1
|
Filonchyk M, Peterson MP. Changes in aerosol properties at the El Arenosillo site in Southern Europe as a result of the 2023 Canadian forest fires. ENVIRONMENTAL RESEARCH 2024; 260:119629. [PMID: 39025349 DOI: 10.1016/j.envres.2024.119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
From the beginning of May 2023 to the end of August 2023, the Northern Hemisphere experienced significant wildfire activity with the most widespread fires occurring in Canada. Forest fires in Canada destroyed more than 15.6 million hectares of forests. These wildfires worsened air quality across the region and other parts of the world. The smoke reached southern Europe by the end of June 2023. To better understand the consequences of such forest fires far from the site of origin, aerosol optical, microphysical and radiative properties were analyzed during this event for southern Europe using data from the Visible Infrared Imaging Radiometer Suite (VIIRS), TROPOspheric Monitoring Instrument (TROPOMI), and Aerosol Robotic Network (AERONET). TROPOMI aerosol index (AI) and the carbon monoxide (CO) product confirm that the smoke originated directly from these forest fires. AERONET data from the El Arenosillo site in southern Spain showed maximum aerosol optical depth (AOD) values on June 27 reached 2.36. Data on Angstrom Exponent (AE), aerosol volume size distribution (VSD), single scattering albedo (SSA), fine mode fraction (FMF), volume particle concentration, effective radius (REff), absorption AOD (AAOD), extinction AE (EAE) and absorption AE (AAE) showed that fine-mode particles with carbonaceous aerosols contribution predominated in the atmosphere above the El Arenosillo site. Direct aerosol radiative forcing (DARF) at the top (DARFTOA) and bottom of atmosphere (DARFBOA) were -103.1 and -198.93 Wm-2, respectively. The atmospheric aerosol radiative forcing (DARFATM) was found to be 95.83 Wm-2 and with a heating rate 2.69 K day-1, which indicates the resulting warming of the atmosphere.
Collapse
Affiliation(s)
- Mikalai Filonchyk
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| | - Michael P Peterson
- Department of Geography/Geology, University of Nebraska Omaha, Omaha, NE 68182, USA
| |
Collapse
|
2
|
Wang J, Li X. Influence of industrial sustainability transition on air quality in a typical resource-exhausted city. Heliyon 2024; 10:e25138. [PMID: 38317928 PMCID: PMC10840114 DOI: 10.1016/j.heliyon.2024.e25138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
The industrial transition of resource-exhausted cities is the focus of attention, and air quality has naturally become an important indicator to measure the sustainable development quality. Aerosol optical depth (AOD) is an important parameter to indicate air quality. This paper aimed to study the influence of industrial transition on air quality and provide a list of recommendations and management strategies for sustainable development in resource-exhausted cities. Results showed the secondary industry played important roles for economic development before 2015, however, it decreased after 2014, and the tertiary industry played more and more important roles from 2015. Analyses of the spatial distribution of AOD in each year showed that AOD was relatively higher in urban areas with concentrated population, and the threshold range of AOD value with high area ratio in spatial distribution decreased gradually, which was consistent with the analysis results of time series. Results of correlation analyses indicated that air temperature and land surface temperature were the main natural meteorological factors influencing AOD. Gross population, SO2 emission and the cultivated land area were the main socio-economic factors influencing AOD. It could be concluded that the industrial transition of the city has achieved good results, the economic structure has been gradually optimized and adjusted, and the air quality has gradually improved over industrial sustainability transition. Scientific exploitation, energy conservation, application of clean energy and industrial structure optimization would be effective measures for sustainable development.
Collapse
Affiliation(s)
- Jingyi Wang
- Xi'an Shiyou University, Xi'an, 710065, China
| | - Xiaoming Li
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources of China, Xi'an, 710075, China
| |
Collapse
|
3
|
Tariq S, Nisa A, Ul-Haq Z, Mariam A, Murshed M, Sulaymon ID, Salam MA, Mehmood U. Classification of aerosols using particle linear depolarization ratio (PLDR) over seven urban locations of Asia. CHEMOSPHERE 2024; 350:141119. [PMID: 38195014 DOI: 10.1016/j.chemosphere.2024.141119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Active lidar remote sensing has been used to obtain detailed and quantitative information about the properties of aerosols. We have analyzed the spatio-temporal classification of aerosols using the parameters of particle linear depolarization ratio and single scattering albedo from Aerosol Robotic Network (AERONET) over seven megacities of Asia namely; Lahore, Karachi, Kanpur, Pune, Beijing, Osaka, and Bandung. We find that pollution aerosols dominate during the winter season in all the megacities. The concentrations, however, vary concerning the locations, i.e., 70-80% pollution aerosols are present over Lahore, 40-50% over Karachi, 90-95% over Kanpur and Pune, 60-70% and over Beijing and Osaka. Pure Dust (PD), Pollution Dominated Mixture (PDM), and Dust Dominated Mixture (DDM) are found to be dominant during spring and summer seasons.This proposes that dust over Asia normally exists as a mixture with pollution aerosols instead of pure form. We also find that black carbon (BC) dominated pollution aerosols.
Collapse
Affiliation(s)
- Salman Tariq
- Department of Space Science, University of the Punjab, Lahore, Pakistan; Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan.
| | - Aiman Nisa
- Department of Space Science, University of the Punjab, Lahore, Pakistan; Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
| | - Zia Ul-Haq
- Department of Space Science, University of the Punjab, Lahore, Pakistan; Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
| | - Ayesha Mariam
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan
| | - Muntasir Murshed
- Department of Economics, School of Business and Economics, North South University, Dhaka, 1229, Bangladesh; Department of Journalism, Media and Communications, Daffodil International University, Dhaka, Bangladesh.
| | - Ishaq Dimeji Sulaymon
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Usman Mehmood
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Applications), Centre for Remote Sensing, University of the Punjab, Lahore, Pakistan; Department of Business Administration, Bahçeşehir Cyprus University, Nicosia, Northern Cyprus, Turkey
| |
Collapse
|
4
|
Ramachandran S, Rupakheti M, Cherian R, Lawrence MG. Aerosols heat up the Himalayan climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164733. [PMID: 37327904 DOI: 10.1016/j.scitotenv.2023.164733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
The impact of aerosols, especially the absorbing aerosols, in the Himalayan region is important for climate. We closely examine ground-based high-quality observations of aerosol characteristics including radiative forcing from several locations in the Indo-Gangetic Plain (IGP), the Himalayan foothills and the Tibetan Plateau, relatively poorly studied regions with several sensitive ecosystems of global importance, as well as highly vulnerable large populations. This paper presents a state-of-the-art treatment of the warming that arises from these particles, using a combination of new measurements and modeling techniques. This is a first-time analysis of its kind, including ground-based observations, satellite data, and model simulations, which reveals that the aerosol radiative forcing efficiency (ARFE) in the atmosphere is clearly high over the IGP and the Himalayan foothills (80-135 Wm-2 per unit aerosol optical depth (AOD)), with values being greater at higher elevations. AOD is >0.30 and single scattering albedo (SSA) is ∼0.90 throughout the year over this region. The mean ARFE is 2-4 times higher here than over other polluted sites in South and East Asia, owing to higher AOD and aerosol absorption (i.e., lower SSA). Further, the observed annual mean aerosol-induced atmospheric heating rates (0.5-0.8 Kelvin/day), which are significantly higher than previously reported values for the region, imply that the aerosols alone could account for >50 % of the total warming (aerosols + greenhouse gases) of the lower atmosphere and surface over this region. We demonstrate that the current state-of-the-art models used in climate assessments significantly underestimate aerosol-induced heating, efficiency and warming over the Hindu Kush - Himalaya - Tibetan Plateau (HKHTP) region, indicating a need for a more realistic representation of aerosol properties, especially of black carbon and other aerosols. The significant, regionally coherent aerosol-induced warming that we observe in the high altitudes of the region, is a significant factor contributing to increasing air temperature, observed accelerated retreat of the glaciers, and changes in the hydrological cycle and precipitation patterns over this region. Thus, aerosols are heating up the Himalayan climate, and will remain a key factor driving climate change over the region.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Research Institute for Sustainability - Helmholtz Centre Potsdam, Potsdam, Germany.
| | - Maheswar Rupakheti
- Research Institute for Sustainability - Helmholtz Centre Potsdam, Potsdam, Germany
| | - Ribu Cherian
- Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany
| | - Mark G Lawrence
- Research Institute for Sustainability - Helmholtz Centre Potsdam, Potsdam, Germany; Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Di Girolamo P, Franco N, Di Paolantonio M, Summa D, Dionisi D. Atmospheric Thermodynamic Profiling through the Use of a Micro-Pulse Raman Lidar System: Introducing the Compact Raman Lidar MARCO. SENSORS (BASEL, SWITZERLAND) 2023; 23:8262. [PMID: 37837092 PMCID: PMC10575026 DOI: 10.3390/s23198262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
It was for a long time believed that lidar systems based on the use of high-repetition micro-pulse lasers could be effectively used to only stimulate atmospheric elastic backscatter echoes, and thus were only exploited in elastic backscatter lidar systems. Their application to stimulate rotational and roto-vibrational Raman echoes, and consequently, their exploitation in atmospheric thermodynamic profiling, was considered not feasible based on the technical specifications possessed by these laser sources until a few years ago. However, recent technological advances in the design and development of micro-pulse lasers, presently achieving high UV average powers (1-5 W) and small divergences (0.3-0.5 mrad), in combination with the use of large aperture telescopes (0.3-0.4 m diameter primary mirrors), allow one to presently develop micro-pulse laser-based Raman lidars capable of measuring the vertical profiles of atmospheric thermodynamic parameters, namely water vapor and temperature, both in the daytime and night-time. This paper is aimed at demonstrating the feasibility of these measurements and at illustrating and discussing the high achievable performance level, with a specific focus on water vapor profile measurements. The technical solutions identified in the design of the lidar system and their technological implementation within the experimental setup of the lidar prototype are also carefully illustrated and discussed.
Collapse
Affiliation(s)
- Paolo Di Girolamo
- Scuola di Ingegneria, Università degli Studi della Basilicata, 85100 Potenza, Italy; (N.F.); (M.D.P.)
| | - Noemi Franco
- Scuola di Ingegneria, Università degli Studi della Basilicata, 85100 Potenza, Italy; (N.F.); (M.D.P.)
| | - Marco Di Paolantonio
- Scuola di Ingegneria, Università degli Studi della Basilicata, 85100 Potenza, Italy; (N.F.); (M.D.P.)
- Institute of Marine Sciences, National Research Council (ISMAR-CNR), 00133 Roma, Italy;
| | - Donato Summa
- Institute of Methodologies for Environmental Analysis (IMAA-CNR), National Research Council, 85050 Tito, Italy;
| | - Davide Dionisi
- Institute of Marine Sciences, National Research Council (ISMAR-CNR), 00133 Roma, Italy;
| |
Collapse
|
6
|
Yusuf N, Sa'id RS. Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region. Heliyon 2023; 9:e18815. [PMID: 37588611 PMCID: PMC10425909 DOI: 10.1016/j.heliyon.2023.e18815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Understanding of Aerosol optical depth (AOD) parameter is important for air quality assessment. This study aims to evaluate and validate AOD measurements from combine datasets to improve air quality for a period 2005-2020 using Aerosol Robotic Network (AERONET) at Ilorin site (8.320° N, 4.340° E) in Nigeria. AOD outputs from Community Atmosphere Model Version 6 with chemistry (CAM6-chem) at 1° horizontal resolution and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are investigated in addition to validation of two satellites AOD retrievals: Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR). Result of spatial distribution of AOD shows high values > 1 in the North and Western Sahara compared to Central Africa. Desert dust shows largest contribution in the North and Western Africa that is up to 2 magnitude larger than other aerosol types. Primary organic matter (POM) and secondary organic aerosols (SOAs) both presents high burdens with later been dominant at around 10° band, and black carbon (BC) largest burden (2.6 × 10 - 5 kgm - 2) is seen in the model from oil and gas exploration site in Nigeria. Inter-comparison of MERRA/MISR/MODIS and AERONET AOD using linear correlation of the seasonal dependence demonstrated high correlation (r = 0.864 - 0.973) subjected to Root Mean Square Error (RMSE = 0.069 - 0.211), suggesting good agreement between the datasets. When compared to seasonal mean maximum AERONET AOD value of 0.978 MERRA is ∼5%, MISR ∼28% and MODIS ∼29% lower with stronger correlations observed in the wet and pre-harmattan seasons. Similarly, MODEL AOD at 550 nm and dust burden were found to be ∼34% and ∼67% lower in context to AERONET AOD annual mean value of 0.627. Positive relationships that indicate an upward slope exist between all the computed datasets with moderate value of AERONET/CAM-chem spearman partial correlation, and MERRA/MODIS and MODIS/MISR showing strong and significant relationship with p-value less than 0.05. Low variance is observed with all measurements except in MERRA.
Collapse
Affiliation(s)
- Najib Yusuf
- NASRDA’S Centre for Atmospheric Research (CAR), Anyigba, Kogi State, Nigeria
- National Centre for Atmospheric Research (NCAR), Boulder, CO, USA
- Department of Physics, Bayero University Kano, Nigeria
| | | |
Collapse
|
7
|
Li Z, Bi J, Hu Z, Ma J, Li B. Regional transportation and influence of atmospheric aerosols triggered by Tonga volcanic eruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121429. [PMID: 36906060 DOI: 10.1016/j.envpol.2023.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
A cataclysmic submarine volcano at Hunga Tonga-HungaHa'apai (HTHH) near Tonga, erupted violently on 15 January 2022, which injected a plume of ash cloud soaring into the upper atmosphere. In this study, we examined the regional transportation and potential influence of atmospheric aerosols triggered by HTHH volcano, based on active and passive satellite products, ground-based observations, multi-source reanalysis datasets and atmospheric radiative transfer model. The results indicated that about 0.7 Tg (1 Tg = 109 kg) sulfur dioxide (SO2) gas were emitted into stratosphere from the HTHH volcano, and were lifted to an altitude of 30 km. The regional averaged SO2 columnar content over the western Tonga increased by 10-36 Dobson Units (DU), and the mean aerosol optical thickness (AOT) retrieved from satellite products increased to 0.25-0.34. The stratospheric AOT values caused by HTHH emissions increased to 0.03, 0.20, and 0.23 on 16, 17, and 19 January, respectively, accounting for 1.5%, 21.9%, and 31.1% of total AOT. Ground-based observations also showed an AOT increase of 0.25-0.43, with the maximum daily average of 0.46-0.71 appeared on 17 January. The volcanic aerosols were remarkably dominated by fine-mode particles and posed strong light-scattering and hygroscopic abilities. Consequently, the mean downward surface net shortwave radiative flux was reduced by 2.45-11.9 Wm-2 on different regional scales, and the surface temperature decreased by 0.16-0.42 K. The maximum aerosol extinction coefficient was 0.51 km-1 appeared at 27 km, which resulted in an instantaneous shortwave heating rate of 1.80 Khour-1. These volcanic materials stayed stable in the stratosphere and completed one circle around the earth within 15 days. This would exert a profound influence on the energy budget, water vapor and ozone exchange in the stratosphere, which deserves to be further studied.
Collapse
Affiliation(s)
- Zhengpeng Li
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, 730000, Lanzhou, China; Gansu Provincial Field Scientific Observation and Research Station of Semi-arid Climate and Environment, 730000, Lanzhou, China
| | - Jianrong Bi
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, 730000, Lanzhou, China; Gansu Provincial Field Scientific Observation and Research Station of Semi-arid Climate and Environment, 730000, Lanzhou, China.
| | - Zhiyuan Hu
- School of Atmospheric Sciences, Sun Yat-Sen University, Key Laboratory of Tropical Atmosphere-Ocean System Ministry of Education, And Southern Marine Science and Engineering Guangdong Laboratory, 519082, Zhuhai, China
| | - Junyang Ma
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, 730000, Lanzhou, China; Gansu Provincial Field Scientific Observation and Research Station of Semi-arid Climate and Environment, 730000, Lanzhou, China
| | - Bowen Li
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, 730000, Lanzhou, China; Gansu Provincial Field Scientific Observation and Research Station of Semi-arid Climate and Environment, 730000, Lanzhou, China
| |
Collapse
|
8
|
Wang Q, Li S, Yang J, Zhou D. Evaluation and comparison of VIIRS dark target and deep blue aerosol products over land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161667. [PMID: 36657688 DOI: 10.1016/j.scitotenv.2023.161667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The dark target (DT) and deep blue (DB) algorithms have been applied to the VIIRS to construct a long-term climate data recording of atmospheric aerosols. This study provides the first evaluation and comparison of two updated VIIRS aerosol products over global land based on Version 3 Level 1.5 AERONET measurements. Overall, both AOD products agree well with AERONET measurements with correlation coefficients >0.85 and over 75 % of AOD matchups falling within the expected error (EE). The DB product is superior to the DT product with more AOD matchups meeting the EE. Meanwhile, the DB AOD performs better in spatiotemporal accuracy, adaption to different aerosol types, and addresses the effects of large view geometry. DT AOD shows higher accuracy in the summer months in the northern hemisphere and evergreen broadleaf forest areas than DB AOD. The two products exhibit similar spatial distribution patterns of AOD, but higher values are seen in the DT product, especially in Asia and Western North America. The spatial completeness of the DB AOD is higher than DT, especially in brighter surface regions. In contrast, higher temporal completeness of the DT AOD is found in vegetated areas. A case study of the Western United States wildfires in 2020 indicates both products can capture extreme smoke aerosols. In addition, the DB AOD shows a distinct advantage in spatial and temporal continuity and in displaying the regional transport of smoke aerosols. However, the accuracy of the AOD retrieval for both products still needs to be improved in sparse vegetation regions, northern hemisphere summers, fine particle aerosols, and during extreme aerosol events. The overall evaluation of DB SSA and AE products shows that they are unsuitable for quantitative scientific research. This study can provide users a guide on how to select VIIRS aerosol products for different research purposes.
Collapse
Affiliation(s)
- Qingxin Wang
- Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
| | - Siwei Li
- Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China.
| | - Jie Yang
- Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
| | - Dong Zhou
- Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
| |
Collapse
|
9
|
Khamala GW, Makokha JW, Boiyo R, Kumar KR. Spatiotemporal analysis of absorbing aerosols and radiative forcing over environmentally distinct stations in East Africa during 2001-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161041. [PMID: 36563754 DOI: 10.1016/j.scitotenv.2022.161041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
East Africa (EA) suffers from the inadequate characterization of atmospheric aerosols, with far-reaching consequences of its inability to quantify precisely the impacts of these particles on regional climate. The current study aimed at characterizing absorption and radiative properties of aerosols using the long-term (2001-2018) AErosol RObotic NETwork (AERONET) and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data over three environmentally specific sites in EA. The annual mean absorption aerosol optical depth (AAOD440 nm), absorption Angstrom Exponent (AAE440-870 nm), total effective radius (REff), and total volume concentration (μm3/μm2) revealed significant spatial heterogeneity over the domain. The study domain exhibited a significant contribution of fine-mode aerosols compared to the coarse-mode particles. The monthly variation in SSA440 nm over EA explains the strength in absorption aerosols that range from moderate to strong absorbing aerosols. The aerosols exhibited significant variability over the study domain, with the dominance of absorbing fine-mode aerosols over Mbita accounting for ∼40 to ∼50 %, while weakly absorbing coarse-mode particles accounted for ∼8.2 % over Malindi. The study conclusively determined that Mbita was dominated by AAOD mainly from biomass burning in most of the months, whereas Malindi was coated with black carbon. The direct aerosol radiative forcing (DARF) retrieved from both the AERONET and MERRA-2 models showed strong cooling at the top of the atmosphere (TOA; -6 to -27 Wm-2) and the bottom of the atmosphere (BOA, -7 to -66 Wm-2). However, significant warming was noticed within the atmosphere (ATM; +14 to +76 Wm-2), an indication of the role of aerosols in regional climate change. The study contributed to understanding aerosol absorption and radiative characteristics over EA and can form the basis of other related studies over the domain and beyond.
Collapse
Affiliation(s)
- Geoffrey W Khamala
- Department of Science Technology and Engineering, Kibabii University, P.O. Box 1699-50200, Bungoma, Kenya.
| | - John W Makokha
- Department of Science Technology and Engineering, Kibabii University, P.O. Box 1699-50200, Bungoma, Kenya
| | - Richard Boiyo
- Department of Physical Sciences, Meru University of Science and Technology, P.O. Box 972-60200, Meru, Kenya; Department of Environment, Water, Energy and Natural Resources, County Government of Vihiga, Maragoli, Kenya
| | - Kanike Raghavendra Kumar
- Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522 302 Guntur, Andhra Pradesh, India
| |
Collapse
|
10
|
Lu F, Chen S, Hu Z, Han Z, Alam K, Luo H, Bi H, Chen J, Guo X. Sensitivity and uncertainties assessment in radiative forcing due to aerosol optical properties in diverse locations in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160447. [PMID: 36442626 DOI: 10.1016/j.scitotenv.2022.160447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Aerosol optical properties play an important role in affecting direct aerosol radiative forcing (DARF). However, DARF estimation is still uncertain due to the complexity of aerosol optical properties. Therefore, in this study, the spatiotemporal distributions of aerosol properties and their effects on DARF in China from 2004 to 2020 are investigated using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The results show that the aerosol optical parameters vary greatly and change with seasonal regularity, which is greatly affected by human activities. The control variable method was employed on aerosol optical properties for better estimation of DARF. Single scattering albedo (SSA) has the greatest effect on DARF, followed by aerosol optical depth (AOD) and the asymmetric factor (ASY) among the seven examined stations in China. The average DARF decreases by 4.2 % when the SSA increases by 0.3 % but increases by 34.7 % when the SSA decreases by 3 % in mainland China. When the AOD changes from -60 to +60 %, DARF changes from -54.7 % to +58.4 %. The variation in DARF is between -3 % and +3 % when the ASY varies from -30 % to +30 %. The instability in DARF resulted from the complicated and volatile nature of aerosol optical properties in the region; the aerosol optical properties are greatly affected by the aerosol types and relative humidity. The results of this study have important reference significance for understanding the variation of DARF and formulating pollution prevention and control policies in the region.
Collapse
Affiliation(s)
- Fuquan Lu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Chen
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China.
| | - Zeyong Hu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Zhiwei Han
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Khan Alam
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; Department of Physics, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Hongyu Luo
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongru Bi
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Junyan Chen
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xinyang Guo
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Lu Y, Zhang R, Wang L, Su X, Zhang M, Li H, Li S, Zhou J. Prediction of diffuse solar radiation by integrating radiative transfer model and machine-learning techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160269. [PMID: 36402326 DOI: 10.1016/j.scitotenv.2022.160269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Diffuse radiation is a major component of solar radiation that is important in carbon exchanges and material, energy, and information flows in agricultural ecosystems; however, measuring diffuse radiation is difficult and expensive, leaving only few stations in China that can record diffuse radiation. Therefore, five high-speed and highly accurate hybrid models were developed and compared to simulate diffuse radiation based on the aerosol optical properties and radiation parameters provided by the Aerosol Robotic Network (AERONET), Baseline Surface Radiation Network (BSRN), Wuhan University, Chinese Ecosystem Research Network (CERN), GLASS surface albedo data, and combined radiative transfer model (RTM) with machine learning (ML) models that include random forest (RF), extreme gradient boosting (XGBoost), multi-layer perceptron (MLP), deep neural networks (DNN), and convolutional neural network (CNN). Furthermore, the uncertainty in the simulated diffuse radiation due to the measurement uncertainties of aerosol optical properties and land surface albedo was quantified, and the relative contributions of multiple variables to diffuse radiation were analyzed. The results showed that RTM-RF was the most successful, with determination coefficients (R2) of 0.95, 0.94, and 0.98, and minimum root mean square errors (RMSE) of 9.56, 10.05, and 13.27 W m-2 at the Lulin, Wuhan, and Xianghe sites, respectively. The largest measurement uncertainty in the aerosol optical depth (AOD) was found at the Lulin site, while that of the single-scattering albedo led to the largest errors in Wuhan and Xianghe. AOD, solar zenith angle (SZA), and single-scattering albedo contributed significantly more than the asymmetry factor, land surface albedo, precipitable water vapor, and ozone. This was especially true for AOD, which was higher than 28 % at all sites. Overall, the proposed RTM-RF method exhibited superior performance, therefore we recommend it for estimating diffuse radiation in China.
Collapse
Affiliation(s)
- Yunbo Lu
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Renlan Zhang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Lunche Wang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Xin Su
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Ming Zhang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Huaping Li
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Shiyu Li
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Jiaojiao Zhou
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hunan Key Laboratory of Remote Sensing of Ecological Environment in Dongting Lake Area, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
12
|
Ansari K, Ramachandran S. Radiative effects of absorbing aerosol types over South Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159969. [PMID: 36347289 DOI: 10.1016/j.scitotenv.2022.159969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive study on classifying the aerosol types and absorbing aerosol types, and quantifying the effect of absorbing aerosols on aerosol optical and radiative properties using four years (2015-2016, 2018-2019) of high-quality Aerosol Robotic Network (AERONET) datasets over Kanpur (urban) and Gandhi College (rural) in the Indo-Gangetic Plain (IGP) region is conducted on a seasonal scale, for the first time. Biomass burning (BB), urban-industrial, and mixed aerosol types are always present, whereas dust aerosol and mostly dust absorbing aerosol types are only present in pre-monsoon and monsoon seasons. During winter and post-monsoon seasons, BB aerosols and mostly black carbon (MBC) absorbing aerosols dominate, and the contribution of aerosol optical depth (AOD) and single scattering albedo (SSA) corresponding to MBC to total AOD and SSA are higher. SSA for MBC varies over a broader range due to mixing of BC with water-soluble aerosols. During pre-monsoon and monsoon seasons, mixing of dust with anthropogenic aerosols increases the amount of mixed aerosol type. Surface cooling and atmospheric heating efficiency for mixed aerosols are higher than MBC and dust aerosols due to enhancement in aerosol absorption over both locations. Seasonal analysis of aerosol radiative properties showed that during winter and post-monsoon, MBC absorbing aerosols are the major contributor in controlling/influencing the total aerosol radiative forcing (ARF) and heating rate (HR). During the other seasons, each absorbing aerosol type significantly influences ARF depending on their AOD and SSA values. In addition to Kanpur and Gandhi College, data from seven other AERONET sites located at Karachi, Lahore, Jaipur, Lumbini, Pokhara, Bhola, and Dhaka in South Asia are analysed to conduct a regional-scale examination of aerosol optical parameters and radiative effects due to different absorbing aerosol types. As the aerosol characteristics and trends are similar over these sites, the findings from such a regional-scale analysis can be an appropriate representative for the South Asian region. The regional analysis revealed that the annual mean atmospheric ARF (ARFATM) and ARF efficiency (ARFEATM), and HR are higher for MBC, followed by mixed and MD aerosols over South Asia due to higher AOD, and higher absorbing efficiency of MBC aerosols. In comparison, mixed aerosols exhibit higher ARFATM over East Asia. This quantification of absorbing aerosol types over a global aerosol hotspot will be useful for an accurate quantification of climate impacts of aerosols.
Collapse
Affiliation(s)
- Kamran Ansari
- Physical Research Laboratory, Ahmedabad, 380009, India; Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055, India.
| | | |
Collapse
|
13
|
Singh R, Singh V, Gautam AS, Gautam S, Sharma M, Soni PS, Singh K, Gautam A. Temporal and Spatial Variations of Satellite-Based Aerosol Optical Depths, Angstrom Exponent, Single Scattering Albedo, and Ultraviolet-Aerosol Index over Five Polluted and Less-Polluted Cities of Northern India: Impact of Urbanization and Climate Change. AEROSOL SCIENCE AND ENGINEERING 2023; 7:131-149. [PMCID: PMC9648442 DOI: 10.1007/s41810-022-00168-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 05/31/2023]
Abstract
It is widely acknowledged that factors such as population growth, urbanization's quick speed, economic growth, and industrialization all have a role in the atmosphere's rising aerosol concentration. In the current work, we assessed and discussed the findings of a thorough analysis of the temporal and spatial variations of satellite-based aerosol optical parameters such as Aerosol Optical Depth (AOD), Angstrom Exponent (AE), Single Scattering Albedo (SSA), and Ultraviolet-Aerosol Index (UV-AI), and their concentration have been investigated in this study over five polluted and less-polluted cities of northern India during the last decade 2011–2020. The temporal variation of aerosol optical parameters for AOD ranging from 0.2 to 1.8 with decadal mean 0.86 ± 0.36 for Patna region shows high value with a decadal increasing trend over the study area due to rise in aerosols combustion of fossil fuels, huge vehicles traffic, and biomass over the past ten years. The temporal variation of AE ranging from 0.3 to 1.8 with decadal mean 1.72 ± 0.11 for Agra region shows high value as compared to other study areas, which indicates a comparatively higher level of fine-mode aerosols at Agra. The temporal variation of SSA ranging from 0.8 to 0.9 with decadal mean 0.92 ± 0.02 for SSA shows no discernible decadal pattern at any of the locations. The temporal variation of UV-AI ranging from -1.01 to 2.36 with decadal mean 0.59 ± 0.06 for UV-AI demonstrates a rising tendency, with a noticeable rise in Ludhiana, which suggests relative dominance of absorbing dust aerosols over Ludhiana. Further, to understand the impact of emerging activities, analyses were done in seasonality. For this aerosol climatology was derived for different seasons, i.e., Winter, Pre-Monsoon, Monsoon, and Post-Monsoon. High aerosol was observed in Winter for the study areas Patna, Delhi, and Agra which indicated the particles major dominance of burning aerosol from biomass; and the worst in Monsoon and Post-Monsoon for the Tehri Garhwal and Ludhiana study areas which indicated most of the aerosol concentration is removed by rainfall. After that, we analyzed the correlation among all the parameters to better understand the temporal and spatial distribution characteristics of aerosols over the selected region. The value of r for AOD (550 nm) for regions 2 and 1(0.80) shows a strong positive correlation and moderately positive for the regions 3 and 1 (0.64), mostly as a result of mineral dust carried from arid western regions. The value of r for AE (412/470 nm) for region 3 and (0.40) shows a moderately positive correlation, which is the resultant of the dominance of fine-mode aerosol and negative for the regions 5 and 1 (− 0.06). The value of r for SSA (500 nm) for regions 2 and 1 (0.63) shows a moderately positive correlation, which explains the rise in big aerosol particles, which scatters sun energy more efficiently, and the value of r for UV-AI for regions 1 and 2 shows a strong positive correlation (0.77) and moderately positive for the regions 3 and 1 (0.46) which indicates the absorbing aerosols present over the study region.
Collapse
Affiliation(s)
- Rolly Singh
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| | - Vikram Singh
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| | - Alok Sagar Gautam
- Department of Physics, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, India
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, 641117 India
| | - Manish Sharma
- School of Science and Engineering, Himgiri Zee University, Dehra Dun, Uttarakhand India
| | - Pushpendra Singh Soni
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| | - Karan Singh
- Department of Physics, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, India
| | - Alka Gautam
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| |
Collapse
|
14
|
Rupakheti D, Rupakheti M, Rai M, Yu X, Yin X, Kang S, Orozaliev MD, Sinyakov VP, Abdullaev SF, Sulaymon ID, Hu J. Characterization of columnar aerosol over a background site in Central Asia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120501. [PMID: 36283470 DOI: 10.1016/j.envpol.2022.120501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/01/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Ground-based observational characterization of atmosphere aerosols over Central Asia is very limited. This study investigated the columnar aerosol characteristics over Issyk-Kul, Kyrgyzstan, a background site in Central Asia using the long-term (∼14 years: August 2007-November 2021) data acquired with the Cimel sunphotometer. The mean aerosol optical depth (AOD) and Ångström exponent (AE) during the observation period were 0.14 ± 0.10 and 1.19 ± 0.41, respectively. Both AOD and AE varied across seasons, with highest AOD in spring (0.17 ± 0.17). Regarding the aerosol types, clean continental aerosols were dominant type (65%), followed by mixed aerosols (∼19%), clean marine aerosols (∼14%), dust (0.8%), and urban/industrial and biomass burning aerosol (0.7%). The aerosol volume size distribution was bimodal indicating the influence of both anthropogenic and natural aerosols with clear dominance of coarse mode during the spring season. Mainly dust and mixed aerosols were present during high aerosol episodes while the coarse mode aerosol volume concentration was 7.5 (strong episodes) and ∼19 (extreme episodes) times higher than the whole period average. Aerosol over this background sites were from local and regional sources with some contribution of long-range transport.
Collapse
Affiliation(s)
- Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Institute of Fundamental Research and Studies, Kathmandu 44600, Nepal.
| | | | - Mukesh Rai
- International Centre for Integrated Mountain Development, Lalitpur, Nepal
| | - Xingna Yu
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiufeng Yin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Musapar D Orozaliev
- Institute of Innovative Professions, Kyrgyz State University of Construction, Transport and Architecture Named After N Isanov, Bishkek, Kyrgyzstan
| | - Valery P Sinyakov
- Institute of Innovative Professions, Kyrgyz State University of Construction, Transport and Architecture Named After N Isanov, Bishkek, Kyrgyzstan
| | - Sabur F Abdullaev
- Physical Technical Institute of the Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | - Ishaq Dimeji Sulaymon
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
15
|
Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing. Nat Commun 2022; 13:7459. [PMID: 36460672 PMCID: PMC9718735 DOI: 10.1038/s41467-022-35147-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Quantitative estimations of atmospheric aerosol absorption are rather uncertain due to the lack of reliable information about the global distribution. Because the information about aerosol properties is commonly provided by single-viewing photometric satellite sensors that are not sensitive to aerosol absorption. Consequently, the uncertainty in aerosol radiative forcing remains one of the largest in the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC AR5 and AR6). Here, we use multi-angular polarimeters (MAP) to provide constraints on emission of absorbing aerosol species and estimate global aerosol absorption optical depth (AAOD) and its climate effect. Our estimate of modern-era mid-visible AAOD is 0.0070 that is higher than IPCC by a factor of 1.3-1.8. The black carbon instantaneous direct radiative forcing (BC DRF) is +0.33 W/m2 [+0.17, +0.54]. The MAP constraint narrows the 95% confidence interval of BC DRF by a factor of 2 and boosts confidence in its spatial distribution.
Collapse
|
16
|
Filonchyk M, Peterson MP, Gusev A, Hu F, Yan H, Zhou L. Measuring air pollution from the 2021 Canary Islands volcanic eruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157827. [PMID: 35944626 DOI: 10.1016/j.scitotenv.2022.157827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The eruption of the Cumbre Vieja volcano on the island of La Palma (Canary Islands, Spain) began on September 19, 2021 and ended on December 13, 2021. It lasted continuously for 85 days with short periods of calm when lava did not exit the cone of the volcano. Vast amounts of volcanic material, including ash and gases, were emitted into the environment. This research focuses on these emissions. The main objective is to use available open-source data to examine the impact on regional and local air quality. Data from the following sources were used: 1) Copernicus Atmosphere Monitoring Service (CAMS) data was used to track the transfer of volcanic SO2 in the troposphere in early October over long distances from the source of the eruption, including Western and Eastern Europe, across the Atlantic Ocean and the Caribbean; 2) Data from ground monitoring stations measured the concentrations of SO2 and PM10 near the source; 3) AErosol RObotic NETwork (AERONET) data from the La Palma station that showed high Aerosol Optical Depth (AOD) values (over 0.4) during the active phase of emissions on September 24 and 28, as well as on October 3; 4) Ångström Exponent (AE) values indicated the presence of particles of different sizes. On September 24, high AE values (>1.5), showed the presence of fine-mode fraction scattering aerosols such as sulfates; 5) Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data additionally confirmed the presence of sulfate and dust aerosols in the atmosphere over the region. However, the influence of Saharan dust on the atmosphere of the entire region could not be excluded. This research helps forecast air pollution resulting from large-scale volcanic eruptions and associated health risks to humans.
Collapse
Affiliation(s)
- Mikalai Filonchyk
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| | - Michael P Peterson
- Department of Geography/Geology, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Andrei Gusev
- Francisk Skorina Gomel State University, Gomel 246019, Belarus
| | - Fengning Hu
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
| | - Haowen Yan
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| | - Liang Zhou
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| |
Collapse
|
17
|
Validation and Analysis of MISR and POLDER Aerosol Products over China. REMOTE SENSING 2022. [DOI: 10.3390/rs14153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multi-angle polarization measurement is an important technical means of satellite remote sensing applied to aerosol monitoring. By adding angle information and polarization measurements, aerosol optical and microphysical properties can be more comprehensively and accurately retrieved. The accuracy of aerosol retrieval can reflect the advantages and specific accuracy improvement of multi-angle polarization. In this study, the Multi-angle Imaging SpectroRadiometer (MISR) V23 aerosol products and the Polarization and Directionality of the Earth’s Reflectance (POLDER) GRASP “high-precision” archive were evaluated with the Aerosol Robotic Network (AERONET) observations over China. Validation of aerosol optical depth (AOD), absorbing aerosol optical depth (AAOD), and the Ångström exponent (AE) properties was conducted. Our results show that the AOD inversion accuracy of POLDER-3/GRASP is higher with the correlation coefficient (R) of 0.902, slope of 0.896, root mean square error (RMSE) of 0.264, mean absolute error (MAE) of 0.190, and about 40.71% of retrievals within the expected error (EE, ± 0.05+0.2×AODAERONET) lines. For AAOD, the performance of two products is poor, with better results for POLDER-3/GRASP data. POLDER-3/GRASP AE also has higher R of 0.661 compared with that of MISR AE (0.334). According to the validation results, spatiotemporal distribution, and comparison with other traditional scalar satellite data, the performance of multi-angle polarization observations is better and is suitable for the retrieval of aerosol properties.
Collapse
|
18
|
Su X, Wang L, Gui X, Yang L, Li L, Zhang M, Qin W, Tao M, Wang S, Wang L. Retrieval of total and fine mode aerosol optical depth by an improved MODIS Dark Target algorithm. ENVIRONMENT INTERNATIONAL 2022; 166:107343. [PMID: 35716506 DOI: 10.1016/j.envint.2022.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Total and fine mode aerosol optical depth (AODT and AODF), as well as the fine mode fraction (FMF = AODF/AODT), are critical variables for climate change and atmospheric environment studies. The retrievals with high accuracy from satellite observations, particularly FMF and AODF over land, remain challenging. This study aims to improve the Moderate-resolution Imaging Spectro-radiometer (MODIS) land dark target (DT) algorithm for retrieving AODT, AODF, and FMF on a global scale. Based on the fact that the underestimated surface reflectance (SR) could overestimate the AODT and underestimate the aerosol size parameter in the DT algorithm, two robust schemes were developed to improve SR determination: the first (NEW1 DT) used the top of the atmosphere reflectance instead of SR at 2.12 µm; the second (NEW2 DT) used eleven-year MODIS data to establish a monthly spectral SR relationship model (2.12-0.47 and 2.12-0.65 µm) database at pixel-by-pixel scale. Then a novel lookup table approach based on the physical process was proposed to retrieve the AODF and FMF. The new MODIS AODT, FMF, and AODF were compared to AERosol RObotic NETwork (AERONET) retrievals. Results showed that the root mean square error (RMSE) was 0.096-0.103, 0.098-0.099, and 0.167-0.180 for the new AODTs, AODFs, and FMFs, respectively, which were better than that of the Collection 6.1 (C6.1) DT (0.117, 0.235, and 0.426) in the validation by global AERONET sites. From the validation results, NEW2 DT provided better AODT and coarse mode AOD retrievals, while NEW1 DT had better AODF and FMF performances. The spatial patterns of AODF, FMF, and AODC of the new DT algorithms were comparable to those of the Polarization and Directionality of the Earth's Reflectances aerosol product. Hence, the new algorithms have the potential to provide global AODT, FMF, and AODF products over land to the scientific community with high accuracy using long-term MODIS data.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Lunche Wang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Xuan Gui
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Leiku Yang
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Lei Li
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, Beijing, China
| | - Ming Zhang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Wenmin Qin
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Minghui Tao
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Shaoqiang Wang
- Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Lizhe Wang
- School of Computer Science, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
19
|
Retrieval of Aged Biomass-Burning Aerosol Properties by Using GRASP Code in Synergy with Polarized Micro-Pulse Lidar and Sun/Sky Photometer. REMOTE SENSING 2022. [DOI: 10.3390/rs14153619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of this study was to analyze the potential of the GRASP code to retrieve optical and microphysical properties vertically-resolved using a synergy of polarized Micro-Pulse Lidar and Sun/sky photometer observations. The focus was on the long-range transport of Canadian aged-smoke plumes observed at El Arenosillo/Huelva (Spain) from 7 to 8 September 2017. Both the columnar and height-resolved microphysical and optical properties were assessed in comparison with AERONET data and vertical lidar-retrieved profiles, respectively. In particular, the vertical properties were also derived using the POLIPHON approach, which serves as a comparison for GRASP retrievals. The retrieved columnar aerosol microphysical properties (volume concentration and effective radius) showed an excellent agreement, with negligible differences, and were within the uncertainties. Nevertheless, for the retrieved columnar optical properties, we could only perform an individual comparison, due to the strong AERONET limitations, and although the agreements were generally good, no conclusions were obtained, due to differences in the real refractive index and due to the large uncertainties obtained in the retrievals. For the vertical profiles, however, we present a large advance that permits obtaining aerosol backscatter and extinction coefficients, plus volume concentrations, without the need for internal assumptions (extinction-to-backscatter ratios and depolarization measurements), due to the very good agreement observed between GRASP and the lidar-derived methodologies. However, the separation of the properties into their fine and coarse modes was not feasible using the one-wavelength elastic lidar measurements with the GRASP retrieval configuration used in this work. Therefore, current studies are being addressed to assessing the introduction of lidar depolarization in the GRASP code as an encouraged added-value, for the improvement of the retrieval of vertical aerosol properties.
Collapse
|
20
|
Ramachandran S, Rupakheti M. Trends in the types and absorption characteristics of ambient aerosols over the Indo-Gangetic Plain and North China Plain in last two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154867. [PMID: 35353982 DOI: 10.1016/j.scitotenv.2022.154867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The sixth assessment report released by the Intergovernmental Panel on Climate Change (IPCC) in 2021 states that our inadequate understanding of magnitudes and trends of atmospheric aerosols, particularly over Asia, is a major source of uncertainty in climate change. In this study, the climatology and trends in different types of aerosols with focus on absorbing aerosols over Kanpur located in the Indo-Gangetic Plain (IGP) in South Asia and Beijing in the North China Plain (NCP) in East Asia are derived for the first time. We perform a first analysis of high-quality time series of columnar aerosols observations over a period of nearly two-decades, along with satellite observations to provide a broader regional perspective. The satellite retrieved aerosol Ångström exponent (AE) values have increased (10-20%) suggesting an increasing contribution of fine aerosols to aerosol optical depth (AOD) over Asia in last 2-decades. Among the three aerosol types [urban-industrial (UI), biomass burning (BB), and dust (DU)], only UI and BB aerosols are present over Kanpur throughout the year, while DU is present along with UI and BB aerosols only during pre-monsoon and monsoon. Overall, there is a positive trend in BB aerosols over both Kanpur and Beijing, a positive (negative) trend in UI aerosols over Kanpur (Beijing), and positive (negative) trend in dust over Beijing (Kanpur). However, only the positive trend in BB aerosol type over Kanpur is statistically significant. Further, among the three absorbing aerosol types [mostly black carbon (MBC), mostly dust (MDU), and mixed (MIX) containing BC and dust], only MBC and MIX are present in post-monsoon and winter over IGP, and MDU is present along with MBC and MIX only during pre-monsoon and monsoon, which is in agreement with aerosol types found. Trends in MBC, MIX and MDU over Kanpur in IGP and in MIX over Beijing are statistically significant. These trends are attributed mainly to the changes in anthropogenic aerosol emissions, and not to natural and climatic factors as their changes are relatively small. These findings on hitherto unavailable climatology and trends in aerosols and absorbing aerosols over two global aerosol hotspots and identified contrasts will be crucial in model simulations to better decipher the aerosol-climate interactions over Asia.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | | |
Collapse
|
21
|
Combining Sun-Photometer, PM Monitor and SMPS to Inverse the Missing Columnar AVSD and Analyze Its Characteristics in Central China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Columnar aerosol volume size distribution (AVSD) is an important atmospheric parameter that shows aerosol microphysical properties and can be used to analyze the impact of aerosols on the radiation budget balance, as well as regional climate effects. Usually, columnar AVSD can be obtained by using a sun photometer, but its observation conditions are relatively strict, and the columnar AVSD will be missing in cloudy or hazy weather due to cloud cover and other factors. This study introduces a novel algorithm for inversion of missing columnar AVSD under haze periods by using a machine learning approach and other ground-based observations. The principle is as follows. We are based on joint observational experiments. Since the scanning mobility particle sizer (SMPS) and particulate matter (PM) monitor sample the surface data, they can be stitched together to obtain the surface AVSD according to their observation range. Additionally, the sun-photometer scans the whole sky, so it can obtain columnar AVSD and aerosol optical depth (AOD). Then we use the back propagation neural network (BPNN) model to establish the relationship between the surface AVSD and the columnar AVSD and add AOD as a constraint. Next, the model is trained with the observation data of the same period. After the model training is completed, the surface AVSD and AOD can be used to invert the missing columnar AVSD during the haze period. In experiments on the 2015 dataset, the results show that the correlation coefficient and root mean square error between our model inversion results and the original sun photometer observations were 0.967 and 0.008 in winter, 0.968 and 0.010 in spring, 0.969 and 0.013 in summer, 0.972 and 0.007 in autumn, respectively. It shows a generally good performance that can be applied to the four seasons. Furthermore, the method was applied to fill the missing columnar AVSD of Wuhan, a city in central China, under adverse weather conditions. The final results were shown to be consistent with the climatic characteristics of Wuhan. Therefore, it can indeed solve the problem that sun photometer observations are heavily dependent on weather conditions, contributing to a more comprehensive study of the effects of aerosols on climate and radiation balance.
Collapse
|
22
|
Optical and Microphysical Properties of the Aerosol Field over Sofia, Bulgaria, Based on AERONET Sun-Photometer Measurements. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An analysis of the optical and microphysical characteristics of aerosol passages over Sofia City, Bulgaria, was performed on the basis of data provided by the AErosol RObotic NETwork (AERONET). The data considered are the result of two nearly complete annual cycles of passive optical remote sensing of the atmosphere above the Sofia Site using a Cimel CE318-TS9 sun/sky/lunar photometer functioning since 5 May 2020. The values of the Aerosol Optical Depth (AOD) and the Ångström Exponent (AE) measured during each annual cycle and the overall two-year cycle exhibited similar statistics. The two-year mean AODs were 0.20 (±0.11) and 0.17 (±0.10) at the wavelengths of 440 nm (AOD440) and 500 nm, respectively. The two-year mean AEs at the wavelength pairs 440/870 nm (AE440/870) and 380/500 nm were 1.45 (±0.35) and 1.32 (±0.29). The AOD values obtained reach maxima in winter-to-spring and summer and were about two times smaller than those obtained 15 years ago using a hand-held Microtops II sun photometer. The AOD440 and AE440/870 frequency distributions outline two AOD and three AE modes, i.e., 3 × 2 groups of aerosol events identifiable using AOD–AE-based aerosol classifications, additional aerosol characteristics, and aerosol migration models. The aerosol load over the city was estimated to consist most frequently of urban (63.4%) aerosols. The relative occurrences of desert dust, biomass-burning aerosols, and mixed aerosols were, respectively, 8.0%, 9.1% and 19.5%.
Collapse
|
23
|
Aerosol Distributions and Sahara Dust Transport in Southern Morocco, from Ground-Based and Satellite Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigates aerosols distributions and a strong Sahara dust-storm event that occurred by early August 2018, in the South of Morocco. We used columnar aerosol optical depth (AOD), Angstrom Exponent (AE) and volume size distributions (VSD) as derived from ground-based observations by 2 AERONET (AErosol RObotic NETwork) sun-photometers at Saada (31.63°N, 8.16°W) and Ouarzazate (30.93°N, 6.91°W) sites, over the periods 2004–2019 and 2012–2015, respectively. The monthly seasonal distributions of AOD, AE, and VSD showed a seasonal trend dominated by the annual cycle, with a maximum aerosol load during summer (July–August) and a minimum in winter (December–January), characterized by a coarse mode near the radius of 2.59 μm and a fine mode at the radius of 0.16 μm, respectively. Indeed, this study showed that aerosol populations in southern Morocco are dominated by Saharan desert dust, especially during the summer season. The latter can sometimes be subject of dust-storm events. The case study presented in this paper reports on one of these events, which happened in early August 2018. The HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model was used to simulate air-mass back-trajectories during the event. In agreement with ground-based (AERONET sun-photometers) and satellite (CALIOP, MODIS and AIRS) observations, HYSPLIT back-trajectories showed that the dust air-mass at the 4-km layer, the average height of the dust plume, has crossed southern Morocco over the Saada site, with a westward direction towards the Atlantic Ocean, before it changed northward up to the Portuguese coasts.
Collapse
|
24
|
Long-Term (2017–2020) Aerosol Optical Depth Observations in Hohhot City in Mongolian Plateau and the Impacts from Different Types of Aerosol. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aerosol optical depth (AOD) measurements for 2017–2020 in urban Hohhot of the Mongolian plateau, a transition zone between the depopulated zone and East Asian urban agglomeration, were analyzed for the first time. Results show that annual AOD500 and Ångström exponent α440-675 were 0.36 ± 0.09 and 1.11 ± 0.16 (2017), 0.41 ± 0.12 and 0.90 ± 0.28 (2018), 0.38 ± 0.09 and 1.13 ± 0.24 (2019), 0.38 ± 0.12 and 1.17 ± 0.22 (2020), respectively, representing a slightly polluted level with a mixed type of coarse dust aerosol and a fine urban/industrial aerosol. Throughout the year, depopulated-zone continental air flows predominated in Hohhot (i.e., NW-quadrant wind), accounting for 82.12% (spring), 74.54% (summer), 63.61% (autumn), and 100% (winter). The clean and strong NW-quadrant air flows induced by the south movement of a Siberian anticyclone resulted in a low 500-nm AOD of 0.30 ± 0.29, 0.20 ± 0.15, 0.24 ± 0.29, and 0.13 ± 0.08 from spring to winter. Meanwhile, the local emissions from Hohhot city, as well as anthropogenic urban/industrial aerosols transported by southern and western air masses, originating from southern urban agglomeration and western industrial cities (Baotou, Wuhai, etc.), contributed to the highest aerosol loading, with significant transformation rates of the secondary aerosols Sulfate-Nitrate-Ammonium (SNA) of 47.45%, 57.39%, 49.88%, and 45.16–47.36% in PM2.5 for each season. The extinction fraction of fine aerosols under these anthropogenic trajectories can be as high as 80%, and the largest fine aerosol size was around 0.2–0.25 μm. Dust aerosols were suspending in urban Hohhot all year, although at different levels for different seasons, and the extinction fraction of dust aerosol during sandstorms was generally higher than 70%.
Collapse
|
25
|
Assessing Spatial Variation of PBL Height and Aerosol Layer Aloft in São Paulo Megacity Using Simultaneously Two Lidar during Winter 2019. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work presents the use of two elastic lidar systems to assess the horizontal variation of the PBL height (PBLH) and aerosol layer aloft in the São Paulo Megacity. These two lidars performed simultaneous measurements 10.7 km apart in a highly urbanized and relatively flat area of São Paulo for two winter months of 2019. The results showed that the PBLH differences display diurnal variation that depends on the PBL during daytime growth phases. Cloud and sea breeze effects control most of PBLH variation. In the absence of cloud and sea breeze, the maximum difference (~300 m) occurs in the rapid development stage and is due to topographic effects. When the PBL approaches its maximum daily value, it tends to level off with respect to the topography. In addition, it was presented a method that combines elastic lidar (to detect an aerosol layer) and satellite data (to classify such a layer from Aerosol Optical Depth (AOD) and Aerosol Index (AI) information) for the detection of biomass burning events. This methodology demonstrated that the variations caused by Biomass Burning in AOD and AI enable both the detection of aerosol plumes originating from biomass burning and the identification of their origin.
Collapse
|
26
|
Mao S, Wang A, Yi Y, Yin Z, Zhao Y, Hu X, Wang X. Polarization Raman lidar for atmospheric correction during remote sensing satellite calibration: instrument and test measurements. OPTICS EXPRESS 2022; 30:11986-12007. [PMID: 35473129 DOI: 10.1364/oe.453499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
A compact polarization Raman lidar has been designed and constructed for using it for atmospheric correction measurements during satellite optical sensor calibration in areas with high altitude and extremely low aerosol loading. The parameters of this lidar, such as laser wavelength, telescope diameter and interference filter bandwidth, were simulated and optimized for the best observation performance. The instrument has low weight, is small in size, and requires air cooling instead of commonly used water-cooling of the laser. Thus, the instrument is suitable for autonomous operation in remote sites. The lidar prototype was installed in Lijiang (26°43' N, 100°01' E), China, a potential observation site for calibrations of optical sensors of satellites. This observation site has been shown to be an appropriate place for remote sensing and satellite calibration activities with low aerosol loading, thin air and a comparably high proportion of cloud-free days. A field campaign carried out between November 2019 and April 2020 allowed for thoroughly testing the instruments. The results of test observations show that complete overlap between emitted laser beam and field-of-view of the receiver unit is achieved at relatively low heights above ground. The measurement accuracy is comparably high. Thus, this instrument is suitable for operating in areas with relatively clean atmospheric conditions.
Collapse
|
27
|
Zhang X, Li L, Chen C, Zheng Y, Dubovik O, Derimian Y, Lopatin A, Gui K, Wang Y, Zhao H, Liang Y, Holben B, Che H, Zhang X. Extensive characterization of aerosol optical properties and chemical component concentrations: Application of the GRASP/Component approach to long-term AERONET measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152553. [PMID: 34952070 DOI: 10.1016/j.scitotenv.2021.152553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A recently developed GRASP/Component approach (GRASP: Generalized Retrieval of Atmosphere and Surface Properties) was applied to AERONET (Aeronet Robotic Network) sun photometer measurements in this study. Unlike traditional aerosol component retrieval, this approach allows the inference of some information about aerosol composition directly from measured radiance, rather than indirectly through the inversion of optical parameters, and has been integrated into the GRASP algorithm. The newly developed GRASP/Component approach was applied to 13 AERONET sites for different aerosol types under the assumption of aerosol internal mixing rules to analyze the characteristics of aerosol components and their distribution patterns. The results indicate that the retrievals can characterize well the spatial and temporal variability of the component concentration for different aerosol types. A reasonable agreement between GRASP BC retrievals and MERRA-2 BC products is found for all different aerosol types. In addition, the relationships between aerosol component content and aerosol optical parameters such as aerosol optical depth (AOD), fine-mode fraction (FMF), absorption Ångström exponent (AAE), scattering Ångström exponent (SAE), and single scattering albedo (SSA) are also analyzed for indirect verifying the reliability of the component retrieval. It was demonstrated the GRASP/Component optical retrievals are in good agreement with AERONET standard products [e.g., correlation coefficient (R) of 0.93-1.0 for AOD, fine-mode AOD (AODF), coarse-mode AOD (AODC) and Ångström exponent (AE); R = ~ 0.8 for absorption AOD (AAOD) and SSA; RMSE (root mean square error) < 0.03 for AOD, AODF, AODC, AAOD and SSA]. Thus, it is demonstrated the GRASP/Component approach can provide aerosol optical products with comparable accuracy as the AERONET standard products from the ground-based sun photometer measurements as well as some additional important inside on aerosol composition.
Collapse
Affiliation(s)
- Xindan Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China.
| | - Cheng Chen
- Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d'Optique Atmosphérique, 59000 Lille, France; GRASP-SAS, Villeneuve d'Ascq, France
| | - Yu Zheng
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Oleg Dubovik
- Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d'Optique Atmosphérique, 59000 Lille, France
| | - Yevgeny Derimian
- Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d'Optique Atmosphérique, 59000 Lille, France
| | | | - Ke Gui
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Yaqiang Wang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Hujia Zhao
- Institute of Atmospheric Environment, Shenyang, China
| | - Yuanxin Liang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Brent Holben
- Biospheric Sciences Branch, Code 923, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
| | - Huizheng Che
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| |
Collapse
|
28
|
A Novel Atmospheric Correction Algorithm to Exploit the Diurnal Variability in Hypertemporal Geostationary Observations. REMOTE SENSING 2022. [DOI: 10.3390/rs14040964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study developed a new atmospheric correction algorithm, GeoNEX-AC, that is independent from the traditional use of spectral band ratios but dedicated to exploiting information from the diurnal variability in the hypertemporal geostationary observations. The algorithm starts by evaluating smooth segments of the diurnal time series of the top-of-atmosphere (TOA) reflectance to identify clear-sky and snow-free observations. It then attempts to retrieve the Ross-Thick–Li-Sparse (RTLS) surface bi-directional reflectance distribution function (BRDF) parameters and the daily mean atmospheric optical depth (AOD) with an atmospheric radiative transfer model (RTM) to optimally simulate the observed diurnal variability in the clear-sky TOA reflectance. Once the initial RTLS parameters are retrieved after the algorithm’s burn-in period, they serve as the prior information to estimate the AOD levels for the following days and update the surface BRDF information with the new clear-sky observations. This process is iterated through the full time span of the observations, skipping only totally cloudy days or when surface snow is detected. We tested the algorithm over various Aerosol Robotic Network (AERONET) sites and the retrieved results well agree with the ground-based measurements. This study demonstrates that the high-frequency diurnal geostationary observations contain unique information that can help to address the atmospheric correction problem from new directions.
Collapse
|
29
|
Lidar Ratio Regional Transfer Method for Extinction Coefficient Accuracy Improvement in Lidar Networks. REMOTE SENSING 2022. [DOI: 10.3390/rs14030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lidar networks are essential to study the three-dimensional distribution of aerosols on a regional scale. At present, both Mie-scattering lidar (ML) and advanced lidars are being used in lidar networks. The latter can retrieve extinction coefficients without strict assumptions of the lidar ratio, such as Raman lidar (RL) or high-spectral-resolution lidar (HSRL). In order to balance the data quality and instrument costs for the lidar network, the lidar ratio regional transfer method in a lidar network is proposed in this paper. We developed a Lidar Ratio and Aerosol Fraction Non-linear Regression (LR-AFNR) model between the lidar ratio and corresponding absorbing aerosol fraction (this paper studied two types of absorbing aerosols: dust and carbonaceous). The aerosol fraction of the sun photometer retrieval was used as a medium to transfer the lidar ratio of HSRL retrieval to a certain range of MLs. This lidar ratio can be the input parameter for ML retrieval and enables the improvement of the extinction coefficient accuracy. The results show that the LR-APNR model is applicable to atmospheric conditions with high mineral dust or carbonaceous aerosol loading, and the maximum relative error of the ML extinction coefficient can be reduced from 46% (dust) and 64% (carbonaceous aerosol) to 20%.
Collapse
|
30
|
Potential of AOD Retrieval Using Atmospheric Emitted Radiance Interferometer (AERI). REMOTE SENSING 2022. [DOI: 10.3390/rs14020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aerosols in the atmosphere play an essential role in the radiative transfer process due to their scattering, absorption, and emission. Moreover, they interrupt the retrieval of atmospheric properties from ground-based and satellite remote sensing. Thus, accurate aerosol information needs to be obtained. Herein, we developed an optimal-estimation-based aerosol optical depth (AOD) retrieval algorithm using the hyperspectral infrared downwelling emitted radiance of the Atmospheric Emitted Radiance Interferometer (AERI). The proposed algorithm is based on the phenomena that the thermal infrared radiance measured by a ground-based remote sensor is sensitive to the thermodynamic profile and degree of the turbid aerosol in the atmosphere. To assess the performance of algorithm, AERI observations, measured throughout the day on 21 October 2010 at Anmyeon, South Korea, were used. The derived thermodynamic profiles and AODs were compared with those of the European center for a reanalysis of medium-range weather forecasts version 5 and global atmosphere watch precision-filter radiometer (GAW-PFR), respectively. The radiances simulated with aerosol information were more suitable for the AERI-observed radiance than those without aerosol (i.e., clear sky). The temporal variation trend of the retrieved AOD matched that of GAW-PFR well, although small discrepancies were present at high aerosol concentrations. This provides a potential possibility for the retrieval of nighttime AOD.
Collapse
|
31
|
Feng L, Su X, Wang L, Jiang T, Zhang M, Wu J, Qin W, Chen Y. Accuracy and error cause analysis, and recommendations for usage of Himawari-8 aerosol products over Asia and Oceania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148958. [PMID: 34280621 DOI: 10.1016/j.scitotenv.2021.148958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The Himawari-8 aerosol algorithm was updated to version 3 (V30). However, no study has evaluated its performance. The purpose of this study is to verify and to compare version 2.1 (V21) and V30 aerosol products, to explain which factor dominates the aerosol optical depth (AOD) error, and to provide recommendations for aerosol product usage. The AOD accuracy of V30 was better than that of V21, with a higher correlation coefficient (R) and a higher expected error (EE_DT). The V30 AOD metrics (including R, EE_DT, and the root mean square error) exceeded those of V21 on more than 69% of the AERONET sites and its bias from MODIS AOD was smaller than that of V21 AOD. However, the V30 AOD does not meet the metric of EE_DT > 0.66. The analysis results suggest that aerosol type parameters (primarily the Ångström exponent (AE)) may be the dominant factor determining the AOD error. This reveals the direction of H8 algorithm improvement. More than 59% of the H8 AE value meets the expected error but they do not capture the variety (R < 0.3). The FMF and SSA retrieved by H8 performed poorly. The V30 AOD performs best in Japan and South Korea (83.3% of AERONET sites meet the EE_DT > 0.66 requirement) and has better data accuracy in the morning. Therefore, we recommend V30 AOD morning data to users in Japan and South Korea regions.
Collapse
Affiliation(s)
- Lan Feng
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Xin Su
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China.
| | - Lunche Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Tao Jiang
- College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ming Zhang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Jinyang Wu
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Wenmin Qin
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Yanlong Chen
- National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
32
|
Yli-Juuti T, Mielonen T, Heikkinen L, Arola A, Ehn M, Isokääntä S, Keskinen HM, Kulmala M, Laakso A, Lipponen A, Luoma K, Mikkonen S, Nieminen T, Paasonen P, Petäjä T, Romakkaniemi S, Tonttila J, Kokkola H, Virtanen A. Significance of the organic aerosol driven climate feedback in the boreal area. Nat Commun 2021; 12:5637. [PMID: 34561456 PMCID: PMC8463617 DOI: 10.1038/s41467-021-25850-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Aerosol particles cool the climate by scattering solar radiation and by acting as cloud condensation nuclei. Higher temperatures resulting from increased greenhouse gas levels have been suggested to lead to increased biogenic secondary organic aerosol and cloud condensation nuclei concentrations creating a negative climate feedback mechanism. Here, we present direct observations on this feedback mechanism utilizing collocated long term aerosol chemical composition measurements and remote sensing observations on aerosol and cloud properties. Summer time organic aerosol loadings showed a clear increase with temperature, with simultaneous increase in cloud condensation nuclei concentration in a boreal forest environment. Remote sensing observations revealed a change in cloud properties with an increase in cloud reflectivity in concert with increasing organic aerosol loadings in the area. The results provide direct observational evidence on the significance of this negative climate feedback mechanism.
Collapse
Affiliation(s)
- Taina Yli-Juuti
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Tero Mielonen
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Liine Heikkinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Antti Arola
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Sini Isokääntä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Helmi-Marja Keskinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Anton Laakso
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Antti Lipponen
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Krista Luoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Nieminen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Pauli Paasonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Sami Romakkaniemi
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Juha Tonttila
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Harri Kokkola
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Annele Virtanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
33
|
Impact of Aerosol and Cloud on the Solar Energy Potential over the Central Gangetic Himalayan Region. REMOTE SENSING 2021. [DOI: 10.3390/rs13163248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examine the impact of atmospheric aerosols and clouds on the surface solar radiation and solar energy at Nainital, a high-altitude remote location in the central Gangetic Himalayan region (CGHR). For this purpose, we exploited the synergy of remote-sensed data in terms of ground-based AERONET Sun Photometer and satellite observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat Second Generation (MSG), with radiative transfer model (RTM) simulations and 1 day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). Clouds and aerosols are one of the most common sources of solar irradiance attenuation and hence causing performance issues in the photovoltaic (PV) and concentrated solar power (CSP) plant installations. The outputs of RTM results presented with high accuracy under clear, cloudy sky and dust conditions for global horizontal (GHI) and beam horizontal irradiance (BHI). On an annual basis the total aerosol attenuation was found to be up to 105 kWh m−2 for the GHI and 266 kWh m−2 for BHI, respectively, while the cloud effect is much stronger with an attenuation of 245 and 271 kWh m−2 on GHI and BHI. The results of this study will support the Indian solar energy producers and electricity handling entities in order to quantify the energy and financial losses due to cloud and aerosol presence.
Collapse
|
34
|
An Adjustment Approach for Aerosol Optical Depth Inferred from CALIPSO. REMOTE SENSING 2021. [DOI: 10.3390/rs13163085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The verification and correction of CALIPSO aerosol products is key to understanding the atmospheric environment and climate change. However, CALIPSO often cannot detect the full profile of aerosol for the low instrument sensitivity near the surface. Thus, a correction scheme for the aerosol extinction coefficient (AECs) in the planetary boundary layer (PBL) is proposed to improve the quality of the CALIPSO-based aerosol optical depth (AOD) at 532 nm. This scheme assumed that the aerosol is vertically and uniformly distributed below the PBL, and that the AECs in the whole PBL are equal to those at the top of the PBL; then, the CALIPSO AOD was obtained by vertically integrating AECs throughout the whole atmosphere. Additionally, the CALIPSO AOD and corrected CALIPSO AOD were validated against seven ground-based sites across eastern China during 2007–2015. Our results show that the initial CALIPSO AOD obtained by cloud filtering was generally lower than that of the ground-based observations. After accounting for the AECs in the PBL, the adjustment method tended to improve the CALIPSO AOD data quality. The average R (slope) value from all sites was improved by 7% (46%). Further, the relative distance between the ground track of CALIPSO and the ground station exhibited an influence on the validation result of CALIPSO AOD. The retrieval precision of CALIPSO AOD worsened with the increase in water vapor in the atmosphere. Our findings indicate that our scheme significantly improves the accuracy of CALIPSO AOD, which will help to provide alternative AOD products in the presence of severe atmospheric pollution.
Collapse
|
35
|
Hu X, Sun J, Xia C, Shen X, Zhang Y, Zhang X, Zhang S. Simultaneous measurements of PM 1 and PM 10 aerosol scattering properties and their relationships in urban Beijing: A two-year observation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145215. [PMID: 33515892 DOI: 10.1016/j.scitotenv.2021.145215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The aerosol scattering properties of submicron (PM1) and sub-10 μm particles (PM10) under dry conditions (RH <30%) were investigated in Beijing from 2018 to 2019. Using the simultaneous measurement of PM1 and PM10, the scattering properties of super micron (PM10-1) particles were also calculated. At 550 nm, the average of scattering coefficient (σsp) and asymmetry parameter (g) were 208.7 ± 204.9 Mm-1 and 0.61 ± 0.04 for PM10, 140.6 ± 130.2 Mm-1 and 0.60 ± 0.04 for PM1, and 69.8 ± 82.2 Mm-1 and 0.62 ± 0.04 for PM10-1, respectively, while the backscattering ratio (b) values were 0.13 ± 0.02 for PM10 and PM1, and 0.12 ± 0.02 for PM10-1. The mass scattering efficiencies (MSE) for PM10, PM1 and PM10-1 were 2.43 ± 2.37, 3.67 ± 0.96, and 1.73 ± 1.82 m2 g-1, respectively. In 2019, σsp decreased by approximately 18.4% for PM10, and 16.7% for PM1 compared with those in 2018, which was quite similar to the decrease of 17% and 19% for PM10 and PM2.5 mass concentrations during the same time period. The scattering Ångström exponent (SAE450/700), which was 1.88 ± 0.29 for PM1 and 1.50 ± 0.27 for PM10 indicated size distributions dominated by fine mode aerosols. This is also evidenced by the high submicron scattering ratio (Rsp) (71.1% ± 7.9%). The high SAE, Rsp, and high PM1 σsp in the study suggest that control of fine particle pollution is important to reduce overall PM pollution in urban Beijing. In addition, with an increase in σsp, b, Rsp, and SAE gradually decreased, while g and MSE increased. The clearly scattering coefficient-dependent MSE suggests that high aerosol loading and high MSE both play an important role in degraded visibility during heavy pollution periods.
Collapse
Affiliation(s)
- Xinyao Hu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Junying Sun
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Can Xia
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China; Nanjing University of Information Science & Technology, Nanjing 210000, China
| | - Xiaojing Shen
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Sinan Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
36
|
Aldhaif AM, Lopez DH, Dadashazar H, Painemal D, Peters AJ, Sorooshian A. An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study Over Bermuda. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:e2020JD034038. [PMID: 34159044 PMCID: PMC8216143 DOI: 10.1029/2020jd034038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Aerosol characteristics and aerosol-cloud interactions remain uncertain in remote marine regions. We use over a decade of data (2000-2012) from the NASA AErosol RObotic NETwork, aerosol and wet deposition samples, satellite remote sensors, and models to examine aerosol and cloud droplet number characteristics at a representative open ocean site (Bermuda) over the Western North Atlantic Ocean (WNAO). Annual mean values were as follows: aerosol optical depth (AOD) = 0.12, Ångström Exponent (440/870 nm) = 0.95, fine mode fraction = 0.51, asymmetry factor = 0.72 (440 nm) and 0.68 (1020 nm), and Aqua-MODIS cloud droplet number concentrations = 51.3 cm-3. The winter season (December-February) was characterized by high sea salt optical thickness and the highest aerosol extinction in the lowest 2 km. Extensive precipitation over the WNAO in winter helps contribute to the low FMFs in winter (~0.40-0.50) even though air trajectories often originate over North America. Spring and summer had more pronounced influence from sulfate, dust, organic carbon, and black carbon. Volume size distributions were bimodal with a dominant coarse mode (effective radii: 1.85-2.09 μm) and less pronounced fine mode (0.14-0.16 μm), with variability in the coarse mode likely due to different characteristic sizes for transported dust (smaller) versus regional sea salt (larger). Extreme pollution events highlight the sensitivity of this site to long-range transport of urban emissions, dust, and smoke. Differing annual cycles are identified between AOD and cloud droplet number concentrations, motivating a deeper look into aerosol-cloud interactions at this site.
Collapse
Affiliation(s)
- Abdulmonam M Aldhaif
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - David H Lopez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - David Painemal
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | | | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
37
|
Yan X, Zang Z, Liang C, Luo N, Ren R, Cribb M, Li Z. New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116707. [PMID: 33609902 DOI: 10.1016/j.envpol.2021.116707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The space-borne measured fine-mode aerosol optical depth (fAOD) is a gross index of column-integrated anthropogenic particulate pollutants, especially over the populated land. The fAOD is the product of the AOD and the fine-mode fraction (FMF). While there exist numerous global AOD products derived from many different satellite sensors, there have been much fewer, if any, global FMF products with a quality good enough to understand their spatiotemporal variations. This is key to understanding the global distribution and spatiotemporal variations of air pollutants, as well as their impacts on global environmental and climate changes. Modifying our newly developed retrieval algorithm to the latest global-scale Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product (Collection 6.1), a global 10-year FMF product is generated and analyzed here. We first validate the product through comparisons with the FMF derived from Aerosol Robotic Network (AERONET) measurements. Among our 169,313 samples, the satellite-derived FMFs agreed with the AERONET spectral deconvolution algorithm (SDA)-retrieved FMFs with a root-mean-square error (RMSE) of 0.22. Analyzed using this new product are the global patterns and interannual and seasonal variations of the FMF over land. In general, the FMF is large (>0.80) over Mexico, Myanmar, Laos, southern China, and Africa and less than 0.5 in the Sahelian and Sudanian zones of northern Africa. Seasonally, higher FMF values occur in summer and autumn. The linear trend in the satellite-derived and AERONET FMFs for different countries was explored. The upward trend in the FMFs was particularly strong over Australia since 2008. This study provides a new global view of changes in FMFs using a new satellite product that could help improve our understanding of air pollution around the world.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Zhou Zang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Chen Liang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Nana Luo
- Department of Geography, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182-4493, USA
| | - Rongmin Ren
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Maureen Cribb
- Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, MD, 20740, USA
| | - Zhanqing Li
- Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, MD, 20740, USA.
| |
Collapse
|
38
|
Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the last decades, the impact of mineral dust from African deserts on human health and climate has been of great interest to the scientific community. In this paper, the climatological analysis of dusty events of the past 20 years in the Caribbean area has been performed using a particulate approach. The focus is made on June 2020 extreme event dubbed “Godzilla”. To carry out this study, different types of data were used (ground-based, satellites, model, and soundings) on several sites in the Caribbean islands. First, the magnitude of June 2020 event was clearly highlighted using satellite imagery. During the peak of this event, the value of particulate matter with an aerodynamic diameter of less than 10 μμm (PM10) reached a value 9 times greater than the threshold recommended by the World Health Organization in one day. Thereafter, the PM10, the aerosol optical depth, and the volume particle size distribution analyses exhibited their maximum values for June 2020. We also highlighted the exceptional characteristics of the Saharan air layer in terms of thickness and wind speed for this period. Finally, our results showed that the more the proportion of particulate matter with an aerodynamic diameter of less than 2.5 μμm (PM2.5) in PM10 increases, the more the influence of sea salt aerosols is significant.
Collapse
|
39
|
Yao P, Tu B, Xu S, Yu X, Xu Z, Luo D, Hong J. Non-uniformity calibration method of space-borne area CCD for directional polarimetric camera. OPTICS EXPRESS 2021; 29:3309-3326. [PMID: 33770932 DOI: 10.1364/oe.410768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The directional polarimetric camera (DPC) is a polarization sensor with the characteristics of ultra-wide-angle and low-distortion imaging. The multi-angle polarization information is helpful to obtain the spatial distribution of target radiation, and multiple data fusion relies on the non-uniformity calibration of image plane. The non-uniformity consists of many factors such as lens, detector assembly, spatial stray light, etc. The single correction method can not distinguish the error source effectively. In consideration of the in-flight operation mode of DPC based on the adjustment of exposure time, the non-uniformity correction method of the detector based on multi parameters is proposed. Through the electro-optical performance measurement system of the CCD detector, the sensitive factors such as temperature, dark current, exposure time and spectral response are obtained. After a series of preprocessing of the image including removal of dark signal, removal of smearing effect and temperature compensation, the non-uniformity calibration based on multi-parameters is imposed on the detector. The low-frequency unbalanced response difference of the image surface is eliminated, and the high-frequency difference is effectively suppressed. The experimental results show that the photo response non-uniformity of 95% full well single frame data is reduced from 2.86% to 0.36%. After correction, the data noise is shown as shot noise, and the detector has good ability of dynamic range adjustment. The non-uniformity calibration by the proposed method can offer data support for the instrumental calibration and in-flight fast calculation, and provide effective reference for the subsequent polarization remote sensing instruments.
Collapse
|
40
|
Synergistic Use of Hyperspectral UV-Visible OMI and Broadband Meteorological Imager MODIS Data for a Merged Aerosol Product. REMOTE SENSING 2020. [DOI: 10.3390/rs12233987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retrieval of optimal aerosol datasets by the synergistic use of hyperspectral ultraviolet (UV)–visible and broadband meteorological imager (MI) techniques was investigated. The Aura Ozone Monitoring Instrument (OMI) Level 1B (L1B) was used as a proxy for hyperspectral UV–visible instrument data to which the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol algorithm was applied. Moderate-Resolution Imaging Spectroradiometer (MODIS) L1B and dark target aerosol Level 2 (L2) data were used with a broadband MI to take advantage of the consistent time gap between the MODIS and the OMI. First, the use of cloud mask information from the MI infrared (IR) channel was tested for synergy. High-spatial-resolution and IR channels of the MI helped mask cirrus and sub-pixel cloud contamination of GEMS aerosol, as clearly seen in aerosol optical depth (AOD) validation with Aerosol Robotic Network (AERONET) data. Second, dust aerosols were distinguished in the GEMS aerosol-type classification algorithm by calculating the total dust confidence index (TDCI) from MODIS L1B IR channels. Statistical analysis indicates that the Probability of Correct Detection (POCD) between the forward and inversion aerosol dust models (DS) was increased from 72% to 94% by use of the TDCI for GEMS aerosol-type classification, and updated aerosol types were then applied to the GEMS algorithm. Use of the TDCI for DS type classification in the GEMS retrieval procedure gave improved single-scattering albedo (SSA) values for absorbing fine pollution particles (BC) and DS aerosols. Aerosol layer height (ALH) retrieved from GEMS was compared with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, which provides high-resolution vertical aerosol profile information. The CALIOP ALH was calculated from total attenuated backscatter data at 1064 nm, which is identical to the definition of GEMS ALH. Application of the TDCI value reduced the median bias of GEMS ALH data slightly. The GEMS ALH bias approximates zero, especially for GEMS AOD values of >~0.4 and GEMS SSA values of <~0.95. Finally, the AOD products from the GEMS algorithm and MI were used in aerosol merging with the maximum-likelihood estimation method, based on a weighting factor derived from the standard deviation of the original AOD products. With the advantage of the UV–visible channel in retrieving aerosol properties over bright surfaces, the combined AOD products demonstrated better spatial data availability than the original AOD products, with comparable accuracy. Furthermore, pixel-level error analysis of GEMS AOD data indicates improvement through MI synergy.
Collapse
|
41
|
Estimation of Surface Concentrations of Black Carbon from Long-Term Measurements at Aeronet Sites over Korea. REMOTE SENSING 2020. [DOI: 10.3390/rs12233904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We estimated fine-mode black carbon (BC) concentrations at the surface using AERONET data from five AERONET sites in Korea, representing urban, rural, and background. We first obtained the columnar BC concentrations by separating the refractive index (RI) for fine-mode aerosols from AERONET data and minimizing the difference between separated RIs and calculated RIs using a mixing rule that can represent a real aerosol mixture (Maxwell Garnett for water-insoluble components and volume average for water-soluble components). Next, we acquired the surface BC concentrations by establishing a multiple linear regression (MLR) between in-situ BC concentrations from co-located or adjacent measurement sites, and columnar BC concentrations, by linearly adding meteorological parameters, month, and land-use type as the independent variables. The columnar BC concentrations estimated from AERONET data using a mixing rule well reproduced site-specific monthly variations of the in-situ measurement data, such as increases due to heating and/or biomass burning and long-range transport associated with prevailing westerlies in the spring and winter, and decreases due to wet scavenging in the summer. The MLR model exhibited a better correlation between measured and predicted BC concentrations than those based on columnar concentrations only, with a correlation coefficient of 0.64. The performance of our MLR model for BC was comparable to that reported in previous studies on the relationship between aerosol optical depth and particulate matter concentration in Korea. This study suggests that the MLR model with properly selected parameters is useful for estimating the surface BC concentration from AERONET data during the daytime, at sites where BC monitoring is not available.
Collapse
|
42
|
Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. REMOTE SENSING 2020. [DOI: 10.3390/rs12223846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite a number of studies on biomass burning (BB) emissions in the atmosphere, observation of the associated aerosols and pollutants requires continuous efforts. Brazil, and more broadly Latin America, is one of the most important seasonal sources of BB, particularly in the Amazon region. Uncertainty about aerosol loading in the source regions is a limiting factor in terms of understanding the role of aerosols in climate modelling. In the present work, we investigated the Amazon BB episode that occurred during August 2019 and made the international headlines, especially when the smoke plumes plunged distant cities such as São Paulo into darkness. Here, we used satellite and ground-based observations at different locations to investigate the long-range transport of aerosol plumes generated by the Amazon fires during the study period. The monitoring of BB activity was carried out using fire related pixel count from the moderate resolution imaging spectroradiometer (MODIS) onboard the Aqua and Terra platforms, while the distribution of carbon monoxide (CO) concentrations and total columns were obtained from the infrared atmospheric sounding interferometer (IASI) onboard the METOP-A and METOP-B satellites. In addition, AERONET sun-photometers as well as the MODIS instrument made aerosol optical depth (AOD) measurements over the study region. Our datasets are consistent with each other and highlight AOD and CO variations and long-range transport of the fire plume from the source regions in the Amazon basin. We used the Lagrangian transport model FLEXPART (FLEXible PARTicle) to simulate backward dispersion, which showed good agreement with satellite and ground measurements observed over the study area. The increase in Rossby wave activity during the 2019 austral winter the Southern Hemisphere may have contributed to increasing the efficiency of large-scale transport of aerosol plumes generated by the Amazon fires during the study period.
Collapse
|
43
|
Ramachandran S, Rupakheti M, Lawrence MG. Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Sci Rep 2020; 10:20091. [PMID: 33208825 PMCID: PMC7676243 DOI: 10.1038/s41598-020-76936-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Aerosol emissions from human activities are extensive and changing rapidly over Asia. Model simulations and satellite observations indicate a dipole pattern in aerosol emissions and loading between South Asia and East Asia, two of the most heavily polluted regions of the world. We examine the previously unexplored diverging trends in the existing dipole pattern of aerosols between East and South Asia using the high quality, two-decade long ground-based time series of observations of aerosol properties from the Aerosol Robotic Network (AERONET), from satellites (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)), and from model simulations (Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The data cover the period since 2001 for Kanpur (South Asia) and Beijing (East Asia), two locations taken as being broadly representative of the respective regions. Since 2010 a dipole in aerosol optical depth (AOD) is maintained, but the trend is reversed—the decrease in AOD over Beijing (East Asia) is rapid since 2010, being 17% less in current decade compared to first decade of twenty-first century, while the AOD over South Asia increased by 12% during the same period. Furthermore, we find that the aerosol composition is also changing over time. The single scattering albedo (SSA), a measure of aerosol’s absorption capacity and related to aerosol composition, is slightly higher over Beijing than Kanpur, and has increased from 0.91 in 2002 to 0.93 in 2017 over Beijing and from 0.89 to 0.92 during the same period over Kanpur, confirming that aerosols in this region have on an average become more scattering in nature. These changes have led to a notable decrease in aerosol-induced atmospheric heating rate (HR) over both regions between the two decades, decreasing considerably more over East Asia (− 31%) than over South Asia (− 9%). The annual mean HR is lower now, it is still large (≥ 0.6 K per day), which has significant climate implications. The seasonal trends in AOD, SSA and HR are more pronounced than their respective annual trends over both regions. The seasonal trends are caused mainly by the increase/decrease in anthropogenic aerosol emissions (sulfate, black carbon and organic carbon) while the natural aerosols (dust and sea salt) did not change significantly over South and East Asia during the last two decades. The MERRA-2 model is able to simulate the observed trends in AODs well but not the magnitude, while it also did not simulate the SSA values or trends well. These robust findings based on observations of key aerosol parameters and previously unrecognized diverging trends over South and East Asia need to be accounted for in current state-of-the-art climate models to ensure accurate quantification of the complex and evolving impact of aerosols on the regional climate over Asia.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India. .,Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | | | - Mark G Lawrence
- Institute for Advanced Sustainability Studies, Potsdam, Germany.,Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
| |
Collapse
|
44
|
Zheng Y, Che H, Xia X, Wang Y, Yang L, Chen J, Wang H, Zhao H, Li L, Zhang L, Gui K, Yang X, Liang Y, Zhang X. Aerosol optical properties and its type classification based on multiyear joint observation campaign in north China plain megalopolis. CHEMOSPHERE 2020; 273:128560. [PMID: 34756345 DOI: 10.1016/j.chemosphere.2020.128560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 10/04/2020] [Indexed: 06/13/2023]
Abstract
Since haze and other air pollution are frequently seen in the North China Plain (NCP), detail information on aerosol optical and radiative properties and its type classification is demanded for the study of regional environmental pollution. Here, a multiyear ground-based synchronous sun photometer observation at seven sites on North China Plain megalopolis from 2013 to 2018 was conducted. First, the annual and seasonal variation of these characteristics as well as the intercomparsion were analyzed. Then the potential relationships between these properties with meteorological factors and the aerosol type classification were discussed. The results show: Particle volume exhibited a decreasing trend from the urban downtown to suburban and the rural region. The annual average aerosol optical depth at 440 nm (AOD440) varied from ∼0.43 to 0.86 over the NCP. Annual average single-scattering albedo at 440 nm (SSA440) varied from ∼0.89 to 0.93, indicating a moderate to slight absorption capacity. Average absorption aerosol optical depth at 440 nm (AAOD440) varied from ∼0.07 to 0.10. The absorption Ångström exponent (AAE) (∼0.89-1.40) indicated the multi-types of absorptive matters originated form nature and anthropogenic emission. The discussion of aerosol composition showed a smaller particle size of aerosol from biomass burning and/or fossil foil consumption with enhanced aerosol scattering and enlarged light extinction. Aerosol classification indicated a large percentage of mixed absorbing aerosol (∼20%-49%), which showed increasing trend between relative humidity (RH) with aerosol scattering and dust was an important environmental pollutant compared to southern China.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China.
| | - Xiangao Xia
- Laboratory for Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; School of Geoscience, University of Chinese Academy of Science, Beijing, 100049, China
| | - Yaqiang Wang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Leiku Yang
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jing Chen
- Shijiazhuang Meteorological Bureau, Shijiazhuang, 050081, China
| | - Hong Wang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Hujia Zhao
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, 110016, China
| | - Lei Li
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Lei Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Ke Gui
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Xianyi Yang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Yuanxin Liang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing, 100081, China
| |
Collapse
|
45
|
The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. REMOTE SENSING 2020. [DOI: 10.3390/rs12182900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Dark Target aerosol algorithm was developed to exploit the information content available from the observations of Moderate-Resolution Imaging Spectroradiometers (MODIS), to better characterize the global aerosol system. The algorithm is based on measurements of the light scattered by aerosols toward a space-borne sensor against the backdrop of relatively dark Earth scenes, thus giving rise to the name “Dark Target”. Development required nearly a decade of research that included application of MODIS airborne simulators to provide test beds for proto-algorithms and analysis of existing data to form realistic assumptions to constrain surface reflectance and aerosol optical properties. This research in itself played a significant role in expanding our understanding of aerosol properties, even before Terra MODIS launch. Contributing to that understanding were the observations and retrievals of the growing Aerosol Robotic Network (AERONET) of sun-sky radiometers, which has walked hand-in-hand with MODIS and the development of other aerosol algorithms, providing validation of the satellite-retrieved products after launch. The MODIS Dark Target products prompted advances in Earth science and applications across subdisciplines such as climate, transport of aerosols, air quality, and data assimilation systems. Then, as the Terra and Aqua MODIS sensors aged, the challenge was to monitor the effects of calibration drifts on the aerosol products and to differentiate physical trends in the aerosol system from artefacts introduced by instrument characterization. Our intention is to continue to adapt and apply the well-vetted Dark Target algorithms to new instruments, including both polar-orbiting and geosynchronous sensors. The goal is to produce an uninterrupted time series of an aerosol climate data record that begins at the dawn of the 21st century and continues indefinitely into the future.
Collapse
|
46
|
Zhang X, Cheng T, Guo H, Bao F, Shi S, Wang W, Zuo X. Study on the characteristics of black carbon during atmospheric pollution conditions in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139112. [PMID: 32470715 DOI: 10.1016/j.scitotenv.2020.139112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Black carbon (BC), not only has a negative impact on human health, but also contributes to visibility degradation and the attenuation of solar radiation due to light absorption. In this paper, we investigated the variations of BC concentration, BC optical characteristics and its effects on the physical and optical properties of atmospheric aerosols based on AERONET data during atmospheric pollution conditions in Beijing from 2012 to 2017. The results indicated that the average annual ground-level BC concentration and BC/PM2.5 were 8.9 μg m-3 and 6.7%, respectively, from 2012 to 2017 during atmospheric pollution conditions in Beijing. The annual mean ground-level BC concentration showed weak variation, but the monthly variation was pronounced during atmospheric pollution conditions. Moreover, the BC column concentration had a higher correlation with absorptive aerosol optical thickness (AAOT) at 870 nm (R2 = 0.93) than 440 nm (R2 = 0.73). The difference in AAOT between 440 nm and 870 nm was more significant under high BC column concentration. The seasonal variation of the BC column concentration that contributed to the AAOT at 870 nm displayed a consistent monthly average variation tendency. The BC column concentrations were divided into three segments of low, moderate, and high according to the results of the approximately normal distribution of the BC column concentration. Compared with high BC concentration, the single scattering albedo (SSA) and asymmetry parameter were enhanced by 0.05 and 0.04 in low BC concentrations, respectively. On the contrary, the fine mode fraction (FMF) was dropped by 12.5% in low BC concentrations. A higher BC concentration contributed to the enhancement in the AAOT and the extinction ratio of the fine mode aerosol. Meanwhile, the atmospheric particles' forward scattering ability was also attenuated under a high BC concentration.
Collapse
Affiliation(s)
- Xiaochuan Zhang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhai Cheng
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong Guo
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China.
| | - Fangwen Bao
- Center for Oceanic and Atmospheric Science at SUSTech (COAST), Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuaiyi Shi
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China
| | - Wannan Wang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zuo
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Ramachandran S, Rupakheti M. Inter-annual and seasonal variations in columnar aerosol characteristics and radiative effects over the Pokhara Valley in the Himalayan foothills - Composition, radiative forcing, and atmospheric heating. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114799. [PMID: 32559877 DOI: 10.1016/j.envpol.2020.114799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
This study reports comprehensive analysis of seasonal and inter-annual variations of aerosol properties (optical, physical and chemical) and radiative effects over Pokhara Valley in the foothills of central Himalayas in Nepal utilizing the high-quality multi-year columnar aerosol data observed recently from January 2010 to December 2017. This paper focusses on the seasonal and inter-annual variations of chemical (composition), and absorption properties of aerosols and their radiative effects. The single scattering albedo (SSA) either decreases as a function of wavelength or remains independent of wavelength. The seasonal mean aerosol absorption optical depth (AAOD) exhibits a behavior opposite to that of SSA. Carbonaceous aerosols (CA) dominate (≥60%) aerosol absorption during the whole year. Black carbon (BC) alone contributes >60% to AAODCA while brown carbon (BrC) shares the rest. The absorbing aerosol types are determined to be BC, and mixed (BC and dust) only. Dust as absorbing aerosol type is absent over the Himalayan foothills. The ARFSFC is ≥ -50 Wm-2 except in monsoon almost every year. The ARFATM is ≥ 50 Wm-2 during winter and pre-monsoon in all the years. ARFESFC, ARFETOA and ARFEATM follow a similar pattern as that of ARF. High values of ARFE at SFC, TOA and ATM (except during monsoon when values are slightly lower) suggest that aerosols are efficient in significantly modulating the incoming solar flux throughout the year. The annual average aerosol-induced atmospheric heating rate (HR) over Pokhara is nearly 1 K day-1 every year during 8-year observation, and is highest in 2015 (∼2.5 K day-1). The HR is about 1 K day-1 or more over all the locations in IGP during the year. These quantitative results can be used as inputs in global/regional climate models to assess the climate impact of aerosols, including on regional temperature, hydrological cycle and melting of glaciers and snowfields in the region.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | - M Rupakheti
- Institute for Advanced Sustainability Studies, Potsdam, Germany.
| |
Collapse
|
48
|
Ramachandran S, Rupakheti M, Lawrence MG. Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills. ENVIRONMENT INTERNATIONAL 2020; 142:105814. [PMID: 32505017 DOI: 10.1016/j.envint.2020.105814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
This study, based on new and high quality in situ observations, quantifies for the first time, the individual contributions of light-absorbing aerosols (black carbon (BC), brown carbon (BrC) and dust) to aerosol absorption over the Indo-Gangetic Plain (IGP) and the Himalayan foothill region, a relatively poorly studied region with several sensitive ecosystems of global importance, as well as highly vulnerable populations. The annual and seasonal average single scattering albedo (SSA) over Kathmandu is the lowest of all the locations. The SSA over Kathmandu is < 0.89 during all seasons, which confirms the dominance of light-absorbing carbonaceous aerosols from local and regional sources over Kathmandu. It is observed here that the SSA decreases with increasing elevation, confirming the dominance of light absorbing carbonaceous aerosols at higher elevations. In contrast, the SSA over the IGP does not exhibit a pronounced spatial variation. BC dominates (≥75%) the aerosol absorption over the IGP and the Himalayan foothills throughout the year. Higher BC concentration at elevated locations in the Himalayas leads to lower SSA at elevated locations in the Himalayas. The contribution of dust to aerosol absorption is higher throughout the year over the IGP than over the Himalayan foothills. The aerosol absorption over South Asia is very high, exceeding available observations over East Asia, and also exceeds previous model estimates. This quantification will be valuable as observational constraints to help improve regional simulations of climate change, impacts on the glaciers and the hydrological cycle, and will help to direct the focus towards BC as the main contributor to aerosol-induced warming in the region.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | | | - Mark G Lawrence
- Institute for Advanced Sustainability Studies, Potsdam, Germany; Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
49
|
Spatio-Temporal Variability of Aerosol Optical Depth, Total Ozone and NO2 Over East Asia: Strategy for the Validation to the GEMS Scientific Products. REMOTE SENSING 2020. [DOI: 10.3390/rs12142256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, the spatio-temporal variability of aerosol optical depth (AOD), total column ozone (TCO), and total column NO2 (TCN) was identified over East Asia using long-term datasets from ground-based and satellite observations. Based on the statistical results, optimized spatio-temporal ranges for the validation study were determined with respect to the target materials. To determine both spatial and temporal ranges for the validation study, we confirmed that the observed datasets can be statistically considered as the same quantity within the ranges. Based on the thresholds of R2>0.95 (temporal) and R>0.95 (spatial), the basic ranges for spatial and temporal scales for AOD validation was within 30 km and 30 min, respectively. Furthermore, the spatial scales for AOD validation showed seasonal variation, which expanded the range to 40 km in summer and autumn. Because of the seasonal change of latitudinal gradient of the TCO, the seasonal variation of the north-south range is a considerable point. For the TCO validation, the north-south range is varied from 0.87° in spring to 1.05° in summer. The spatio-temporal range for TCN validation was 20 min (temporal) and 20–50 km (spatial). However, the nearest value of satellite data was used in the validation because the spatio-temporal variation of TCN is large in summer and autumn. Estimation of the spatio-temporal variability for respective pollutants may contribute to improving the validation of satellite products.
Collapse
|
50
|
An Investigation of Vertically Distributed Aerosol Optical Properties over Pakistan Using CALIPSO Satellite Data. REMOTE SENSING 2020. [DOI: 10.3390/rs12142183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vertically distributed aerosol optical properties are investigated over Pakistan utilizing the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Level 2 products from 2007 to 2014. For a better understanding of the spatiotemporal characteristics of vertical aerosol layers, the interannual and seasonal variations of nine selected aerosol parameters such as the AOD of the lowest aerosol layer (AODL), the base height of the lowest aerosol layer (HL), the top height of the highest aerosol layer (HH), the volume depolarization ratio of the lowest aerosol layer (DRL), the color ratio of the lowest aerosol layer (CRL), total AOD of all the aerosol layers (AODT), the number of aerosol feature layers (N), the thickness of the lowest aerosol layer (TL), the AOD proportion for the lowest aerosol layer (PAODL) for both day and night times are analyzed. The results show AODT increased slightly from 2007 to 2014 over Pakistan, and relatively high AODT exists over the Punjab and Sindh (southern region), which might be owing to the high level of economic development, frequent dust storms, and profound agricultural activities (anthropogenic emissions). AODT increases from north to south. The reason may be that the southern region is rapidly urbanized and is near the desert. The northern region is dominated by agricultural land, and cities are usually semi-urbanized. The highest AODT appears in summer compared to the other seasons, and during daytime compared to nighttime. The HL and HH vary significantly, owing to the topography of Pakistan. The N is relatively large over Punjab and Sindh compared to the other regions, which might be caused by relatively stronger atmospheric convections. The spatial distribution of the TL showed an inverse relationship with the topography as lower values are observed over elevated regions such as Gilgit-Baltistan and Jammu-Kashmir. The value of the PAODL indicates that 77% of the total aerosols are mainly concentrated in the lowest layer of the atmosphere over Pakistan. The higher values of DRL and CRL indicate non-spherical and large particles over Balochistan and Sindh, which might be related to the proximity to the desert. This study provides very useful information about vertically distributed aerosol optical properties which could help researchers and policymakers to regulate and mitigate air pollution issues of Pakistan.
Collapse
|