1
|
Fortney NW, Beard BL, Hutchings JA, Shields MR, Bianchi TS, Boyd ES, Johnson CM, Roden EE. Geochemical and Stable Fe Isotopic Analysis of Dissimilatory Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. ASTROBIOLOGY 2021; 21:83-102. [PMID: 32580560 DOI: 10.1089/ast.2019.2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chocolate Pots hot spring (CP) is an Fe-rich, circumneutral-pH geothermal spring in Yellowstone National Park. Relic hydrothermal systems have been identified on Mars, and modern hydrothermal environments such as CP are useful for gaining insight into potential pathways for generation of biosignatures of ancient microbial life on Earth and Mars. Fe isotope fractionation is recognized as a signature of dissimilatory microbial iron oxide reduction (DIR) in both the rock record and modern sedimentary environments. Previous studies in CP have demonstrated the presence of DIR in vent pool deposits and show aqueous-/solid-phase Fe isotope variations along the hot spring flow path that may be linked to this process. In this study, we examined the geochemistry and stable Fe isotopic composition of spring water and sediment core samples collected from the vent pool and along the flow path, with the goal of evaluating whether Fe isotopes can serve as a signature of past or present DIR activity. Bulk sediment Fe redox speciation confirmed that DIR is active within the hot spring vent pool sediments (but not in more distal deposits), and the observed Fe isotope fractionation between Fe(II) and Fe(III) is consistent with previous studies of DIR-driven Fe isotope fractionation. However, modeling of sediment Fe isotope distributions indicates that DIR does not produce a unique Fe isotopic signature of DIR in the vent pool environment. Because of rapid chemical and isotopic communication between the vent pool fluid and sediment, sorption of Fe(II) to Fe(III) oxides would produce an isotopic signature similar to DIR despite DIR-driven generation of large quantities of isotopically light solid-associated Fe(II). The possibility exists, however, for preservation of specific DIR-derived Fe(II) minerals such as siderite (which is present in the vent pool deposits), whose isotopic composition could serve as a long-term signature of DIR in relic hot spring environments.
Collapse
Affiliation(s)
- Nathaniel W Fortney
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian L Beard
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jack A Hutchings
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Michael R Shields
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Thomas S Bianchi
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, NASA Astrobiology Institute, Montana State University, Bozeman, Montana, USA
| | - Clark M Johnson
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric E Roden
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Chan MA, Bowen BB, Corsetti FA, Farrand WH, Law ES, Newsom HE, Perl SM, Spear JR, Thompson DR. Exploring, Mapping, and Data Management Integration of Habitable Environments in Astrobiology. Front Microbiol 2019; 10:147. [PMID: 30891006 PMCID: PMC6412026 DOI: 10.3389/fmicb.2019.00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
New approaches to blending geoscience, planetary science, microbiology-geobiology/ecology, geoinformatics and cyberinfrastructure technology disciplines in a holistic effort can be transformative to astrobiology explorations. Over the last two decades, overwhelming orbital evidence has confirmed the abundance of authigenic (in situ, formed in place) minerals on Mars. On Earth, environments where authigenic minerals form provide a substrate for the preservation of microbial life. Similarly, extraterrestrial life is likely to be preserved where crustal minerals can record and preserve the biochemical mechanisms (i.e., biosignatures). The search for astrobiological evidence on Mars has focused on identifying past or present habitable environments - places that could support some semblance of life. Thus, authigenic minerals represent a promising habitable environment where extraterrestrial life could be recorded and potentially preserved over geologic time scales. Astrobiology research necessarily takes place over vastly different scales; from molecules to viruses and microbes to those of satellites and solar system exploration, but the differing scales of analyses are rarely connected quantitatively. The mismatch between the scales of these observations- from the macro- satellite mineralogical observations to the micro- microbial observations- limits the applicability of our astrobiological understanding as we search for records of life beyond Earth. Each-scale observation requires knowledge of the geologic context and the environmental parameters important for assessing habitability. Exploration efforts to search for extraterrestrial life should attempt to quantify both the geospatial context and the temporal/spatial relationships between microbial abundance and diversity within authigenic minerals at multiple scales, while assimilating resolutions from satellite observations to field measurements to microscopic analyses. Statistical measures, computer vision, and the geospatial synergy of Geographic Information Systems (GIS), can allow analyses of objective data-driven methods to locate, map, and predict where the "sweet spots" of habitable environments occur at multiple scales. This approach of science information architecture or an "Astrobiology Information System" can provide the necessary maps to guide researchers to discoveries via testing, visualizing, documenting, and collaborating on significant data relationships that will advance explorations for evidence of life in our solar system and beyond.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT, United States
| | - Brenda B. Bowen
- Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT, United States
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Emily S. Law
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Horton E. Newsom
- Department Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Scott M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - David R. Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
3
|
A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted hydrothermal ecosystems. World J Microbiol Biotechnol 2019; 35:29. [PMID: 30689069 DOI: 10.1007/s11274-019-2604-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/20/2019] [Indexed: 10/27/2022]
Abstract
Prior to the advent of oxygenic photosynthesis ~ 2.8-3.2 Ga, life was dependent on chemical energy captured from oxidation-reduction reactions involving minerals or substrates generated through interaction of water with minerals. Terrestrial hydrothermal environments host abundant and diverse non-photosynthetic communities and a variety of minerals that can sustain microbial metabolism. Minerals and substrates generated through interaction of minerals with water are differentially distributed in hot spring environments which, in turn, shapes the distribution of microbial life and the metabolic processes that support it. Emerging evidence suggests that terrestrial hydrothermal environments may have played a role in supporting the metabolism of the earliest forms of microbial life. It follows that these environments and their microbial inhabitants are increasingly being studied as analogs of early Earth ecosystems. Here we review current understanding of the processes that lead to variation in the availability of minerals or mineral-sourced substrates in terrestrial hydrothermal environments. In addition, we summarize proposed mechanisms of mineral substrate acquisition and metabolism in microbial cells inhabiting terrestrial hydrothermal environments, highlighting the importance of the dynamic interplay between biotic and abiotic reactions in influencing mineral substrate bioavailability. An emphasis is placed on mechanisms involved in the solubilization, acquisition, and metabolism of sulfur- and iron-bearing minerals, since these elements were likely integrated into the metabolism of the earliest anaerobic cells.
Collapse
|
4
|
Hays LE, Graham HV, Des Marais DJ, Hausrath EM, Horgan B, McCollom TM, Parenteau MN, Potter-McIntyre SL, Williams AJ, Lynch KL. Biosignature Preservation and Detection in Mars Analog Environments. ASTROBIOLOGY 2017; 17:363-400. [PMID: 28177270 PMCID: PMC5478115 DOI: 10.1089/ast.2016.1627] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review of material relevant to the Conference on Biosignature Preservation and Detection in Mars Analog Environments summarizes the meeting materials and discussions and is further expanded upon by detailed references to the published literature. From this diverse source material, there is a detailed discussion on the habitability and biosignature preservation potential of five primary analog environments: hydrothermal spring systems, subaqueous environments, subaerial environments, subsurface environments, and iron-rich systems. Within the context of exploring past habitable environments on Mars, challenges common to all of these key environments are laid out, followed by a focused discussion for each environment regarding challenges to orbital and ground-based observations and sample selection. This leads into a short section on how these challenges could influence our strategies and priorities for the astrobiological exploration of Mars. Finally, a listing of urgent needs and future research highlights key elements such as development of instrumentation as well as continued exploration into how Mars may have evolved differently from Earth and what that might mean for biosignature preservation and detection. Key Words: Biosignature preservation-Biosignature detection-Mars analog environments-Conference report-Astrobiological exploration. Astrobiology 17, 363-400.
Collapse
Affiliation(s)
- Lindsay E. Hays
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Farias APSF, Carneiro CEA, de Batista Fonseca IC, Zaia CTBV, Zaia DAM. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment. Amino Acids 2016; 48:1401-12. [PMID: 26984319 DOI: 10.1007/s00726-016-2191-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 02/02/2016] [Indexed: 11/26/2022]
Abstract
Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis.
Collapse
Affiliation(s)
- Ana Paula S F Farias
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Cristine E A Carneiro
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | | | - Cássia T B V Zaia
- Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil
| | - Dimas A M Zaia
- Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, 86051-990, Brazil.
| |
Collapse
|
6
|
Canhisares-Filho JE, Carneiro CEA, de Santana H, Urbano A, da Costa ACS, Zaia CTBV, Zaia DAM. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry. ASTROBIOLOGY 2015; 15:728-738. [PMID: 26393397 DOI: 10.1089/ast.2015.1309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Minerals could have played an important role in concentration, protection, and polymerization of biomolecules. Although iron is the fourth most abundant element in Earth's crust, there are few works in the literature that describe the use of iron oxide-hydroxide in prebiotic chemistry experiments. In the present work, the interaction of adenine, thymine, and uracil with ferrihydrite was studied under conditions that resemble those of prebiotic Earth. At acidic pH, anions in artificial seawater decreased the pH at the point of zero charge (pHpzc) of ferrihydrite; and at basic pH, cations increased the pHpzc. The adsorption of nucleic acid bases onto ferrihydrite followed the order adenine >> uracil > thymine. Adenine adsorption peaked at neutral pH; however, for thymine and uracil, adsorption increased with increasing pH. Electrostatic interactions did not appear to play an important role on the adsorption of nucleic acid bases onto ferrihydrite. Adenine adsorption onto ferrihydrite was higher in distilled water compared to artificial seawater. After ferrihydrite was mixed with artificial seawaters or nucleic acid bases, X-ray diffractograms and Fourier transform infrared spectra did not show any change. Surface-enhanced Raman spectroscopy showed that the interaction of adenine with ferrihydrite was not pH-dependent. In contrast, the interactions of thymine and uracil with ferrihydrite were pH-dependent such that, at basic pH, thymine and uracil lay flat on the surface of ferrihydrite, and at acidic pH, thymine and uracil were perpendicular to the surface. Ferrihydrite adsorbed much more adenine than thymine; thus adenine would have been better protected against degradation by hydrolysis or UV radiation on prebiotic Earth.
Collapse
Affiliation(s)
- José E Canhisares-Filho
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Cristine E A Carneiro
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Henrique de Santana
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Alexandre Urbano
- 2 Departamento de Física-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Antonio C S da Costa
- 3 Departamento de Agronomia-CCA, Universidade Estadual de Maringá , Maringá-PR, Brazil
| | - Cássia T B V Zaia
- 4 Departamento de Ciências Fisiológicas-CCB, Universidade Estadual de Londrina , Londrina-PR, Brazil
| | - Dimas A M Zaia
- 1 Laboratório de Química Prebiótica, Departamento de Química-CCE, Universidade Estadual de Londrina , Londrina-PR, Brazil
| |
Collapse
|
7
|
Brown AR, Wincott PL, LaVerne JA, Small JS, Vaughan DJ, Pimblott SM, Lloyd JR. The impact of γ radiation on the bioavailability of Fe(III) minerals for microbial respiration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:10672-10680. [PMID: 25195952 DOI: 10.1021/es503249r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Conservation of energy by Fe(III)-reducing species such as Shewanella oneidensis could potentially control the redox potential of environments relevant to the geological disposal of radioactive waste and radionuclide contaminated land. Such environments will be exposed to ionizing radiation so characterization of radiation alteration to the mineralogy and the resultant impact upon microbial respiration of iron is essential. Radiation induced changes to the iron mineralogy may impact upon microbial respiration and, subsequently, influence the oxidation state of redox-sensitive radionuclides. In the present work, Mössbauer spectroscopy and electron microscopy indicate that irradiation (1 MGy gamma) of 2-line ferrihydrite can lead to conversion to a more crystalline phase, one similar to akaganeite. The room temperature Mössbauer spectrum of irradiated hematite shows the emergence of a paramagnetic Fe(III) phase. Spectrophotometric determination of Fe(II) reveals a radiation-induced increase in the rate and extent of ferrihydrite and hematite reduction by S. oneidensis in the presence of an electron shuttle (riboflavin). Characterization of bioreduced solids via XRD indicate that this additional Fe(II) is incorporated into siderite and ferrous hydroxy carbonate, along with magnetite, in ferrihydrite systems, and siderite in hematite systems. This study suggests that mineralogical changes to ferrihydrite and hematite induced by radiation may lead to an increase in bioavailability of Fe(III) for respiration by Fe(III)-reducing bacteria.
Collapse
Affiliation(s)
- Ashley R Brown
- School of Earth, Atmospheric and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester , Manchester, M13 9PL, U.K
| | | | | | | | | | | | | |
Collapse
|
8
|
Parenteau MN, Jahnke LL, Farmer JD, Cady SL. Production and early preservation of lipid biomarkers in iron hot springs. ASTROBIOLOGY 2014; 14:502-21. [PMID: 24886100 PMCID: PMC4060779 DOI: 10.1089/ast.2013.1122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/04/2014] [Indexed: 05/19/2023]
Abstract
The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51-54°C, pH 5.5-6.0, and are very high in dissolved Fe(II) at 5.8-5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs--environmental conditions that have been previously identified as highly relevant for Mars exploration.
Collapse
Affiliation(s)
- Mary N. Parenteau
- SETI Institute, Mountain View, California
- NASA Ames Research Center, Exobiology Branch, Moffett Field, California
| | - Linda L. Jahnke
- NASA Ames Research Center, Exobiology Branch, Moffett Field, California
| | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Sherry L. Cady
- Department of Geology, Portland State University, Portland, Oregon
- Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
9
|
Wu L, Brucker RP, Beard BL, Roden EE, Johnson CM. Iron isotope characteristics of Hot Springs at Chocolate Pots, Yellowstone National Park. ASTROBIOLOGY 2013; 13:1091-1101. [PMID: 24219169 DOI: 10.1089/ast.2013.0996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chocolate Pots Hot Springs in Yellowstone National Park is a hydrothermal system that contains high aqueous ferrous iron [∼0.1 mM Fe(II)] at circumneutral pH conditions. This site provides an ideal field environment in which to test our understanding of Fe isotope fractionations derived from laboratory experiments. The Fe(III) oxides, mainly produced through Fe(II) oxidation by oxygen in the atmosphere, have high ⁵⁶Fe/⁵⁴Fe ratios compared with the aqueous Fe(II). However, the degree of fractionation is less than that expected in a closed system at isotopic equilibrium. We suggest two explanations for the observed Fe isotope compositions. One is that light Fe isotopes partition into a sorbed component and precipitate out on the Fe(III) oxide surfaces in the presence of silica. The other explanation is internal regeneration of isotopically heavy Fe(II) via dissimilatory Fe(III) reduction farther down the flow path as well as deeper within the mat materials. These findings provide evidence that silica plays an important role in governing Fe isotope fractionation factors between reduced and oxidized Fe. Under conditions of low ambient oxygen, such as may be found on early Earth or Mars, significantly larger Fe isotope variations are predicted, reflecting the more likely attainment of Fe isotope equilibrium associated with slower oxidation rates under low-O₂ conditions.
Collapse
Affiliation(s)
- Lingling Wu
- 1 Department of Geoscience, University of Wisconsin-Madison , Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
10
|
Reduction of amorphous Fe(III)-hydroxide by binary microbial culture, a Mössbauer study. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s10751-010-0227-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits. Appl Environ Microbiol 2010; 76:6664-72. [PMID: 20709851 DOI: 10.1128/aem.00662-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the high potential for oxidative stress stimulated by reduced iron, contemporary iron-depositing hot springs with circum-neutral pH are intensively populated with cyanobacteria. Therefore, studies of the physiology, diversity, and phylogeny of cyanobacteria inhabiting iron-depositing hot springs may provide insights into the contribution of cyanobacteria to iron redox cycling in these environments and new mechanisms of oxidative stress mitigation. In this study the morphology, ultrastructure, physiology, and phylogeny of a novel cyanobacterial taxon, JSC-1, isolated from an iron-depositing hot spring, were determined. The JSC-1 strain has been deposited in ATCC under the name Marsacia ferruginose, accession number BAA-2121. Strain JSC-1 represents a new operational taxonomical unit (OTU) within Leptolyngbya sensu lato. Strain JSC-1 exhibited an unusually high ratio between photosystem (PS) I and PS II, was capable of complementary chromatic adaptation, and is apparently capable of nitrogen fixation. Furthermore, it synthesized a unique set of carotenoids, but only chlorophyll a. Strain JSC-1 not only required high levels of Fe for growth (≥40 μM), but it also accumulated large amounts of extracellular iron in the form of ferrihydrite and intracellular iron in the form of ferric phosphates. Collectively, these observations provide insights into the physiological strategies that might have allowed cyanobacteria to develop and proliferate in Fe-rich, circum-neutral environments.
Collapse
|
12
|
Vieira AP, Berndt G, de Souza Junior IG, Di Mauro E, Paesano A, de Santana H, da Costa ACS, Zaia CTBV, Zaia DAM. Adsorption of cysteine on hematite, magnetite and ferrihydrite: FT-IR, Mössbauer, EPR spectroscopy and X-ray diffractometry studies. Amino Acids 2010; 40:205-14. [PMID: 20524137 DOI: 10.1007/s00726-010-0635-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/15/2010] [Indexed: 10/19/2022]
Abstract
In the present paper, the adsorption of cysteine on hematite, magnetite and ferrihydrite was studied using FT-IR, electron paramagnetic resonance (EPR), Mössbauer spectroscopy and X-ray diffractometry. Cysteine was dissolved in artificial seawater (two different pHs) which contains the major constituents. There were two main findings described in this paper. First, after the cysteine adsorption, the FT-IR spectroscopy and X-ray diffractometry data showed the formation of cystine. Second, the Mössbauer spectroscopy did not show any increase in the amount of Fe(2+) as expected due the oxidation of cysteine to cystine. An explanation could be that Fe(2+) was oxidized by the oxygen present in the seawater or there occurred a reduction of cystine by Fe(2+) generating cysteine and Fe(3+). The specific surface area and pH at point of zero charge of the iron oxides were influenced by adsorption of cysteine. When compared to other iron oxides, ferrihydrite adsorbed significantly (p < 0.05) more cysteine. The pH has a significant (p < 0.05) effect only on cysteine adsorption on hematite. The FT-IR spectroscopy results showed that cystine remains adsorbed on the surface of the iron oxides even after being mixed with KCl and the amine and carboxylic groups are involved in this interaction. X-ray diffractometry showed no changes on iron oxides mineralogy and the following precipitated substances were found along with the iron oxides after drying the samples: cysteine, cystine and seawater salts. The EPR spectroscopy showed that cysteine interacts with iron oxides, changing the relative amounts of iron oxides and hydroxide.
Collapse
Affiliation(s)
- Alessandra P Vieira
- Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR 86051-990, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mullaugh K, Luther G, Ma S, Moore T, Yücel M, Becker E, Podowski E, Fisher C, Trouwborst R, Pierson B. Voltammetric (Micro)Electrodes for the In Situ Study of Fe2+ Oxidation Kinetics in Hot Springs and S2O Production at Hydrothermal Vents. ELECTROANAL 2008. [DOI: 10.1002/elan.200704056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Stolyar SV, Bayukov OA, Gurevich YL, Ishkakov RS, Ladygina VP. Mössbauer investigation of iron-producing bacteria Klebsiella oxytoca. ACTA ACUST UNITED AC 2007. [DOI: 10.3103/s1062873807090201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Komlos J, Kukkadapu RK, Zachara JM, Jaffé PR. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction. WATER RESEARCH 2007; 41:2996-3004. [PMID: 17467035 DOI: 10.1016/j.watres.2007.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 05/15/2023]
Abstract
Sediment containing a mixture of iron (Fe)-phases, including Fe-oxides (mostly Al-goethite) and Fe-silicates (illites and vermiculite) was bioreduced in a long-term flow through column experiment followed by re-oxidation with dissolved oxygen. The objective of this study was (a) to determine the nature of the re-oxidized Fe(III), and (b) to determine how redox cycling of Fe would affect subsequent Fe(III)-bioavailability. In addition, the effect of Mn on Fe(III) reduction was explored.(57)Fe-Mössbauer spectroscopy measurements showed that biostimulation resulted in partial reduction (20%) of silicate Fe(III) to silicate Fe(II) while the reduction of goethite was negligible. Furthermore, the reduction of Fe in the sediment was uniform throughout the column. When, after biostimulation, 3900 pore volumes of a solution containing dissolved oxygen was pumped through the column over a period of 81 days, approximately 46% of the reduced silicate Fe(II) was re-oxidized to silicate Fe(III). The Mössbauer spectra of the re-oxidized sample were similar to that of pristine sediment implying that Fe-mineralogy of the re-oxidized sediment was mineralogically similar to that of the pristine sediment. In accordance to this, batch experiments showed that Fe(III) reduction occurred at a similar rate although time until Fe(II) buildup started was longer in the pristine sediment than re-oxidized sediment under identical seeding conditions. This was attributed to oxidized Mn that acted as a temporary redox buffer in the pristine sediment. The oxidized Mn was transformed to Mn(II) during bioreduction but, unlike silicate Fe(II), was not re-oxidized when exposed to oxygen.
Collapse
Affiliation(s)
- John Komlos
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
16
|
Klingelhöfer G, Morris RV, Bernhardt B, Rodionov D, de Souza PA, Squyres SW, Foh J, Kankeleit E, Bonnes U, Gellert R, Schröder C, Linkin S, Evlanov E, Zubkov B, Prilutski O. Athena MIMOS II Mössbauer spectrometer investigation. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002138] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- G. Klingelhöfer
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | | | - B. Bernhardt
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - D. Rodionov
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
- Space Research Institute IKI; Moscow Russia
| | - P. A. de Souza
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
- Pelletizing Department; Companhia Vale do Rio Doce; Vitoria Brazil
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - J. Foh
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - E. Kankeleit
- Nuclear Physics Institute; Darmstadt University of Technology; Darmstadt Germany
| | - U. Bonnes
- Nuclear Physics Institute; Darmstadt University of Technology; Darmstadt Germany
| | - R. Gellert
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - C. Schröder
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - S. Linkin
- Space Research Institute IKI; Moscow Russia
| | - E. Evlanov
- Space Research Institute IKI; Moscow Russia
| | - B. Zubkov
- Space Research Institute IKI; Moscow Russia
| | | |
Collapse
|
17
|
Wdowiak TJ, Klingelhöfer G, Wade ML, Nuñez JI. Extracting science from Mössbauer spectroscopy on Mars. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Thomas J. Wdowiak
- Astro and Solar System Physics Program, Department of Physics; University of Alabama at Birmingham; Birmingham Alabama USA
| | - Göstar Klingelhöfer
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University of Mainz; Mainz Germany
| | - Manson L. Wade
- Astro and Solar System Physics Program, Department of Physics; University of Alabama at Birmingham; Birmingham Alabama USA
- Russell Mathematics and Science Center; Alabama School of Fine Arts; Birmingham Alabama USA
| | - Jorge I. Nuñez
- Astro and Solar System Physics Program, Department of Physics; University of Alabama at Birmingham; Birmingham Alabama USA
| |
Collapse
|
18
|
Allen CC, Westall F, Schelble RT. Importance of a martian hematite site for astrobiology. ASTROBIOLOGY 2001; 1:111-123. [PMID: 12448998 DOI: 10.1089/153110701750137495] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems. Terrestrial hematite deposits proposed as possible analogs for hematite deposits on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We report the potential for long-term preservation of microfossils by iron oxide mineralization in specimens of the approximately 2,100-Ma banded iron deposit of the Gunflint Formation, Canada. Scanning and analytical electron microscopy reveals micrometer-scale rods, spheres, and filaments consisting predominantly of iron and oxygen with minor carbon. We interpret these objects as microbial cells permineralized by an iron oxide, presumably hematite. The confirmation of ancient martian microbial life in hematite deposits will require the return of samples to terrestrial laboratories. A hematite-rich deposit composed of aqueous iron oxide precipitates may thus prove to be a prime site for future sample return.
Collapse
Affiliation(s)
- C C Allen
- NASA Johnson Space Center, Houston, TX, USA.
| | | | | |
Collapse
|
19
|
Pierson BK, Parenteau MN. Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. FEMS Microbiol Ecol 2000; 32:181-196. [PMID: 10858577 DOI: 10.1111/j.1574-6941.2000.tb00711.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chocolate Pots Hot Springs in Yellowstone National Park are high in ferrous iron, silica and bicarbonate. The springs are contributing to the active development of an iron formation. The microstructure of photosynthetic microbial mats in these springs was studied with conventional optical microscopy, confocal laser scanning microscopy and transmission electron microscopy. The dominant mats at the highest temperatures (48-54 degrees C) were composed of Synechococcus and Chloroflexus or Pseudanabaena and Mastigocladus. At lower temperatures (36-45 degrees C), a narrow Oscillatoria dominated olive green cyanobacterial mats covering most of the iron deposit. Vertically oriented cyanobacterial filaments were abundant in the top 0.5 mm of the mats. Mineral deposits accumulated beneath this surface layer. The filamentous microstructure and gliding motility may contribute to binding the iron minerals. These activities and heavy mineral encrustation of cyanobacteria may contribute to the growth of the iron deposit. Chocolate Pots Hot Springs provide a model for studying the potential role of photosynthetic prokaryotes in the origin of Precambrian iron formations.
Collapse
Affiliation(s)
- BK Pierson
- Biology Department, University of Puget Sound, 1500 N. Warner, 98416, Tacoma, WA, USA
| | | |
Collapse
|
20
|
Wade ML, Agresti DG, Wdowiak TJ, Armendarez LP, Farmer JD. A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration. JOURNAL OF GEOPHYSICAL RESEARCH 1999; 104:8489-507. [PMID: 11542933 DOI: 10.1029/1998je900049] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrothermal spring systems may well have been present on early Mars and could have served as a habitat for primitive life. The integrated instrument suite of the Athena Rover has, as a component on the robotic arm, a Mossbauer spectrometer. In the context of future Mars exploration we present results of Mossbauer analysis of a suite of samples from an iron-rich thermal spring in the Chocolate Pots area of Yellowstone National Park (YNP) and from Obsidian Pool (YNP) and Manitou Springs, Colorado. We have found that Mossbauer spectroscopy can discriminate among the iron-bearing minerals in our samples. Those near the vent and on the surface are identified as ferrihydrite, an amorphous ferric mineraloid. Subsurface samples, collected from cores, which are likely to have undergone inorganic and/or biologically mediated alteration (diagenesis), exhibit spectral signatures that include nontronite (a smectite clay), hematite (alpha-Fe2O3), small-particle/nanophase goethite (alpha-FeOOH), and siderite (FeCO3). We find for iron minerals that Mossbauer spectroscopy is at least as efficient in identification as X-ray diffraction. This observation is important from an exploration standpoint. As a planetary surface instrument, Mossbauer spectroscopy can yield high-quality spectral data without sample preparation (backscatter mode). We have also used field emission scanning electron microscopy (FESEM), in conjunction with energy-dispersive X ray (EDX) fluorescence spectroscopy, to characterize the microbiological component of surface sinters and the relation between the microbiological and the mineralogical framework. Evidence is presented that the minerals found in these deposits can have multi-billion-year residence times and thus may have survived their possible production in a putative early Martian hot spring up to the present day. Examples include the nanophase property and the Mossbauer signature for siderite, which has been identified in a 2.09-billion-year old hematite-rich chert stromatolite. Our research demonstrates that in situ Mossbauer spectroscopy can help determine whether hydrothermal mineral deposits exist on Mars, which is significant for exobiology because of the issue of whether that world ever had conditions conductive to the origin of life. As a useful tool for selection of samples suitable for transport to Earth, Mossbauer spectroscopy will not only serve geological interests but will also have potential for exopaleontology.
Collapse
Affiliation(s)
- M L Wade
- Astro and Solar System Physics Program, Department of Physics, University of Alabama at Birmingham, USA
| | | | | | | | | |
Collapse
|