1
|
Hu L, Bao Z. Inhibitory effect of a novel Curcumin derivative DMC-HA on keloid fibroblasts. Aging (Albany NY) 2024; 16:2398-2409. [PMID: 38284901 PMCID: PMC10911336 DOI: 10.18632/aging.205487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Keloids pose a significant dermatological challenge, marked by abnormal fibroblast proliferation and excessive collagen deposition in response to skin injury or trauma. In the present study, we introduce DMC-HA, a derivative of Curcumin, as a promising candidate for keloid treatment. DMC-HA is poised to provide superior therapeutic benefits compared to Curcumin due to its structural modifications. Examining the comparative effects of DMC-HA and Curcumin on keloid fibroblasts can offer insights into their potential as therapeutic agents and the underlying mechanisms in keloid pathogenesis. In our study, CCK-8 experiments revealed that, at equivalent concentrations, DMC-HA demonstrated greater efficacy in inhibiting the proliferation of keloid fibroblasts compared to Curcumin. Flow cytometry analysis indicated that DMC-HA induced fibroblast apoptosis more significantly than Curcumin at the same concentration. Further data demonstrated that DMC-HA notably increased the production of reactive oxygen species (ROS), upregulated the expression levels of Bax, cleaved PARP, and cleaved Caspase-3. Interestingly, the impact of DMC-HA was reversed upon the application of the antioxidant NAC. Additionally, DMC-HA could suppress IL-6-induced increased expression of p-STAT3. Collectively, our findings suggest that DMC-HA is more effective than Curcumin in inhibiting the proliferation of keloid fibroblasts. The underlying mechanism of its action appears to be associated with the augmentation of ROS induction and the concurrent inhibition of STAT3 activation.
Collapse
Affiliation(s)
- Liang Hu
- Department of Burns and Plastic Surgery, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| | - Zhicheng Bao
- Department of Rehabilitation Medicine, Kunshan Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu, China
| |
Collapse
|
2
|
Kim Y, Lee H, Park HJ, Kim MK, Kim YI, Kim HJ, Bae SK, Kim YJ, Bae MK. Hispidulin Inhibits the Vascular Inflammation Triggered by Porphyromonas gingivalis Lipopolysaccharide. Molecules 2023; 28:6717. [PMID: 37764491 PMCID: PMC10536826 DOI: 10.3390/molecules28186717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Hispidulin is a natural bioactive flavonoid that has been studied for its potential therapeutic properties, including its anti-inflammatory, antioxidant, and neuroprotective effects. The aim of this study was to explore whether hispidulin could inhibit the endothelial inflammation triggered by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). The adhesion of monocytes to the vascular endothelium was evaluated through in vitro and ex vivo monocyte adhesion assays. We analyzed the migration of monocytes across the endothelial layer using a transmigration assay. The results showed that treatment with hispidulin decreased the P. gingivalis LPS-induced adhesion of monocytes to endothelial cells and their migration by suppressing the P. gingivalis LPS-triggered expression of intercellular adhesion molecule-1 (ICAM-1) through downregulating nuclear factor-қB (NF-қB). In addition, hispidulin inhibited P. gingivalis LPS-induced mitogen-activated protein kinases (MAPKs) and AKT in endothelial cells. Altogether, the results indicate that hispidulin suppresses the vascular inflammation induced by P. gingivalis LPS. Mechanistically, it prevents the adhesion of monocytes to the vascular endothelium and migration and inhibits NF-қB, MAPKs, and AKT signaling in endothelial cells.
Collapse
Affiliation(s)
- Yeon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hoyong Lee
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Joo Park
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Mi-Kyoung Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hyung Joon Kim
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Soo-Kyung Bae
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Dental Pharmacology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Periodontal Disease Signaling Network Research Center (MRC), Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
3
|
Abd-Elhalem SS, Al-Doori MH, Hassen MT. Macrophage Polarization Towards M2 Phenotype by Curcuminoids Through NF-κB Pathway Inhibition in Adjuvant-Induced Arthritis. Int Immunopharmacol 2023; 119:110231. [PMID: 37130441 DOI: 10.1016/j.intimp.2023.110231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Macrophage polarization is decisive for homeostasis maintenance and tissue repair. Anti-inflammatory properties of curcumin (CUR) have been demonstrated in several studies. It used in the treatment of bone disorders includingrheumatoid arthritis. The present study aims to explore the potential mechanisms of curcumin on macrophage polarization, expression, activation, and cytokine secretion in adjuvant-induced arthritis as well as its possible role in enhancing the therapeutic action of methotrexate (MTX) together with minimizing MTX initiated side-effects. Rats were divided into eight groups as follows; Control group, MTX group: was weekly injected with MTX, CUR group: was treated with a daily oral dose of curcumin, MTX + CUR group: was treated with both methotrexate and curcumin, Adjuvant arthritis group (AIA): was injected with complete Freund's adjuvant for arthritis induction, AIA/MTX group: arthritic rats treated with methotrexate, AIA/CUR group: arthritic rats treated with curcumin and AIA/MTX + CUR: arthritic rats treated with both methotrexate and curcumin. Paw swelling, haematological analysis, immunological studies, histological observations and quantitative immunohistochemical investigations were performed. The present results showed that treating arthritic rats with curcumin either alone or in combination with methotrexate resulted in amelioration in paws inflammation, growth rate, absolute and relative spleen weights, and haematological analyses. Antinuclear antibodies, IL-1β, IL-8, IL-10, NF-kB levels, and CD68 + joint expression were also ameliorated. The microscopic examination of joint and spleen showed more improvement as apparently normal tissues in treated groups. It can be concluded that curcumin seems to be most promising in regulating macrophage expression, activation, cytokine secretion, and polarization, thus providing a novel insight in the application of curcumin-based treatments.
Collapse
Affiliation(s)
- Sahar S Abd-Elhalem
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt.
| | - Mohamed H Al-Doori
- Analysis Pathological Department, Faculty of Applied Sciences, Samarra University, Iraq
| | - Marwa T Hassen
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757 Cairo, Egypt
| |
Collapse
|
4
|
Deandra FA, Ketherin K, Rachmasari R, Sulijaya B, Takahashi N. Probiotics and metabolites regulate the oral and gut microbiome composition as host modulation agents in periodontitis: A narrative review. Heliyon 2023; 9:e13475. [PMID: 36820037 PMCID: PMC9937986 DOI: 10.1016/j.heliyon.2023.e13475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is defined as an oral bacterial dysbiosis-induced persistent inflammation on dental supporting tissue resulting in periodontal tissue breakdown and alveolar bone destruction. The disease is initiated by the interaction between periodontopathogens and the host immune system. Its development and severity can be associated with several systemic diseases, such as cardiovascular disease (CVD), diabetes mellitus, and rheumatoid arthritis (RA). Moreover, the latest research has suggested that the oral and gut microbiome hypothesis lays the oral and systemic connection mechanism. Bacterial homeostasis and restoration in the oral cavity and intestine become therapeutics concepts. Concerning the treatment of periodontitis, a local inflammatory condition, prolonged systemic administration of antibiotics is no longer recommended due to bacterial resistance issues. Probiotics and several bioactive metabolites have been widely investigated to address the needs of host modulation therapy in periodontitis. Evidence suggests that the use of probiotics helps downregulate the inflammation process through the regulation of toll-like receptor 4 (TLR4) and the production of fatty acid, targeting reactive oxygen species (ROS). In brief, several herbals have anti-inflammatory properties by inhibiting pro-inflammatory cytokines and mediators, including mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). Consistently, improvement of periodontal pocket depth (PPD) and gingival index (GI) was seen in a group given melatonin as an adjunct treatment. In all, this review will highlight host modulation agents regarding periodontitis therapy, plausible mechanisms on how probiotics and metabolites work on periodontal restoration, and their reported studies. Limitations given by published studies will be elaborated, while future directions will be proposed.
Collapse
Affiliation(s)
- Fathia Agzarine Deandra
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Ketherin Ketherin
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Rieska Rachmasari
- Postgraduate Program in Periodontology, Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia,Dental Division, Universitas Indonesia Hospital, Depok, West Java, Indonesia,Corresponding author. Department of Periodontology, Universitas Indonesia, Jakarta, Indonesia.
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
5
|
Justo MP, Cardoso CBM, Cantiga-Silva C, Oliveira PHC, Sivieri-Araújo G, Azuma MM, Ervolino E, Cintra LTA. Curcumin reduces inflammation in rat apical periodontitis. Int Endod J 2022; 55:1241-1251. [PMID: 36004614 DOI: 10.1111/iej.13819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/01/2022]
Abstract
AIM To evaluate the effect of systemic curcumin administration on the severity of apical periodontitis (AP). METHODOLOGY Forty male Wistar rats weighing 250-280g each, age 2.5 months, were distributed into four groups (n=10): control untreated rats (C), control rats treated with curcumin (CUR), rats with pulp exposure-induced apical periodontitis (AP), and rats with pulp exposure-induced apical periodontitis treated with curcumin (AP-CUR). Curcumin treatment was administered orally once daily for 15 days before pulp exposure and continued for 30 days after pulp exposure. The rats were sacrificed at 30 days, and the jaws were collected and reconstructed in a program specific for micro-CT. The jaws were processed for analysis of the inflammatory process using Haemotoxylin and Eosin staining and immunohistochemical assays for interleukin tumour necrosis factor alpha (TNF-α), interleukin (Il)-6, and Il-1β. Tartrate-resistant acid phosphatase (TRAP) and osteocalcin (OCN) staining were used to analyze the resorptive process on the bone surface of periapical area. Kruskal-Wallis with Dunn's test was performed for nonparametric data, and ANOVA with Tukey's test for parametric data, p < .05. RESULTS Micro-CT revealed no statistically significant differences in bone resorption between the AP and AP-CUR groups (p > .05). The levels of inflammatory cell infiltration and immunoreactivity for the proinflammatory cytokines TNF-α, Il-6, and Il-1β were significantly higher in the periapical lesions of the AP group than in the AP-CUR group (p < .05). The number of TRAP-positive multinucleated cells was higher in the AP group than in the AP-CUR group (p < .05). In OCN-positive cells, no differences were observed between the AP and AP-CUR groups (p > .05). CONCLUSIONS Oral supplementation with curcumin had a significant effect on the AP severity in rats, suggesting an anti-inflammatory effect of curcumin on AP development.
Collapse
Affiliation(s)
- M P Justo
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - C B M Cardoso
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - C Cantiga-Silva
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - P H C Oliveira
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - G Sivieri-Araújo
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - M M Azuma
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - E Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - L T A Cintra
- Endodontic Section, Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, SP, Brazil.,Dental Assistance Center for Disabled Persons (CAOE) of the São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| |
Collapse
|
6
|
Girisa S, Kumar A, Rana V, Parama D, Daimary UD, Warnakulasuriya S, Kumar AP, Kunnumakkara AB. From Simple Mouth Cavities to Complex Oral Mucosal Disorders-Curcuminoids as a Promising Therapeutic Approach. ACS Pharmacol Transl Sci 2021; 4:647-665. [PMID: 33860191 PMCID: PMC8033761 DOI: 10.1021/acsptsci.1c00017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 02/08/2023]
Abstract
Oral diseases are among the most common encountered health issues worldwide, which are usually associated with anomalies of the oral cavity, jaws, and salivary glands. Despite the availability of numerous treatment modalities for oral disorders, a limited clinical response has been observed because of the inefficacy of the drugs and countless adverse side effects. Therefore, the development of safe, efficacious, and wide-spectrum therapeutics is imperative in the battle against oral diseases. Curcumin, extracted from the golden spice turmeric, is a well-known natural polyphenol that has been extensively studied for its broad pleiotropic attributes and its ability to modulate multiple biological processes. It is well-documented to target pro-inflammatory mediators like NF-κB, ROS, COX-2, IL-1, IL-2, TGF-β, growth factors, apoptotic proteins, receptors, and various kinases. These properties make curcumin a promising nutraceutical in the treatment of many oral diseases like oral submucous fibrosis, oral mucositis, oral leukoplakia, oral erythroplakia, oral candidiasis, aphthous stomatitis, oral lichen planus, dental caries, periodontitis, and gingivitis. Numerous in vitro and in vivo studies have shown that curcumin alleviates the symptoms of most of the oral complications, including the inhibition of the progression of oral cancer. In this regard, many clinical trials have been completed, and many are ongoing to investigate the "curcumin effect" in oral maladies. Therefore, the current review delineates the mechanistic framework of curcumin's propensity in curbing oral diseases and present outcomes of the clinical trials of curcumin-based therapeutics that can provide a breakthrough in the clinical management of these diseases.
Collapse
Affiliation(s)
- Sosmitha Girisa
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| | - Saman Warnakulasuriya
- Department
of Oral Medicine, King’s College
London and WHO Collaborating Centre for Oral Cancer and Precancer, London WC2R 2LS, United Kingdom
| | - Alan Prem Kumar
- Medical
Science Cluster, Cancer Translational Research Programme, Yong Loo
Lin School of Medicine, National University
of Singapore, Singapore 117600, Singapore
- Cancer
Science Institute of Singapore, National
University of Singapore, Singapore 117600, Singapore
- National
University Cancer Institute, National University
Health Systems, Singapore 117600, Singapore
| | - Ajaikumar B. Kunnumakkara
- Cancer
Biology Laboratory and DBT-AIST International Center for Translational
and Environmental Research (DAICENTER), Department of Biosciences
and Bioengineering, Indian Institute of
Technology (IIT) Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
7
|
Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, Roshangar L, Aslani S, Esmaeilzadeh A, Ghaebi M, Valizadeh S, Ahmadi M. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol 2020; 89:107088. [PMID: 33129099 PMCID: PMC7574843 DOI: 10.1016/j.intimp.2020.107088] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023]
Abstract
Background As an ongoing worldwide health issue, Coronavirus disease 2019 (COVID–19) has been causing serious complications, including pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. However, there is no decisive treatment approach available for this disorder, which is primarily attributed to the large amount of inflammatory cytokine production. We aimed to identify the effects of Nano-curcumin on the modulation of inflammatory cytokines in COVID-19 patients. Method Forty COVID-19 patients and 40 healthy controls were recruited and evaluated for inflammatory cytokine expression and secretion. Subsequently, COVID-19 patients were divided into two groups: 20 patients receiving Nano-curcumin and 20 patients as the placebo group. The mRNA expression and cytokine secretion levels of IL-1β, IL-6, TNF-α and IL‐18 were assessed by Real‐time PCR and ELISA, respectively. Result Our primary results indicated that the mRNA expression and cytokine secretion of IL-1β, IL-6, TNF-α, and IL-18 were increased significantly in COVID-19 patients compared with healthy control group. After treatment with Nano-curcumin, a significant decrease in IL-6 expression and secretion in serum and in supernatant (P = 0.0003, 0.0038, and 0.0001, respectively) and IL-1β gene expression and secretion level in serum and supernatant (P = 0.0017, 0.0082, and 0.0041, respectively) was observed. However, IL-18 mRNA expression and TNF-α concentration were not influenced by Nano-curcumin. Conclusion Nano-curcumin, as an anti-inflammatory herbal based agent, may be able to modulate the increased rate of inflammatory cytokines especially IL-1β and IL-6 mRNA expression and cytokine secretion in COVID-19 patients, which may cause an improvement in clinical manifestation and overall recovery.
Collapse
Affiliation(s)
- Hamed Valizadeh
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran; Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Abdolmohammadi-Vahid
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Svetlana Danshina
- Department of propaedeutics of dental diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mehmet Ziya Gencer
- Department of Family Medicine, Yassawi International Kazakh-Turkish University Hospital, Turkistan, Kazakhstan
| | - Ali Ammari
- Department of Surgery, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran; Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Esmaeilzadeh
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|