1
|
Gorbunov MY, Falkowski PG. Using Chlorophyll Fluorescence to Determine the Fate of Photons Absorbed by Phytoplankton in the World's Oceans. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:213-238. [PMID: 34460315 DOI: 10.1146/annurev-marine-032621-122346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 45% of the photosynthetically fixed carbon on Earth occurs in the oceans in phytoplankton, which account for less than 1% of the world's photosynthetic biomass. This amazing empirical observation implies a very high photosynthetic energy conversion efficiency, but how efficiently is the solar energy actually used? The photon energy budget of photosynthesis can be divided into three terms: the quantum yields of photochemistry, fluorescence, and heat. Measuring two of these three processes closes the energy budget. The development of ultrasensitive, seagoing chlorophyll variable fluorescence and picosecond fluorescence lifetime instruments has allowed independent closure on the first two terms. With this closure, we can understand how phytoplankton respond to nutrient supplies on timescales of hours to months and, over longer timescales, to changes in climate.
Collapse
Affiliation(s)
- Maxim Y Gorbunov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| |
Collapse
|
2
|
Pinkerton MH, Boyd PW, Deppeler S, Hayward A, Höfer J, Moreau S. Evidence for the Impact of Climate Change on Primary Producers in the Southern Ocean. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.592027] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO), this paper brings together analyses of recent trends in phytoplankton biomass, primary production and irradiance at the base of the mixed layer in the Southern Ocean and summarises future projections. Satellite observations suggest that phytoplankton biomass in the mixed-layer has increased over the last 20 years in most (but not all) parts of the Southern Ocean, whereas primary production at the base of the mixed-layer has likely decreased over the same period. Different satellite models of primary production (Vertically Generalised versus Carbon Based Production Models) give different patterns and directions of recent change in net primary production (NPP). At present, the satellite record is not long enough to distinguish between trends and climate-related cycles in primary production. Over the next 100 years, Earth system models project increasing NPP in the water column in the MEASO northern and Antarctic zones but decreases in the Subantarctic zone. Low confidence in these projections arises from: (1) the difficulty in mapping supply mechanisms for key nutrients (silicate, iron); and (2) understanding the effects of multiple stressors (including irradiance, nutrients, temperature, pCO2, pH, grazing) on different species of Antarctic phytoplankton. Notwithstanding these uncertainties, there are likely to be changes to the seasonal patterns of production and the microbial community present over the next 50–100 years and these changes will have ecological consequences across Southern Ocean food-webs, especially on key species such as Antarctic krill and silverfish.
Collapse
|
3
|
Hunnestad AV, Vogel AIM, Armstrong E, Digernes MG, Ardelan MV, Hohmann-Marriott MF. From the Ocean to the Lab-Assessing Iron Limitation in Cyanobacteria: An Interface Paper. Microorganisms 2020; 8:E1889. [PMID: 33260337 PMCID: PMC7760322 DOI: 10.3390/microorganisms8121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential, yet scarce, nutrient in marine environments. Phytoplankton, and especially cyanobacteria, have developed a wide range of mechanisms to acquire iron and maintain their iron-rich photosynthetic machinery. Iron limitation studies often utilize either oceanographic methods to understand large scale processes, or laboratory-based, molecular experiments to identify underlying molecular mechanisms on a cellular level. Here, we aim to highlight the benefits of both approaches to encourage interdisciplinary understanding of the effects of iron limitation on cyanobacteria with a focus on avoiding pitfalls in the initial phases of collaboration. In particular, we discuss the use of trace metal clean methods in combination with sterile techniques, and the challenges faced when a new collaboration is set up to combine interdisciplinary techniques. Methods necessary for producing reliable data, such as High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS), Flow Injection Analysis Chemiluminescence (FIA-CL), and 77K fluorescence emission spectroscopy are discussed and evaluated and a technical manual, including the preparation of the artificial seawater medium Aquil, cleaning procedures, and a sampling scheme for an iron limitation experiment is included. This paper provides a reference point for researchers to implement different techniques into interdisciplinary iron studies that span cyanobacteria physiology, molecular biology, and biogeochemistry.
Collapse
Affiliation(s)
- Annie Vera Hunnestad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Anne Ilse Maria Vogel
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| | - Evelyn Armstrong
- NIWA/University of Otago Research Centre for Oceanography, Department of Chemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Maria Guadalupe Digernes
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Murat Van Ardelan
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.V.H.); (M.G.D.)
| | - Martin Frank Hohmann-Marriott
- PhotoSynLab, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (A.I.M.V.); (M.F.H.-M.)
| |
Collapse
|
4
|
Ellwood MJ, Strzepek RF, Strutton PG, Trull TW, Fourquez M, Boyd PW. Distinct iron cycling in a Southern Ocean eddy. Nat Commun 2020; 11:825. [PMID: 32047154 PMCID: PMC7012851 DOI: 10.1038/s41467-020-14464-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Abstract
Mesoscale eddies are ubiquitous in the iron-limited Southern Ocean, controlling ocean-atmosphere exchange processes, however their influence on phytoplankton productivity remains unknown. Here we probed the biogeochemical cycling of iron (Fe) in a cold-core eddy. In-eddy surface dissolved Fe (dFe) concentrations and phytoplankton productivity were exceedingly low relative to external waters. In-eddy phytoplankton Fe-to-carbon uptake ratios were elevated 2–6 fold, indicating upregulated intracellular Fe acquisition resulting in a dFe residence time of ~1 day. Heavy dFe isotope values were measured for in-eddy surface waters highlighting extensive trafficking of dFe by cells. Below the euphotic zone, dFe isotope values were lighter and coincident with peaks in recycled nutrients and cell abundance, indicating enhanced microbially-mediated Fe recycling. Our measurements show that the isolated nature of Southern Ocean eddies can produce distinctly different Fe biogeochemistry compared to surrounding waters with cells upregulating iron uptake and using recycling processes to sustain themselves. Eddies are common ocean features that isolate large swaths of seawater, but it is unclear how they influence productivity of phytoplankton trapped inside. Here Ellwood and colleagues use stable and radiogenic isotopes to characterize a Southern Ocean eddy, finding vanishingly low iron concentrations that drive low productivity across the region.
Collapse
Affiliation(s)
- Michael J Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, Australia.
| | - Robert F Strzepek
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Peter G Strutton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.,Australian Research Council Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, Australia
| | | | - Marion Fourquez
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| |
Collapse
|
5
|
Temperature and phytoplankton size class biomass drives the zooplankton food web dynamics in the Indian Ocean sector of the Southern Ocean. Polar Biol 2019. [DOI: 10.1007/s00300-019-02472-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proc Natl Acad Sci U S A 2018; 115:13300-13305. [PMID: 30530699 PMCID: PMC6310781 DOI: 10.1073/pnas.1813192115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vertical distribution of phytoplankton cells and chlorophyll concentrations throughout the sunlit water column is rarely uniform. In many ocean regions, chlorophyll concentrations peak in distinct and persistent layers deep below the surface called subsurface chlorophyll maximum layers (SCMLs). SCML formation is hypothesized to reflect the consequences of phytoplankton light/macronutrient colimitation, behavior, and/or photoacclimation. We discovered unexpectedly persistent and widespread phytoplankton iron limitation and iron/light colimitation in SCMLs of the California Current and at the edge of the North Pacific Subtropical Gyre using shipboard incubations, metatranscriptomics, and biogeochemical proxies. These results suggest that interactions and feedbacks between iron and light availability play an important and previously unrecognized role in controlling the productivity and biogeochemical dynamics of SCMLs. Subsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to the extent of oligotrophic gyres. These layers of heightened chlorophyll and/or phytoplankton concentrations are generally thought to be a consequence of a balance between light energy from above and a limiting nutrient flux from below, typically nitrate (NO3). Here we present multiple lines of evidence demonstrating that iron (Fe) limits or with light colimits phytoplankton communities in SCMLs along a primary productivity gradient from coastal to oligotrophic offshore waters in the southern California Current ecosystem. SCML phytoplankton responded markedly to added Fe or Fe/light in experimental incubations and transcripts of diatom and picoeukaryote Fe stress genes were strikingly abundant in SCML metatranscriptomes. Using a biogeochemical proxy with data from a 40-y time series, we find that diatoms growing in California Current SCMLs are persistently Fe deficient during the spring and summer growing season. We also find that the spatial extent of Fe deficiency within California Current SCMLs has significantly increased over the last 25 y in line with a regional climate index. Finally, we show that diatom Fe deficiency may be common in the subsurface of major upwelling zones worldwide. Our results have important implications for our understanding of the biogeochemical consequences of marine SCML formation and maintenance.
Collapse
|
7
|
Moreno CM, Lin Y, Davies S, Monbureau E, Cassar N, Marchetti A. Examination of gene repertoires and physiological responses to iron and light limitation in Southern Ocean diatoms. Polar Biol 2017. [DOI: 10.1007/s00300-017-2228-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Lasbleiz M, Leblanc K, Armand LK, Christaki U, Georges C, Obernosterer I, Quéguiner B. Composition of diatom communities and their contribution to plankton biomass in the naturally iron-fertilized region of Kerguelen in the Southern Ocean. FEMS Microbiol Ecol 2016; 92:fiw171. [PMID: 27515734 DOI: 10.1093/femsec/fiw171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 12/25/2022] Open
Abstract
In the naturally iron-fertilized surface waters of the northern Kerguelen Plateau region, the early spring diatom community composition and contribution to plankton carbon biomass were investigated and compared with the high nutrient, low chlorophyll (HNLC) surrounding waters. The large iron-induced blooms were dominated by small diatom species belonging to the genera Chaetoceros (Hyalochaete) and Thalassiosira, which rapidly responded to the onset of favorable light-conditions in the meander of the Polar Front. In comparison, the iron-limited HNLC area was typically characterized by autotrophic nanoeukaryote-dominated communities and by larger and more heavily silicified diatom species (e.g. Fragilariopsis spp.). Our results support the hypothesis that diatoms are valuable vectors of carbon export to depth in naturally iron-fertilized systems of the Southern Ocean. Furthermore, our results corroborate observations of the exported diatom assemblage from a sediment trap deployed in the iron-fertilized area, whereby the dominant Chaetoceros (Hyalochaete) cells were less efficiently exported than the less abundant, yet heavily silicified, cells of Thalassionema nitzschioides and Fragilariopsis kerguelensis Our observations emphasize the strong influence of species-specific diatom cell properties combined with trophic interactions on matter export efficiency, and illustrate the tight link between the specific composition of phytoplankton communities and the biogeochemical properties characterizing the study area.
Collapse
Affiliation(s)
- Marine Lasbleiz
- Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, Cedex 09, France
| | - Karine Leblanc
- Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, Cedex 09, France
| | - Leanne K Armand
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| | - Urania Christaki
- INSU-CNRS, UMR8187 LOG, Laboratoire d'Océanologie et des Géosciences, Université du Littoral Côte d'Opale, ULCO, 32 avenue Foch, 62930 Wimereux, France
| | - Clément Georges
- INSU-CNRS, UMR8187 LOG, Laboratoire d'Océanologie et des Géosciences, Université du Littoral Côte d'Opale, ULCO, 32 avenue Foch, 62930 Wimereux, France
| | - Ingrid Obernosterer
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Bernard Quéguiner
- Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, Cedex 09, France
| |
Collapse
|
9
|
Petrou K, Trimborn S, Rost B, Ralph PJ, Hassler CS. The impact of iron limitation on the physiology of the Antarctic diatom Chaetoceros simplex.. MARINE BIOLOGY 2014; 161:925-937. [PMID: 24719494 PMCID: PMC3969518 DOI: 10.1007/s00227-014-2392-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/13/2014] [Indexed: 05/10/2023]
Abstract
Iron availability strongly governs the growth of Southern Ocean phytoplankton. To investigate how iron limitation affects photosynthesis as well as the uptake of carbon and iron in the Antarctic diatom Chaetocerossimplex, a combination of chlorophyll a fluorescence measurements and radiotracer incubations in the presence and absence of chemical inhibitors was conducted. Iron limitation in C. simplex led to a decline in growth rates, photochemical efficiency and structural changes in photosystem II (PSII), including a reorganisation of photosynthetic units in PSII and an increase in size of the functional absorption cross section of PSII. Iron-limited cells further exhibited a reduced plastoquinone pool and decreased photosynthetic electron transport rate, while non-photochemical quenching and relative xanthophyll pigment content were strongly increased, suggesting a photoprotective response. Additionally, iron limitation resulted in a strong decline in carbon fixation and thus the particulate organic carbon quotas. Inhibitor studies demonstrated that, independent of the iron supply, carbon fixation was dependent on internal, but not on extracellular carbonic anhydrase activity. Orthovanadate more strongly inhibited iron uptake in iron-limited cells, indicating that P-type ATPase transporters are involved in iron uptake. The stronger reduction in iron uptake by ascorbate in iron-limited cells suggests that the re-oxidation of iron is required before it can be taken up and further supports the presence of a high-affinity iron transport pathway. The measured changes to photosystem architecture and shifts in carbon and iron uptake strategies in C. simplex as a result of iron limitation provide evidence for a complex interaction of these processes to balance the iron requirements for photosynthesis and carbon demand for sustained growth in iron-limited waters.
Collapse
Affiliation(s)
- Katherina Petrou
- Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Australia
| | - Scarlett Trimborn
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Björn Rost
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Peter J. Ralph
- Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Australia
| | - Christel S. Hassler
- Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Australia
- Institute FA Forel, University of Geneva, 10 rte de Suisse, 1290 Versoix, Switzerland
| |
Collapse
|
10
|
Response of phytoplankton photophysiology to varying environmental conditions in the Sub-Antarctic and Polar Frontal Zone. PLoS One 2013; 8:e72165. [PMID: 23977242 PMCID: PMC3747055 DOI: 10.1371/journal.pone.0072165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Climate-driven changes are expected to alter the hydrography of the Sub-Antarctic Zone (SAZ) and Polar Frontal Zone (PFZ) south of Australia, in which distinct regional environments are believed to be responsible for the differences in phytoplankton biomass in these regions. Here, we report how the dynamic influences of light, iron and temperature, which are responsible for the photophysiological differences between phytoplankton in the SAZ and PFZ, contribute to the biomass differences in these regions. High effective photochemical efficiency of photosystem II (F'(q)/F'(m)0.4), maximum photosynthesis rate (P(B)(max)), light-saturation intensity (E(k)), maximum rate of photosynthetic electron transport (1/[Symbol: see text]PSII), and low photoprotective pigment concentrations observed in the SAZ correspond to high chlorophyll a and iron concentrations. In contrast, phytoplankton in the PFZ exhibits low F'(q)/F'(M) (~ 0.2) and high concentrations of photoprotective pigments under low light environment. Strong negative relationships between iron, temperature, and photoprotective pigments demonstrate that cells were producing more photoprotective pigments under low temperature and iron conditions, and are responsible for the low biomass and low productivity measured in the PFZ. As warming and enhanced iron input is expected in this region, this could probably increase phytoplankton photosynthesis in this region. However, complex interactions between the biogeochemical processes (e.g. stratification caused by warming could prevent mixing of nutrients), which control phytoplankton biomass and productivity, remain uncertain.
Collapse
|
11
|
Behrenfeld MJ, Milligan AJ. Photophysiological expressions of iron stress in phytoplankton. ANNUAL REVIEW OF MARINE SCIENCE 2013; 5:217-46. [PMID: 22881354 DOI: 10.1146/annurev-marine-121211-172356] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Iron is essential for all life, but it is particularly important to photoautotrophs because of the many iron-dependent electron transport components in photosynthetic membranes. Since the proliferation of oxygenic photosynthesis in the Archean ocean, iron has been a scarce commodity, and it is now recognized as a limiting resource for phytoplankton over broad expanses of the open ocean and even in some coastal/continental shelf waters. Iron stress does not impair photochemical or carbon fixation efficiencies, and in this respect it resembles the highly tuned photosynthetic systems of steady-state macronutrient-limited phytoplankton. However, iron stress does present unique photophysiological challenges, and phytoplankton have responded to these challenges through major architectural changes in photosynthetic membranes. These evolved responses include overexpression of photosynthetic pigments and iron-economic pathways for ATP synthesis, and they result in diagnostic fluorescence properties that allow a broad appraisal of iron stress in the field and even the detection of iron stress from space.
Collapse
Affiliation(s)
- Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA.
| | | |
Collapse
|
12
|
Hoogstraten A, Timmermans KR, de Baar HJW. MORPHOLOGICAL AND PHYSIOLOGICAL EFFECTS IN PROBOSCIA ALATA (BACILLARIOPHYCEAE) GROWN UNDER DIFFERENT LIGHT AND CO2 CONDITIONS OF THE MODERN SOUTHERN OCEAN(1). JOURNAL OF PHYCOLOGY 2012; 48:559-568. [PMID: 27011071 DOI: 10.1111/j.1529-8817.2012.01148.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The combined effects of different light and aqueous CO2 conditions were assessed for the Southern Ocean diatom Proboscia alata (Brightwell) Sundström in laboratory experiments. Selected culture conditions (light and CO2(aq) ) were representative for the natural ranges in the modern Southern Ocean. Light conditions were 40 (low) and 240 (high) μmol photons · m(-2) · s(-1) . The three CO2(aq) conditions ranged from 8 to 34 μmol · kg(-1) CO2(aq) (equivalent to a pCO2 from 137 to 598 μatm, respectively). Clear morphological changes were induced by these different CO2(aq) conditions. Cells in low [CO2(aq) ] formed spirals, while many cells in high [CO2(aq) ] disintegrated. Cell size and volume were significantly affected by the different CO2(aq) concentrations. Increasing CO2(aq) concentrations led to an increase in particulate organic carbon concentrations per cell in the high light cultures, with exactly the opposite happening in the low light cultures. However, other parameters measured were not influenced by the range of CO2(aq) treatments. This included growth rates, chlorophyll a concentration and photosynthetic yield (FV /FM ). Different light treatments had a large effect on nutrient uptake. High light conditions caused an increased nutrient uptake rate compared to cells grown in low light conditions. Light and CO2 conditions co-determined in various ways the response of P. alata to changing environmental conditions. Overall P. alata appeared to be well adapted to the natural variability in light availability and CO2(aq) concentration of the modern Southern Ocean. Nevertheless, our results showed that P. alata is susceptible to future changes in inorganic carbon concentrations in the Southern Ocean.
Collapse
Affiliation(s)
- Astrid Hoogstraten
- Department of Biological Oceanography, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The NetherlandsDepartment of Ocean Ecosystems, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Klaas R Timmermans
- Department of Biological Oceanography, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The NetherlandsDepartment of Ocean Ecosystems, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Hein J W de Baar
- Department of Biological Oceanography, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The NetherlandsDepartment of Ocean Ecosystems, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
13
|
Friend AD, Geider RJ, Behrenfeld MJ, Still CJ. Photosynthesis in Global-Scale Models. PHOTOSYNTHESIS IN SILICO 2009. [DOI: 10.1007/978-1-4020-9237-4_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
14
|
DiFiore PJ, Sigman DM, Trull TW, Lourey MJ, Karsh K, Cane G, Ho R. Nitrogen isotope constraints on subantarctic biogeochemistry. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jc003216] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Hutchins DA, Sedwick PN, DiTullio GR, Boyd PW, Quéguiner B, Griffiths FB, Crossley C. Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: Experimental results from the SAZ Project. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jc000333] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Rintoul SR, Trull TW. Seasonal evolution of the mixed layer in the Subantarctic zone south of Australia. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jc000329] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Trull TW, Sedwick PN, Griffiths FB, Rintoul SR. Introduction to special section: SAZ Project. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jc001008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Parslow JS, Boyd PW, Rintoul SR, Griffiths FB. A persistent subsurface chlorophyll maximum in the Interpolar Frontal Zone south of Australia: Seasonal progression and implications for phytoplankton-light-nutrient interactions. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jc000322] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Quéguiner B. Biogenic silica production in the Australian sector of the Subantarctic Zone of the Southern Ocean in late summer 1998. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jc000249] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Lourey MJ, Trull TW. Seasonal nutrient depletion and carbon export in the Subantarctic and Polar Frontal zones of the Southern Ocean south of Australia. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jc000287] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|