apoE KO and apoE MMP12 DKO mice, experimental values for G differ significantly (p<0.002) between genotypes, averaging 19.2J/m(2) and 12.1J/m(2), respectively. Histology confirms that plaques delaminate along their interface with the underlying internal elastic lamina (IEL) in both genotypes. Quantitative image analysis of stained tissue sections demonstrates a significant positive correlation (p<0.05) between local collagen content of lesions and G values in both genotypes, indicating that adhesive strength of plaques depends on local collagen content. Surprisingly, macrophage content of aortic plaques is neither significantly correlated with G values nor significantly different between genotypes. The IEL underlying plaques in apoE KO mice is significantly more fragmented (number of breaks and length of breaks) than in apoE MMP12 DKO mice, suggesting that elastin fragmentation also influences adhesion strength of plaques. Overall, our results suggest that plaques adhere more strongly to the underlying IEL in apoE KO mice than in apoE MMP12 DKO mice.
Collapse
Affiliation(s)
- Ying Wang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | | | | | | | | |
Collapse
|
8
|
Johnson JL, Devel L, Czarny B, George SJ, Jackson CL, Rogakos V, Beau F, Yiotakis A, Newby AC, Dive V. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 2011; 31:528-35. [PMID: 21212406 DOI: 10.1161/atvbaha.110.219147] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Matrix metalloproteinase (MMP)-12 has been implicated in plaque progression and instability and is also amenable to selective inhibition. In this study, we investigated the influence of a greater than 10-fold selective synthetic MMP-12 inhibitor on plaque progression in the apolipoprotein E knockout mouse model of atherosclerosis. METHODS AND RESULTS A phosphinic peptide (RXP470.1) that is a potent, selective murine MMP-12 inhibitor significantly reduced atherosclerotic plaque cross-sectional area by approximately 50% at 4 different vascular sites in male and female apolipoprotein E knockout mice fed a Western diet. Furthermore, RXP470.1 treatment resulted in less complex plaques with increased smooth muscle cell:macrophage ratio, less macrophage apoptosis, increased cap thickness, smaller necrotic cores, and decreased incidence of calcification. Additional in vitro and in vivo findings indicate that attenuated monocyte/macrophage invasion and reduced macrophage apoptosis probably underlie the beneficial effects observed on atherosclerotic plaque progression with MMP-12 inhibitor treatment. CONCLUSIONS Our data demonstrate that a selective MMP-12 inhibitor retards atherosclerosis development and results in a more fibrous plaque phenotype in mice. Our study provides proof of principle to motivate translational work on MMP-12 inhibitor therapy in humans.
Collapse
Affiliation(s)
- Jason L Johnson
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhao S, Wei K, Yu Q, Li Y, Cheng F, Wang Y, Yang P, Fan J, Liu E. General topic: applications of transgenic rabbits in biomedical research - based on literature search. WORLD RABBIT SCIENCE 2010. [DOI: 10.4995/wrs.2010.7279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Crouser ED, Culver DA, Knox KS, Julian MW, Shao G, Abraham S, Liyanarachchi S, Macre JE, Wewers MD, Gavrilin MA, Ross P, Abbas A, Eng C. Gene expression profiling identifies MMP-12 and ADAMDEC1 as potential pathogenic mediators of pulmonary sarcoidosis. Am J Respir Crit Care Med 2009; 179:929-38. [PMID: 19218196 DOI: 10.1164/rccm.200803-490oc] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RATIONALE Little is known about the genetic regulation of granulomatous inflammation in sarcoidosis. OBJECTIVES To determine if tissue gene array analysis would identify novel genes engaged in inflammation and lung remodeling in patients with sarcoidosis. METHODS Gene expression analysis was performed on tissues obtained from patients with sarcoidosis at the time of diagnosis (untreated) (n = 6) compared with normal lung tissue (n = 6). Expression of select genes was further confirmed in lung tissue from a second series of patients with sarcoidosis and disease-free control subjects (n = 11 per group) by semi-quantitative RT-PCR. Interactive gene networks were identified in patients with sarcoidosis using Ingenuity Pathway Analysis (Ingenuity Systems, Inc., Redwood, CA) software. The expression of proteins corresponding to selected overexpressed genes was determined using fluorokine multiplex analysis, and immunohistochemistry. Selected genes and proteins were then analyzed in bronchoalveolar lavage fluid in an independent series of patients with sarcoidosis (n = 36) and control subjects (n = 12). MEASUREMENTS AND MAIN RESULTS A gene network engaged in Th1-type responses was most significantly overexpressed in the sarcoidosis lung tissues, including genes not previously reported in the context of sarcoidosis (e.g., IL-7). MMP-12 and ADAMDEC1 transcripts were most highly expressed (> 25-fold) in sarcoidosis lung tissues, corresponding with increased protein expression by immunohistochemistry. MMP-12 and ADAMDEC1 gene and protein expression were increased in bronchoalveolar lavage samples from patients with sarcoidosis, correlating with disease severity. CONCLUSIONS Tissue gene expression analyses provide novel insights into the pathogenesis of pulmonary sarcoidosis. MMP-12 and ADAMDEC1 emerge as likely mediators of lung damage and/or remodeling and may serve as markers of disease activity.
Collapse
Affiliation(s)
- Elliott D Crouser
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Columbus, Ohio 43210-1252, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Souissi IJ, Billiet L, Cuaz-Pérolin C, Slimane MN, Rouis M. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages. Exp Cell Res 2008; 314:3405-14. [PMID: 18823978 DOI: 10.1016/j.yexcr.2008.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 11/24/2022]
Abstract
MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1beta, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARalpha and PPARgamma, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARalpha and gamma isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1beta-treated macrophages only in the presence of a specific PPARalpha agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1beta-stimulated peritoneal macrophages isolated from PPARalpha(-/-) mice and treated with the PPARalpha agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by approximately 50% in IL-1beta-stimulated PPARalpha-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1beta effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at -81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARalpha and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARalpha agonists may be used therapeutically, not only for lipid disorders, but also to prevent inflammation and atheromatous plaque rupture, where their ability to inhibit MMP-12 expression in HMDM may be beneficial.
Collapse
Affiliation(s)
- Imen Jguirim Souissi
- Research Laboratory on Atherosclerotic Biological and Genetic Factors, Faculty of Medicine, Monastir TN-5019, Tunisia
| | | | | | | | | |
Collapse
|
12
|
Yamada S, Wang KY, Tanimoto A, Fan J, Shimajiri S, Kitajima S, Morimoto M, Tsutsui M, Watanabe T, Yasumoto K, Sasaguri Y. Matrix metalloproteinase 12 accelerates the initiation of atherosclerosis and stimulates the progression of fatty streaks to fibrous plaques in transgenic rabbits. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1419-29. [PMID: 18403602 DOI: 10.2353/ajpath.2008.070604] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Whether fatty streaks are directly followed by fibrous plaque formation in atherosclerosis remains controversial. Disruption of the basement membrane and elastic layers is thought to be essential for this process. Matrix metalloproteinase 12 (MMP-12) can degrade a broad spectrum of substrates, but the role of MMP-12 in the early stage of atherosclerosis is unclear. To investigate MMP-12 function in the initiation and progression of atherosclerosis, we investigated macrophage migration and elastolysis in relation to fatty streaks in human MMP-12 transgenic (hMMP-12 Tg) rabbits. Fatty streaks in hMMP-12 Tg rabbits fed a 1% cholesterol diet for 6 weeks (cholesterol-induced model of atherosclerosis) were more pronounced and were associated with more significant degradation of the internal elastic layer compared with wild-type (WT) animals. Numbers of infiltrating macrophages and smooth muscle cells in the lesions were increased in hMMP-12 Tg compared with WT animals. In both cuff- and ligation-induced models of atherosclerosis, smooth muscle cell-predominant atherosclerotic lesions were elevated with significant elastolysis of the internal elastic lamina in Tg compared with WT animals; "microelastolytic sites" were recognized before formation of the neointima in the cuff model only. These results indicate that MMP-12 may be critical to the initiation and progression of atherosclerosis via degradation of the elastic layers and/or basement membrane. Therefore, a specific MMP-12 inhibitor might prove useful for the treatment of progressive atherosclerosis.
Collapse
Affiliation(s)
- Sohsuke Yamada
- Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Okuda Y, Seita Y, Hisamatsu S, Sonoki S, Shino M, Masaoka T, Inomata T, Kamijo SI, Kashiwazaki N. Fertility of spermatozoa cryopreserved with 2% acetamide or glycerol through artificial insemination in the Japanese white rabbit. Exp Anim 2007; 56:29-34. [PMID: 17283888 DOI: 10.1538/expanim.56.29] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The rabbit is considered to be a valuable laboratory animal. We compared 2% acetamide and glycerol as cryoprotectants in egg-yolk diluent for ejaculated Japanese white rabbit spermatozoa to improve sperm cryopreservation methods. Fertility through artificial insemination, forward progressive motility and plasma membrane integrity of the post-thaw spermatozoa were examined. The rates of forward progressive motility and plasma membrane integrity of the spermatozoa frozen with acetamide (27.1 +/- 8.3% and 24.5 +/- 6.5%) were significantly (P < 0.05) higher than those of the spermatozoa frozen with glycerol (16.3 +/- 10.9% and 14.3 +/- 7.6%). Though there was no significant difference in the kindling rates, the litter size of females inseminated with spermatozoa frozen with acetamide (6.0 +/- 1.1) were significantly (P < 0.05) higher than those of spermatozoa frozen with glycerol (3.0 +/- 0.4). The results indicate that 2% acetamide has a higher cryoprotective effect than 2% glycerol for sperm cryopreservation in the Japanese white rabbit.
Collapse
Affiliation(s)
- Yasushi Okuda
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Fuchinobe, Sagamihara, Kanagawa 229-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liang J, Liu E, Yu Y, Kitajima S, Koike T, Jin Y, Morimoto M, Hatakeyama K, Asada Y, Watanabe T, Sasaguri Y, Watanabe S, Fan J. Macrophage Metalloelastase Accelerates the Progression of Atherosclerosis in Transgenic Rabbits. Circulation 2006; 113:1993-2001. [PMID: 16636188 DOI: 10.1161/circulationaha.105.596031] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Macrophage metalloelastase (matrix metalloproteinase [MMP]-12) is upregulated in atherosclerotic lesions and aneurysm; thus, increased MMP-12 activity may play an important role in the pathogenesis of atherosclerosis. However, the pathological roles of MMP-12 in the initiation and progression of atherosclerosis have not been defined. METHODS AND RESULTS We compared the susceptibility of MMP-12 transgenic (Tg) rabbits to cholesterol-rich diet-induced atherosclerosis with that of non-Tg littermate rabbits. The rabbits were maintained at either relatively lower levels of hypercholesterolemia for shorter periods or higher levels of hypercholesterolemia for longer periods through a diet containing different amounts of cholesterol. We found no significant difference in the aortic atherosclerotic lesion size or quality between Tg and non-Tg rabbits at lower hypercholesterolemia. At higher hypercholesterolemia for longer periods, however, Tg rabbits developed more extensive atherosclerosis in the aortas and coronary arteries than did non-Tg rabbits. Histological examinations revealed that atherosclerotic lesions of Tg rabbits contained prominent macrophage infiltration associated with marked disruption of the elastic lamina in the tunica media with occasional formation of aneurysm-like lesions. Furthermore, increased expression of MMP-12 derived from macrophages was associated with elevated expression of MMP-3, suggesting that MMP-12 may play a pivotal role in the cascade activation of other MMPs, thereby exacerbating extracellular matrix degradation during the progression of atherosclerosis. CONCLUSIONS Overexpression of MMP-12 causes accelerated atherosclerosis in Tg rabbits. These results suggest that macrophage-derived MMP-12 participates in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Jingyan Liang
- Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnson JL, George SJ, Newby AC, Jackson CL. Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci U S A 2005; 102:15575-80. [PMID: 16221765 PMCID: PMC1266110 DOI: 10.1073/pnas.0506201102] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are thought to be involved in the growth, destabilization, and eventual rupture of atherosclerotic lesions. Using the mouse brachiocephalic artery model of plaque instability, we compared apolipoprotein E (apoE)/MMP-3, apoE/MMP-7, apoE/MMP-9, and apoE/MMP-12 double knockouts with their age-, strain-, and sex-matched apoE single knockout controls. Brachiocephalic artery plaques were significantly larger in apoE/MMP-3 and apoE/MMP-9 double knockouts than in controls. The number of buried fibrous layers was also significantly higher in the double knockouts, and both knockouts exhibited cellular compositional changes indicative of an unstable plaque phenotype. Conversely, lesion size and buried fibrous layers were reduced in apoE/MMP-12 double knockouts compared with controls, and double knockouts had increased smooth muscle cell and reduced macrophage content in the plaque, indicative of a stable plaque phenotype. ApoE/MMP-7 double knockout plaques contained significantly more smooth muscle cells than controls, but neither lesion size nor features of stability were altered in these animals. Hence, MMP-3 and MMP-9 appear normally to play protective roles, limiting plaque growth and promoting a stable plaque phenotype. MMP-12 supports lesion expansion and destabilization. MMP-7 has no effect on plaque growth or stability, although it is associated with reduced smooth muscle cell content in plaques. These data demonstrate that MMPs are directly involved in atherosclerotic plaque destabilization and clearly show that members of the MMP family have widely differing effects on atherogenesis.
Collapse
Affiliation(s)
- Jason L Johnson
- Bristol Heart Institute, University of Bristol, Bristol BS2 8HW, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Liu M, Sun H, Wang X, Koike T, Mishima H, Ikeda K, Watanabe T, Ochiai N, Fan J. Association of increased expression of macrophage elastase (matrix metalloproteinase 12) with rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:3112-7. [PMID: 15476203 DOI: 10.1002/art.20567] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Increased enzymatic activity of matrix metalloproteinases (MMPs) may promote the progression of rheumatoid arthritis (RA). We undertook this study to investigate the expression and localization of human macrophage elastase (MMP-12) in synovial tissue from RA patients and to compare MMP-12 levels in the synovial tissue and synovial fluid of RA patients with the corresponding levels in patients with osteoarthritis (OA). METHODS We obtained synovial tissues from 23 RA patients and 29 OA patients and analyzed MMP-12 expression using immunohistochemistry, Western and Northern blotting analyses, and zymography. Furthermore, we quantified MMP-12 levels in synovial fluid by Western blotting and zymography. RESULTS Northern blotting analysis demonstrated that RA synovial tissue contained higher levels of MMP-12 messenger RNA than did OA synovial tissue. Western blotting revealed that MMP-12 proteins were consistently and markedly increased in RA synovial tissue compared with OA synovial tissue. A greater amount of immunoreactive proteins corresponding to catalytic forms of MMP-12 was present in RA synovial tissue and synovial fluid, and the MMP-12 proteins exhibited caseinolytic activity in vitro. Immunohistochemical staining showed that the major cells expressing MMP-12 were synovial lining cells, many of which were inflammatory macrophages. CONCLUSION These results establish a possible mechanism by which macrophage-derived MMP-12 may play an important role in the destructive process in RA. Inhibition of MMP-12 may be a potential modality for the treatment of RA.
Collapse
Affiliation(s)
- Mozhen Liu
- Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang X, Liang J, Koike T, Sun H, Ichikawa T, Kitajima S, Morimoto M, Shikama H, Watanabe T, Sasaguri Y, Fan J. Overexpression of human matrix metalloproteinase-12 enhances the development of inflammatory arthritis in transgenic rabbits. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1375-83. [PMID: 15466401 PMCID: PMC1618618 DOI: 10.1016/s0002-9440(10)63395-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased proteolytic activity of matrix metalloproteinases (MMPs) may promote articular destruction such as occurs in rheumatoid arthritis and osteoarthritis. Recently, we reported that synovial tissue and fluid obtained from patients with rheumatoid arthritis contained higher activity of macrophage elastase (MMP-12). To examine the hypothesis that MMP-12 may potentially enhance the progression of arthritis, we investigated the effects of overexpression of MMP-12 on inflammatory arthritis in transgenic rabbits that express the human MMP-12 transgene in the macrophage lineage. Inflammatory arthritis was produced by articular injection of carrageenan solution and the degree of inflammatory arthritis in transgenic rabbits was compared with that in control rabbits. We found that overexpression of MMP-12 in transgenic rabbits significantly enhanced the arthritic lesions, resulting in severe synovial thickening, pannus formation, and prominent macrophage infiltration at an early stage and a marked destruction of articular cartilage associated with loss of proteoglycan at a later stage. These results demonstrate that excessive MMP-12 expression exacerbates articular connective tissue and cartilage degradation and thus plays a critical role in the development of inflammatory joint disease.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/chemically induced
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/pathology
- Blotting, Northern
- Blotting, Western
- Carrageenan/administration & dosage
- Chemotaxis, Leukocyte/genetics
- Disease Models, Animal
- Humans
- Immunohistochemistry
- Inflammation/chemically induced
- Inflammation/enzymology
- Inflammation/pathology
- Injections, Intra-Articular
- Macrophages/immunology
- Macrophages/metabolism
- Matrix Metalloproteinase 12
- Metalloendopeptidases/biosynthesis
- Metalloendopeptidases/genetics
- Osteoarthritis/chemically induced
- Osteoarthritis/enzymology
- Osteoarthritis/pathology
- Rabbits
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- Xiaofei Wang
- Cardiovascular Disease Laboratory, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|