Liquid water on cold exo-Earths via basal melting of ice sheets.
Nat Commun 2022;
13:7521. [PMID:
36473880 PMCID:
PMC9726705 DOI:
10.1038/s41467-022-35187-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid water is a critical component of habitability. However, the production and stability of surficial liquid water can be challenging on planets outside the Habitable Zone and devoid of adequate greenhouse warming. On such cold, icy exo-Earths, basal melting of regional/global ice sheets by geothermal heat provides an alternative means of forming liquid water. Here, we model the thermophysical evolution of ice sheets to ascertain the geophysical conditions that allow liquid water to be produced and maintained at temperatures above the pressure-controlled freezing point of water ice on exo-Earths. We show that even with a modest, Moon-like geothermal heat flow, subglacial oceans of liquid water can form at the base of and within the ice sheets on exo-Earths. Furthermore, subglacial oceans may persist on exo-Earths for a prolonged period due to the billion-year half-lives of heat-producing elements responsible for geothermal heat. These subglacial oceans, often in contact with the planet's crust and shielded from the high energy radiation of their parent star by thick ice layers, may provide habitable conditions for an extended period.
Collapse