1
|
Weber JM, Leonard EJ. The Astrobiological Potential of the Uranian Moon System. ASTROBIOLOGY 2024; 24:839-844. [PMID: 39159442 DOI: 10.1089/ast.2024.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The 2023-2032 Planetary Science and Astrobiology Decadal Survey prioritized the Uranus Orbiter and Probe (UOP) mission concept as the next priority flagship mission. The UOP concept includes scientific studies of the Uranian moon system. Although the Uranian moons differ greatly from the ocean worlds in the Jovian and Saturnian systems, the emerging hypothesis is that some of them could at least sustain thin, potentially concentrated, oceans. Herein, we make a case that these moons are important and interesting targets of astrobiological research. Studying these worlds would provide critical astrobiological data related to their habitability, including origin, evolution, and potential death, as well as the formation and evolution of ocean worlds more broadly. There is a strong need for research that connects astrobiology to modeling and experimentation to better characterize the possible conditions of these worlds, and this will be critical in formulating and maximizing the potential science that could be done by a Uranus flagship mission.
Collapse
Affiliation(s)
- Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Erin J Leonard
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Vance SD, Craft KL, Shock E, Schmidt BE, Lunine J, Hand KP, McKinnon WB, Spiers EM, Chivers C, Lawrence JD, Wolfenbarger N, Leonard EJ, Robinson KJ, Styczinski MJ, Persaud DM, Steinbrügge G, Zolotov MY, Quick LC, Scully JEC, Becker TM, Howell SM, Clark RN, Dombard AJ, Glein CR, Mousis O, Sephton MA, Castillo-Rogez J, Nimmo F, McEwen AS, Gudipati MS, Jun I, Jia X, Postberg F, Soderlund KM, Elder CM. Investigating Europa's Habitability with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:81. [PMID: 38046182 PMCID: PMC10687213 DOI: 10.1007/s11214-023-01025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).
Collapse
Affiliation(s)
- Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kathleen L. Craft
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD USA
| | - Everett Shock
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | - Britney E. Schmidt
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan Lunine
- Department of Astronomy and Department of Earth & Atmospheric Sciences, Cornell University, Ithaca, NY USA
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - William B. McKinnon
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO USA
| | - Elizabeth M. Spiers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Justin D. Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA USA
- Honeybee Robotics, Altadena, CA USA
| | - Natalie Wolfenbarger
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Erin J. Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | | | - Divya M. Persaud
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Mikhail Y. Zolotov
- School of Earth & Space Exploration and School of Molecular Sciences, Arizona State University, Tempe, AZ USA
| | | | | | | | - Samuel M. Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | | | - Andrew J. Dombard
- Dept. of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, USA
| | | | - Olivier Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille), Marseille, France
| | - Mark A. Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | | | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA USA
| | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ USA
| | - Murthy S. Gudipati
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Insoo Jun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI USA
| | - Frank Postberg
- Institut für Geologische Wissenschaften, Freie Universität Berlin, Berlin, Germany
| | - Krista M. Soderlund
- Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, University of Texas at Austin, Austin, TX USA
| | - Catherine M. Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
3
|
Cohen IJ, Smith EJ, Clark GB, Turner DL, Ellison DH, Clare B, Regoli LH, Kollmann P, Gallagher DT, Holtzman GA, Likar JJ, Morizono T, Shannon M, Vodusek KS. Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS): A Dedicated Orbiter Mission Concept to Study Space Physics at Uranus. SPACE SCIENCE REVIEWS 2023; 219:65. [PMID: 37869526 PMCID: PMC10587260 DOI: 10.1007/s11214-023-01013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.
Collapse
Affiliation(s)
- Ian J Cohen
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Evan J Smith
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - George B Clark
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Drew L Turner
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Donald H Ellison
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Ben Clare
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Leonardo H Regoli
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Peter Kollmann
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - G Allan Holtzman
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Justin J Likar
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Takeshi Morizono
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Matthew Shannon
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | |
Collapse
|
4
|
Roberts JH, McKinnon WB, Elder CM, Tobie G, Biersteker JB, Young D, Park RS, Steinbrügge G, Nimmo F, Howell SM, Castillo-Rogez JC, Cable ML, Abrahams JN, Bland MT, Chivers C, Cochrane CJ, Dombard AJ, Ernst C, Genova A, Gerekos C, Glein C, Harris CD, Hay HCFC, Hayne PO, Hedman M, Hussmann H, Jia X, Khurana K, Kiefer WS, Kirk R, Kivelson M, Lawrence J, Leonard EJ, Lunine JI, Mazarico E, McCord TB, McEwen A, Paty C, Quick LC, Raymond CA, Retherford KD, Roth L, Rymer A, Saur J, Scanlan K, Schroeder DM, Senske DA, Shao W, Soderlund K, Spiers E, Styczinski MJ, Tortora P, Vance SD, Villarreal MN, Weiss BP, Westlake JH, Withers P, Wolfenbarger N, Buratti B, Korth H, Pappalardo RT. Exploring the Interior of Europa with the Europa Clipper. SPACE SCIENCE REVIEWS 2023; 219:46. [PMID: 37636325 PMCID: PMC10457249 DOI: 10.1007/s11214-023-00990-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.
Collapse
Affiliation(s)
| | | | - Catherine M Elder
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Ryan S Park
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Gregor Steinbrügge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Francis Nimmo
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Samuel M Howell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Morgan L Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | - Corey J Cochrane
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Carolyn Ernst
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | | | - Hamish C F C Hay
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Paul O Hayne
- University of Colorado Boulder, Boulder, CO, USA
| | | | - Hauke Hussmann
- German Aerospace Center Institute of Planetary Research, Berlin, Germany
| | | | | | - Walter S Kiefer
- Lunar and Planetary Institute, University Space Research Association, Houston, TX, USA
| | | | | | | | - Erin J Leonard
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | | | - Carol A Raymond
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Retherford
- Sapienza University of Rome, Rome, Italy
- University of Texas at San Antonio, San Antonio, TX, USA
| | - Lorenz Roth
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Abigail Rymer
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | - David A Senske
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Wencheng Shao
- University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | - Marshall J Styczinski
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- University of Washington, Seattle, WA, USA
| | - Paolo Tortora
- Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Steven D Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | | - Bonnie Buratti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Haje Korth
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Robert T Pappalardo
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
5
|
Hansen CJ, Bolton S, Sulaiman AH, Duling S, Bagenal F, Brennan M, Connerney J, Clark G, Lunine J, Levin S, Kurth W, Mura A, Paranicas C, Tosi F, Withers P. Juno's Close Encounter With Ganymede-An Overview. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL099285. [PMID: 37034391 PMCID: PMC10078441 DOI: 10.1029/2022gl099285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/28/2022] [Indexed: 06/19/2023]
Abstract
The Juno spacecraft has been in orbit around Jupiter since 2016. Two flybys of Ganymede were executed in 2021, opportunities realized by evolution of Juno's polar orbit over the intervening 5 years. The geometry of the close flyby just prior to the 34th perijove pass by Jupiter brought the spacecraft inside Ganymede's unique magnetosphere. Juno's payload, designed to study Jupiter's magnetosphere, had ample dynamic range to study Ganymede's magnetosphere. The Juno radio system was used both for gravity measurements and for study of Ganymede's ionosphere. Remote sensing of Ganymede returned new results on geology, surface composition, and thermal properties of the surface and subsurface.
Collapse
Affiliation(s)
| | - S. Bolton
- Southwest Research InstituteSan AntonioTXUSA
| | - A. H. Sulaiman
- Department of Physics and AstronomyUniversity of IowaIowa CityIAUSA
| | | | - F. Bagenal
- Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderCOUSA
| | | | | | - G. Clark
- Johns Hopkins Applied Physics LaboratoryLaurelMDUSA
| | | | - S. Levin
- Jet Propulsion LaboratoryPasadenaCAUSA
| | - W. Kurth
- Department of Physics and AstronomyUniversity of IowaIowa CityIAUSA
| | - A. Mura
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF‐IAPS)RomeItaly
| | - C. Paranicas
- Johns Hopkins Applied Physics LaboratoryLaurelMDUSA
| | - F. Tosi
- Istituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF‐IAPS)RomeItaly
| | | |
Collapse
|
6
|
Harris CDK, Jia X, Slavin JA. Multi-Fluid MHD Simulations of Europa's Plasma Interaction: Effects of Variation in Europa's Atmosphere. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022; 127:e2022JA030569. [PMID: 36245708 PMCID: PMC9539655 DOI: 10.1029/2022ja030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Europa's plasma interaction is inextricably coupled to its O2 atmosphere by the chemical processes that generate plasma from the atmosphere and the sputtering of magnetospheric plasma against Europa's ice to generate O2. Observations of Europa's atmosphere admit a range of possible densities and spatial distributions (Hall et al., 1998, https://doi.org/10.1086/305604). To better understand this system, we must characterize how different possible configurations of the atmosphere affect the 3D magnetic fields and bulk plasma properties near Europa. To accomplish this, we conducted a parameter study using a multi-fluid magnetohydrodynamic model for Europa's plasma interaction (Harris et al., 2021, https://doi.org/10.1029/2020ja028888). We varied parameters of Europa's atmosphere, as well as the conditions of Jupiter's magnetosphere, over 18 simulations. As the scale height and density of Europa's atmosphere increase, the extent and density of the ionosphere increase as well, generating strong magnetic fields that shield Europa's surface from impinging plasma on the trailing hemisphere. We also calculate the precipitation rate of magnetospheric plasma onto Europa's surface. As the O2 column density increased from (1-2.5) × 1014 cm-2, the precipitation rate decreased sharply then leveled off at 2 × 1024 ions/s for simulations with low magnetospheric plasma density and 6.4 × 1024 ions/s for simulations with high magnetospheric plasma density. These results indicate that the coupling between Europa's plasma populations and its atmosphere leads to feedback that limits increases in the ionosphere density.
Collapse
Affiliation(s)
- Camilla D. K. Harris
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Xianzhe Jia
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| | - James A. Slavin
- Department of Climate and Space Sciences and EngineeringUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
7
|
Martínez-Jiménez M, Benavides AL. The liquidus temperature curve of aqueous methanol mixtures: a numerical simulation study. J Chem Phys 2022; 157:104502. [DOI: 10.1063/5.0099751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The liquidus temperature curve that characterizes the boundary between the liquid methanol/water mixture and its coexistence with ice Ih is determined using the direct-coexistence method. Several methanol concentrations and pressures of 0.1 MPa, 50 MPa, and 100 MPa are considered. In this study, we used the TIP4P/Ice model for water and two different models for methanol: OPLS and OPLS/2016, using the geometric rule for the Lennard-Jones cross interactions. We compared our simulation results with available experimental data and found that this combination of models reproduces reasonably well the liquidus curve for methanol mole fractions up to xm=0.3 at p=0.1 MPa. The freezing point depression of these mixtures is calculated and compared to experimental results. We also analyzed the effect of pressure on the liquidus curve, and we found that both models also reproduce qualitatively well the experimental decreasing of the liquidus temperatures as the pressure increases.
Collapse
Affiliation(s)
| | - Ana Laura Benavides
- Ingeniería Física, Universidad de Guanajuato División de Ciencias e Ingenierías Campus León, Mexico
| |
Collapse
|
8
|
Cochrane CJ, Vance SD, Nordheim TA, Styczinski MJ, Masters A, Regoli LH. In Search of Subsurface Oceans Within the Uranian Moons. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021. [PMID: 35859709 DOI: 10.1029/2020je006418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Galileo mission to Jupiter discovered magnetic signatures associated with hidden subsurface oceans at the moons Europa and Callisto using the phenomenon of magnetic induction. These induced magnetic fields originate from electrically conductive layers within the moons and are driven by Jupiter's strong time-varying magnetic field. The ice giants and their moons are also ideal laboratories for magnetic induction studies. Both Uranus and Neptune have a strongly tilted magnetic axis with respect to their spin axis, creating a dynamic and strongly variable magnetic field environment at the orbits of their major moons. Although Voyager 2 visited the ice giants in the 1980s, it did not pass close enough to any of the moons to detect magnetic induction signatures. However, Voyager 2 revealed that some of these moons exhibit surface features that hint at recent geologically activity, possibly associated with subsurface oceans. Future missions to the ice giants may therefore be capable of discovering subsurface oceans, thereby adding to the family of known "ocean worlds" in our Solar System. Here, we assess magnetic induction as a technique for investigating subsurface oceans within the major moons of Uranus. Furthermore, we establish the ability to distinguish induction responses created by different interior characteristics that tie into the induction response: ocean thickness, conductivity and depth, and ionospheric conductance. The results reported here demonstrate the possibility of single-pass ocean detection and constrained characterization within the moons of Miranda, Ariel, and Umbriel, and provide guidance for magnetometer selection and trajectory design for future missions to Uranus.
Collapse
Affiliation(s)
- C J Cochrane
- Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
| | - S D Vance
- Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
| | - T A Nordheim
- Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
| | | | | | - L H Regoli
- Applied Physics Laboratory John Hopkins University Baltimore MD USA
| |
Collapse
|
9
|
Cochrane CJ, Vance SD, Nordheim TA, Styczinski MJ, Masters A, Regoli LH. In Search of Subsurface Oceans Within the Uranian Moons. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006956. [PMID: 35859709 PMCID: PMC9285391 DOI: 10.1029/2021je006956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 05/04/2023]
Abstract
The Galileo mission to Jupiter discovered magnetic signatures associated with hidden subsurface oceans at the moons Europa and Callisto using the phenomenon of magnetic induction. These induced magnetic fields originate from electrically conductive layers within the moons and are driven by Jupiter's strong time-varying magnetic field. The ice giants and their moons are also ideal laboratories for magnetic induction studies. Both Uranus and Neptune have a strongly tilted magnetic axis with respect to their spin axis, creating a dynamic and strongly variable magnetic field environment at the orbits of their major moons. Although Voyager 2 visited the ice giants in the 1980s, it did not pass close enough to any of the moons to detect magnetic induction signatures. However, Voyager 2 revealed that some of these moons exhibit surface features that hint at recent geologically activity, possibly associated with subsurface oceans. Future missions to the ice giants may therefore be capable of discovering subsurface oceans, thereby adding to the family of known "ocean worlds" in our Solar System. Here, we assess magnetic induction as a technique for investigating subsurface oceans within the major moons of Uranus. Furthermore, we establish the ability to distinguish induction responses created by different interior characteristics that tie into the induction response: ocean thickness, conductivity and depth, and ionospheric conductance. The results reported here demonstrate the possibility of single-pass ocean detection and constrained characterization within the moons of Miranda, Ariel, and Umbriel, and provide guidance for magnetometer selection and trajectory design for future missions to Uranus.
Collapse
Affiliation(s)
- C. J. Cochrane
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - S. D. Vance
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - T. A. Nordheim
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | | | | | - L. H. Regoli
- Applied Physics LaboratoryJohn Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
10
|
Hendrix AR, Hurford TA, Barge LM, Bland MT, Bowman JS, Brinckerhoff W, Buratti BJ, Cable ML, Castillo-Rogez J, Collins GC, Diniega S, German CR, Hayes AG, Hoehler T, Hosseini S, Howett CJ, McEwen AS, Neish CD, Neveu M, Nordheim TA, Patterson GW, Patthoff DA, Phillips C, Rhoden A, Schmidt BE, Singer KN, Soderblom JM, Vance SD. The NASA Roadmap to Ocean Worlds. ASTROBIOLOGY 2019; 19:1-27. [PMID: 30346215 PMCID: PMC6338575 DOI: 10.1089/ast.2018.1955] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 05/20/2023]
Abstract
In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to "identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find." The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists.
Collapse
Affiliation(s)
- Amanda R. Hendrix
- Planetary Science Institute, Tucson, Arizona
- Address correspondence to: Amanda R. Hendrix, Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719
| | | | - Laura M. Barge
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael T. Bland
- Astrogeology Science Center, U.S. Geological Survey, Flagstaff, Arizona
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, La Jolla, California
| | | | - Bonnie J. Buratti
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Julie Castillo-Rogez
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Serina Diniega
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Alexander G. Hayes
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York
| | - Tori Hoehler
- NASA Ames Research Center, Mountain View, California
| | - Sona Hosseini
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Alfred S. McEwen
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona
| | - Catherine D. Neish
- Planetary Science Institute, Tucson, Arizona
- Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Marc Neveu
- NASA HQ/Universities Space Association, Washington, District of Columbia
| | - Tom A. Nordheim
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | - Cynthia Phillips
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | - Britney E. Schmidt
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - Jason M. Soderblom
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Steven D. Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
11
|
Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci Rep 2016; 6:37077. [PMID: 27892524 PMCID: PMC5125006 DOI: 10.1038/srep37077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/24/2016] [Indexed: 11/08/2022] Open
Abstract
Magnetometers are essential for scientific investigation of planetary bodies and are therefore ubiquitous on missions in space. Fluxgate and optically pumped atomic gas based magnetometers are typically flown because of their proven performance, reliability, and ability to adhere to the strict requirements associated with space missions. However, their complexity, size, and cost prevent their applicability in smaller missions involving cubesats. Conventional solid-state based magnetometers pose a viable solution, though many are prone to radiation damage and plagued with temperature instabilities. In this work, we report on the development of a new self-calibrating, solid-state based magnetometer which measures magnetic field induced changes in current within a SiC pn junction caused by the interaction of external magnetic fields with the atomic scale defects intrinsic to the semiconductor. Unlike heritage designs, the magnetometer does not require inductive sensing elements, high frequency radio, and/or optical circuitry and can be made significantly more compact and lightweight, thus enabling missions leveraging swarms of cubesats capable of science returns not possible with a single large-scale satellite. Additionally, the robustness of the SiC semiconductor allows for operation in extreme conditions such as the hot Venusian surface and the high radiation environment of the Jovian system.
Collapse
|
12
|
Mandt K, Mousis O, Marty B, Cavalié T, Harris W, Hartogh P, Willacy K. Constraints from Comets on the Formation and Volatile Acquisition of the Planets and Satellites. SPACE SCIENCE REVIEWS 2015; 197:297-342. [PMID: 31105346 PMCID: PMC6525011 DOI: 10.1007/s11214-015-0161-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Comets play a dual role in understanding the formation and evolution of the solar system. First, the composition of comets provides information about the origin of the giant planets and their moons because comets formed early and their composition is not expected to have evolved significantly since formation. They, therefore serve as a record of conditions during the early stages of solar system formation. Once comets had formed, their orbits were perturbed allowing them to travel into the inner solar system and impact the planets. In this way they contributed to the volatile inventory of planetary atmospheres. We review here how knowledge of comet composition up to the time of the Rosetta mission has contributed to understanding the formation processes of the giant planets, their moons and small icy bodies in the solar system. We also discuss how comets contributed to the volatile inventories of the giant and terrestrial planets.
Collapse
Affiliation(s)
- K.E. Mandt
- Southwest Research Institute, San Antonio, TX, USA
| | - O. Mousis
- Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France
| | - B. Marty
- CRPG-CNRS, Nancy-Université, Vandoeuvre-lès-Nancy, France
| | - T. Cavalié
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - W. Harris
- University of Arizona, Tucson, AZ, USA
| | - P. Hartogh
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - K. Willacy
- Jet Propulsion Laboratory, Pasadena, CA, USA
| |
Collapse
|
13
|
Pappalardo RT, Vance S, Bagenal F, Bills BG, Blaney DL, Blankenship DD, Brinckerhoff WB, Connerney JEP, Hand KP, Hoehler TM, Leisner JS, Kurth WS, McGrath MA, Mellon MT, Moore JM, Patterson GW, Prockter LM, Senske DA, Schmidt BE, Shock EL, Smith DE, Soderlund KM. Science potential from a Europa lander. ASTROBIOLOGY 2013; 13:740-773. [PMID: 23924246 DOI: 10.1089/ast.2013.1003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.
Collapse
Affiliation(s)
- R T Pappalardo
- Planetary Sciences Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
AbstractGalileo spacecraft data suggest that a global ocean exists beneath the frozen ice surface Jupiter's moon Europa. Since the early 1970s, planetary scientists have used theoretical and observational arguments to deliberate the existence of an ocean within Europa and other large icy satellites. Galileo magnetometry data indicates an induced magnetic field at Europa, implying a salt water ocean. A paucity of large craters argues for a surface on average only ~40-90 Myr old. Two multi-ring structures suggest that impacts punched through an ice shell ~20 km thick. Europa's ocean and surface are inherently linked through tidal deformation of the floating ice shell, and tidal flexing and nonsynchronous rotation generate stresses that fracture and deform the surface to create ridges and bands. Dark spots, domes, and chaos terrain are probably related to tidally driven ice convection along with partial melting within the ice shell. Europa's geological activity and probable mantle contact permit the chemical ingredients necessary for life to be present within the satellite's ocean. Astonishing geology and high astrobiological potential make Europa a top priority for future spacecraft exploration, with a primary goal of assessing its habitability.
Collapse
|
15
|
Schilling N, Neubauer FM, Saur J. Influence of the internally induced magnetic field on the plasma interaction of Europa. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007ja012842] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- N. Schilling
- Institut für Geophysik und Meteorologie; Universität zu Köln; Cologne Germany
| | - F. M. Neubauer
- Institut für Geophysik und Meteorologie; Universität zu Köln; Cologne Germany
| | - J. Saur
- Institut für Geophysik und Meteorologie; Universität zu Köln; Cologne Germany
| |
Collapse
|
16
|
|
17
|
|
18
|
Fagents SA. Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002128] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah A. Fagents
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Sciences and Technology; University of Hawaii at Manoa; Honolulu Hawaii USA
| |
Collapse
|
19
|
Schenk PM. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes. Nature 2002; 417:419-21. [PMID: 12024207 DOI: 10.1038/417419a] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.
Collapse
Affiliation(s)
- Paul M Schenk
- Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, USA.
| |
Collapse
|
20
|
|
21
|
Khurana KK, Kivelson MG, Russell CT. Searching for liquid water in Europa by using surface observatories. ASTROBIOLOGY 2002; 2:93-103. [PMID: 12449858 DOI: 10.1089/153110702753621376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Liquid water, as far as we know, is an indispensable ingredient of life. Therefore, locating reservoirs of liquid water in extraterrestrial bodies is a necessary prerequisite to searching for life. Recent geological and geophysical observations from the Galileo spacecraft, though not unambiguous, hint at the possibility of a subsurface ocean in the Jovian moon Europa. After summarizing present evidence for liquid water in Europa, we show that electromagnetic and seismic observations made from as few as two surface observatories comprising a magnetometer and a seismometer offer the best hope of unambiguous characterization of the three-dimensional structure of the ocean and the deeper interior of this icy moon. The observatories would also help us infer the composition of the icy crust and the ocean water.
Collapse
Affiliation(s)
- Krishan K Khurana
- Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | |
Collapse
|
22
|
Kivelson MG, Khurana KK, Russell CT, Joy SP, Volwerk M, Walker RJ, Zimmer C, Linker JA. Magnetized or unmagnetized: Ambiguity persists following Galileo's encounters with Io in 1999 and 2000. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000ja002510] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 2000; 289:1340-3. [PMID: 10958778 DOI: 10.1126/science.289.5483.1340] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
On 3 January 2000, the Galileo spacecraft passed close to Europa when it was located far south of Jupiter's magnetic equator in a region where the radial component of the magnetospheric magnetic field points inward toward Jupiter. This pass with a previously unexamined orientation of the external forcing field distinguished between an induced and a permanent magnetic dipole moment model of Europa's internal field. The Galileo magnetometer measured changes in the magnetic field predicted if a current-carrying outer shell, such as a planet-scale liquid ocean, is present beneath the icy surface. The evidence that Europa's field varies temporally strengthens the argument that a liquid ocean exists beneath the present-day surface.
Collapse
Affiliation(s)
- M G Kivelson
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Paranicas C, McEntire RW, Cheng AF, Lagg A, Williams DJ. Energetic charged particles near Europa. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999ja000350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Glassmeier KH. Currents in Mercury's magnetosphere. MAGNETOSPHERIC CURRENT SYSTEMS 2000. [DOI: 10.1029/gm118p0371] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Neubauer FM. Alfvén wings and electromagnetic induction in the interiors: Europa and Callisto. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999ja900217] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klaasen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK. Does Europa have a subsurface ocean? Evaluation of the geological evidence. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je000628] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Abstract
NASA's Galileo mission to Jupiter and improved Earth-based observing capabilities have allowed major advances in our understanding of Jupiter's moons Io, Europa, Ganymede, and Callisto over the past few years. Particularly exciting findings include the evidence for internal liquid water oceans in Callisto and Europa, detection of a strong intrinsic magnetic field within Ganymede, discovery of high-temperature silicate volcanism on Io, discovery of tenuous oxygen atmospheres at Europa and Ganymede and a tenuous carbon dioxide atmosphere at Callisto, and detection of condensed oxygen on Ganymede. Modeling of landforms seen at resolutions up to 100 times as high as those of Voyager supports the suggestion that tidal heating has played an important role for Io and Europa.
Collapse
Affiliation(s)
- A P Showman
- Department of Mechanical Engineering, University of Louisville, 215 Sackett Hall, Louisville, KY 40292, USA
| | | |
Collapse
|
29
|
Kabin K, Combi MR, Gombosi TI, Nagy AF, DeZeeuw DL, Powell KG. On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999ja900263] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT, Walker RJ, Polanskey C. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 1998; 395:777-80. [PMID: 9796812 DOI: 10.1038/27394] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Galileo spacecraft has been orbiting Jupiter since 7 December 1995, and encounters one of the four galilean satellites-Io, Europa, Ganymede and Callisto-on each orbit. Initial results from the spacecraft's magnetometer have indicated that neither Europa nor Callisto have an appreciable internal magnetic field, in contrast to Ganymede and possibly Io. Here we report perturbations of the external magnetic fields (associated with Jupiter's inner magnetosphere) in the vicinity of both Europa and Callisto. We interpret these perturbations as arising from induced magnetic fields, generated by the moons in response to the periodically varying plasma environment. Electromagnetic induction requires eddy currents to flow within the moons, and our calculations show that the most probable explanation is that there are layers of significant electrical conductivity just beneath the surfaces of both moons. We argue that these conducting layers may best be explained by the presence of salty liquid-water oceans, for which there is already indirect geological evidence in the case of Europa.
Collapse
Affiliation(s)
- K K Khurana
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles 90095, USA.
| | | | | | | | | | | | | |
Collapse
|