1
|
Fletcher LN, Cavalié T, Grassi D, Hueso R, Lara LM, Kaspi Y, Galanti E, Greathouse TK, Molyneux PM, Galand M, Vallat C, Witasse O, Lorente R, Hartogh P, Poulet F, Langevin Y, Palumbo P, Gladstone GR, Retherford KD, Dougherty MK, Wahlund JE, Barabash S, Iess L, Bruzzone L, Hussmann H, Gurvits LI, Santolik O, Kolmasova I, Fischer G, Müller-Wodarg I, Piccioni G, Fouchet T, Gérard JC, Sánchez-Lavega A, Irwin PGJ, Grodent D, Altieri F, Mura A, Drossart P, Kammer J, Giles R, Cazaux S, Jones G, Smirnova M, Lellouch E, Medvedev AS, Moreno R, Rezac L, Coustenis A, Costa M. Jupiter Science Enabled by ESA's Jupiter Icy Moons Explorer. SPACE SCIENCE REVIEWS 2023; 219:53. [PMID: 37744214 PMCID: PMC10511624 DOI: 10.1007/s11214-023-00996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023]
Abstract
ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 μm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
Collapse
Affiliation(s)
- Leigh N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH UK
| | - Thibault Cavalié
- Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | - Davide Grassi
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Ricardo Hueso
- Física Aplicada, Escuela de Ingeniería de Bilbao Universidad del País Vasco UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain
| | - Luisa M. Lara
- Instituto de Astrofísica de Andalucía-CSIC, c/Glorieta de la Astronomía 3, 18008 Granada, Spain
| | - Yohai Kaspi
- Dept. of Earth and Planetray Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Eli Galanti
- Dept. of Earth and Planetray Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | - Marina Galand
- Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ UK
| | - Claire Vallat
- European Space Agency (ESA), ESAC Camino Bajo del Castillo s/n Villafranca del Castillo, 28692 Villanueva de la Cañada (Madrid), Spain
| | - Olivier Witasse
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, Netherlands
| | - Rosario Lorente
- European Space Agency (ESA), ESAC Camino Bajo del Castillo s/n Villafranca del Castillo, 28692 Villanueva de la Cañada (Madrid), Spain
| | - Paul Hartogh
- Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
| | - François Poulet
- Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud, 91405 Orsay Cedex, France
| | - Yves Langevin
- Institut d’Astrophysique Spatiale, CNRS/Université Paris-Sud, 91405 Orsay Cedex, France
| | - Pasquale Palumbo
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - G. Randall Gladstone
- Southwest Research Institute, San Antonio, TX 78228 United States
- University of Texas at San Antonio, San Antonio, TX United States
| | - Kurt D. Retherford
- Southwest Research Institute, San Antonio, TX 78228 United States
- University of Texas at San Antonio, San Antonio, TX United States
| | | | | | - Stas Barabash
- Swedish Institute of Space Physics (IRF), Kiruna, Sweden
| | - Luciano Iess
- Dipartimento di ingegneria meccanica e aerospaziale, Universit á La Sapienza, Roma, Italy
| | - Lorenzo Bruzzone
- Department of Information Engineering and Computer Science, Remote Sensing Laboratory, University of Trento, Via Sommarive 14, Trento, I-38123 Italy
| | - Hauke Hussmann
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany
| | - Leonid I. Gurvits
- Joint Institute for VLBI ERIC, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
- Aerospace Faculty, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands
| | - Ondřej Santolik
- Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Ivana Kolmasova
- Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Georg Fischer
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | | | - Giuseppe Piccioni
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Thierry Fouchet
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | | | - Agustin Sánchez-Lavega
- Física Aplicada, Escuela de Ingeniería de Bilbao Universidad del País Vasco UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain
| | - Patrick G. J. Irwin
- Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Parks Rd, Oxford, OX1 3PU UK
| | - Denis Grodent
- LPAP, STAR Institute, Université de Liège, Liège, Belgium
| | - Francesca Altieri
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Alessandro Mura
- Istituto di Astrofisica e Planetologia Spaziali - Istituto Nazionale di Astrofisica, Via del Fosso del Cavaliere, 100, I-00133 Roma, Italy
| | - Pierre Drossart
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
- Institut d’Astrophysique de Paris, CNRS, Sorbonne Université, 98bis Boulevard Arago, 75014 Paris, France
| | - Josh Kammer
- Southwest Research Institute, San Antonio, TX 78228 United States
| | - Rohini Giles
- Southwest Research Institute, San Antonio, TX 78228 United States
| | - Stéphanie Cazaux
- Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands
| | - Geraint Jones
- UCL Mullard Space Science Laboratory, Hombury St. Mary, Dorking, RH5 6NT UK
- The Centre for Planetary Sciences at UCL/Birkbeck, London, WC1E 6BT UK
| | - Maria Smirnova
- Dept. of Earth and Planetray Science, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Emmanuel Lellouch
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | | | - Raphael Moreno
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | - Ladislav Rezac
- Max-Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
| | - Athena Coustenis
- LESIA, Observatoire de Paris, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 5 place Jules Janssen, 92195 Meudon, France
| | - Marc Costa
- Rhea Group, for European Space Agency, ESAC, Madrid, Spain
| |
Collapse
|
2
|
Dunn WR, Weigt DM, Grodent D, Yao ZH, May D, Feigelman K, Sipos B, Fleming D, McEntee S, Bonfond B, Gladstone GR, Johnson RE, Jackman CM, Guo RL, Branduardi‐Raymont G, Wibisono AD, Kraft RP, Nichols JD, Ray LC. Jupiter's X-Ray and UV Dark Polar Region. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097390. [PMID: 35865009 PMCID: PMC9287093 DOI: 10.1029/2021gl097390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
We present 14 simultaneous Chandra X-ray Observatory (CXO)-Hubble Space Telescope (HST) observations of Jupiter's Northern X-ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X-ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X-ray photons. For all 14 observations, the low level of X-ray emission from the DPR is consistent (within 2-standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X-ray-bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X-ray signature.
Collapse
Affiliation(s)
- W. R. Dunn
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - D. M. Weigt
- School of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
- School of PhysicsTrinity College DublinDublinIreland
| | - D. Grodent
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | - Z. H. Yao
- Key Laboratory of Earth and Planetary PhysicsInstitute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
- College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - D. May
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - K. Feigelman
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - B. Sipos
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - D. Fleming
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - S. McEntee
- School of PhysicsTrinity College DublinDublinIreland
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - B. Bonfond
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | - G. R. Gladstone
- Division of Space Science and EngineeringSouthwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | - R. E. Johnson
- Department of PhysicsAberystwyth UniversityCeredigionUK
| | - C. M. Jackman
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - R. L. Guo
- Laboratory of Optical Astronomy and Solar‐Terrestrial EnvironmentSchool of Space Science and PhysicsInstitute of Space SciencesShandong UniversityWeihaiChina
| | - G. Branduardi‐Raymont
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - A. D. Wibisono
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - R. P. Kraft
- Harvard‐Smithsonian Center for AstrophysicsSmithsonian Astrophysical ObservatoryCambridgeMAUSA
| | - J. D. Nichols
- Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - L. C. Ray
- Department of PhysicsLancaster UniversityLancasterUK
| |
Collapse
|
3
|
Zhang B, Delamere PA, Yao Z, Bonfond B, Lin D, Sorathia KA, Brambles OJ, Lotko W, Garretson JS, Merkin VG, Grodent D, Dunn WR, Lyon JG. How Jupiter's unusual magnetospheric topology structures its aurora. SCIENCE ADVANCES 2021; 7:7/15/eabd1204. [PMID: 33837073 PMCID: PMC8034855 DOI: 10.1126/sciadv.abd1204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/22/2021] [Indexed: 05/24/2023]
Abstract
Jupiter's bright persistent polar aurora and Earth's dark polar region indicate that the planets' magnetospheric topologies are very different. High-resolution global simulations show that the reconnection rate at the interface between the interplanetary and jovian magnetic fields is too slow to generate a magnetically open, Earth-like polar cap on the time scale of planetary rotation, resulting in only a small crescent-shaped region of magnetic flux interconnected with the interplanetary magnetic field. Most of the jovian polar cap is threaded by helical magnetic flux that closes within the planetary interior, extends into the outer magnetosphere, and piles up near its dawnside flank where fast differential plasma rotation pulls the field lines sunward. This unusual magnetic topology provides new insights into Jupiter's distinctive auroral morphology.
Collapse
Affiliation(s)
- Binzheng Zhang
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Peter A Delamere
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Zhonghua Yao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bertrand Bonfond
- LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium
| | - D Lin
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Kareem A Sorathia
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - William Lotko
- High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jeff S Garretson
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - Denis Grodent
- LPAP, Space sciences, Technologies and Astrophysics Research (STAR), Institute Université de Liége (ULiége), Liége, Belgium
| | - William R Dunn
- Mullard Space Science Laboratory, University College London, Dorking, UK
| | - John G Lyon
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
- Gamera Consulting, Hanover, NH, USA
| |
Collapse
|
4
|
Drossart P. H 3+ as an ionospheric sounder of Jupiter and giant planets: an observational perspective. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180404. [PMID: 31378186 PMCID: PMC6710887 DOI: 10.1098/rsta.2018.0404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 06/10/2023]
Abstract
Thirty years of observations of [Formula: see text] on Jupiter have addressed many complex questions about the physics of the ionospheres of the giant planets. Spectroscopy, imaging and imaging spectroscopy in the infrared have allowed investigators to retrieve fundamental parameters of the ionosphere, overcoming the inherent limitations and complexities in radiative transfer, and these results are now introduced as model constraints for upper atmospheric structure and dynamics. This paper will focus on the mid-latitude emissions, which are fainter and less well studied than the auroral regions. A new analysis of VLT/ISAAC spectral imaging observations of Jupiter obtained in 2000 at 3.5 µm is presented and discussed in comparison with previous observations to show the spatial distribution of [Formula: see text] emissions compared with other atmospheric structures. Cylindrical maps of Jupiter in three different selected wavelengths show the spatial variations at different altitudes in the atmosphere, from cloud level up to the ionosphere. Evidence for fluctuations in the [Formula: see text] emissions could be due to the presence of stationary or dynamic processes. If the exact origin of these phenomena remains unidentified, several plausible mechanisms are proposed to explain the observed energy deposition and variability: future observation campaigns should deepen the understanding of these complex phenomena, in order to prepare for the future ESA/JUICE mission. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.
Collapse
|
5
|
Ebert RW, Greathouse TK, Clark G, Allegrini F, Bagenal F, Bolton SJ, Connerney JEP, Gladstone GR, Imai M, Hue V, Kurth WS, Levin S, Louarn P, Mauk BH, McComas DJ, Paranicas C, Szalay JR, Thomsen MF, Valek PW, Wilson RJ. Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. GEOPHYSICAL RESEARCH LETTERS 2019; 46:19-27. [PMID: 30828110 PMCID: PMC6378591 DOI: 10.1029/2018gl081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 05/24/2023]
Abstract
We compare electron and UV observations mapping to the same location in Jupiter's northern polar region, poleward of the main aurora, during Juno perijove 5. Simultaneous peaks in UV brightness and electron energy flux are identified when observations map to the same location at the same time. The downward energy flux during these simultaneous observations was not sufficient to generate the observed UV brightness; the upward energy flux was. We propose that the primary acceleration region is below Juno's altitude, from which the more intense upward electrons originate. For the complete interval, the UV brightness peaked at ~240 kilorayleigh (kR); the downward and upward energy fluxes peaked at 60 and 700 mW/m2, respectively. Increased downward energy fluxes are associated with increased contributions from tens of keV electrons. These observations provide evidence that bidirectional electron beams with broad energy distributions can produce tens to hundreds of kilorayleigh polar UV emissions.
Collapse
Affiliation(s)
- R. W. Ebert
- Southwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | | | - G. Clark
- Johns Hopkins University Applied Physics LabLaurelMDUSA
| | - F. Allegrini
- Southwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | - F. Bagenal
- Laboratory for Atmospheric and Space PhysicsUniversity of Colorado BoulderBoulderCOUSA
| | | | | | - G. R. Gladstone
- Southwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | - M. Imai
- Department of Physics and AstronomyUniversity of IowaIowa CityIAUSA
| | - V. Hue
- Southwest Research InstituteSan AntonioTXUSA
| | - W. S. Kurth
- Department of Physics and AstronomyUniversity of IowaIowa CityIAUSA
| | - S. Levin
- Jet Propulsion LaboratoryPasadenaCAUSA
| | - P. Louarn
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| | - B. H. Mauk
- Johns Hopkins University Applied Physics LabLaurelMDUSA
| | - D. J. McComas
- Southwest Research InstituteSan AntonioTXUSA
- Department of Astrophysical SciencesPrinceton UniversityPrincetonNJUSA
| | - C. Paranicas
- Johns Hopkins University Applied Physics LabLaurelMDUSA
| | - J. R. Szalay
- Department of Astrophysical SciencesPrinceton UniversityPrincetonNJUSA
| | | | - P. W. Valek
- Southwest Research InstituteSan AntonioTXUSA
| | - R. J. Wilson
- Laboratory for Atmospheric and Space PhysicsUniversity of Colorado BoulderBoulderCOUSA
| |
Collapse
|
6
|
Ebert RW, Greathouse TK, Clark G, Allegrini F, Bagenal F, Bolton SJ, Connerney JEP, Gladstone GR, Imai M, Hue V, Kurth WS, Levin S, Louarn P, Mauk BH, McComas DJ, Paranicas C, Szalay JR, Thomsen MF, Valek PW, Wilson RJ. Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. GEOPHYSICAL RESEARCH LETTERS 2019; 46:19-27. [PMID: 30828110 DOI: 10.1029/2019gl084146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 05/24/2023]
Abstract
We compare electron and UV observations mapping to the same location in Jupiter's northern polar region, poleward of the main aurora, during Juno perijove 5. Simultaneous peaks in UV brightness and electron energy flux are identified when observations map to the same location at the same time. The downward energy flux during these simultaneous observations was not sufficient to generate the observed UV brightness; the upward energy flux was. We propose that the primary acceleration region is below Juno's altitude, from which the more intense upward electrons originate. For the complete interval, the UV brightness peaked at ~240 kilorayleigh (kR); the downward and upward energy fluxes peaked at 60 and 700 mW/m2, respectively. Increased downward energy fluxes are associated with increased contributions from tens of keV electrons. These observations provide evidence that bidirectional electron beams with broad energy distributions can produce tens to hundreds of kilorayleigh polar UV emissions.
Collapse
Affiliation(s)
- R W Ebert
- Southwest Research Institute San Antonio TX USA
- Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX USA
| | | | - G Clark
- Johns Hopkins University Applied Physics Lab Laurel MD USA
| | - F Allegrini
- Southwest Research Institute San Antonio TX USA
- Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX USA
| | - F Bagenal
- Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
| | - S J Bolton
- Southwest Research Institute San Antonio TX USA
| | | | - G R Gladstone
- Southwest Research Institute San Antonio TX USA
- Department of Physics and Astronomy University of Texas at San Antonio San Antonio TX USA
| | - M Imai
- Department of Physics and Astronomy University of Iowa Iowa City IA USA
| | - V Hue
- Southwest Research Institute San Antonio TX USA
| | - W S Kurth
- Department of Physics and Astronomy University of Iowa Iowa City IA USA
| | - S Levin
- Jet Propulsion Laboratory Pasadena CA USA
| | - P Louarn
- Institut de Recherche en Astrophysique et Planétologie Toulouse France
| | - B H Mauk
- Johns Hopkins University Applied Physics Lab Laurel MD USA
| | - D J McComas
- Southwest Research Institute San Antonio TX USA
- Department of Astrophysical Sciences Princeton University Princeton NJ USA
| | - C Paranicas
- Johns Hopkins University Applied Physics Lab Laurel MD USA
| | - J R Szalay
- Department of Astrophysical Sciences Princeton University Princeton NJ USA
| | | | - P W Valek
- Southwest Research Institute San Antonio TX USA
| | - R J Wilson
- Laboratory for Atmospheric and Space Physics University of Colorado Boulder Boulder CO USA
| |
Collapse
|
7
|
Discrete and broadband electron acceleration in Jupiter's powerful aurora. Nature 2017; 549:66-69. [PMID: 28880294 DOI: 10.1038/nature23648] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Abstract
The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.
Collapse
|
8
|
Dunn WR, Branduardi-Raymont G, Elsner RF, Vogt MF, Lamy L, Ford PG, Coates AJ, Gladstone GR, Jackman CM, Nichols JD, Rae IJ, Varsani A, Kimura T, Hansen KC, Jasinski JM. The impact of an ICME on the Jovian X-ray aurora. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2016; 121:2274-2307. [PMID: 27867794 PMCID: PMC5111422 DOI: 10.1002/2015ja021888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 06/06/2023]
Abstract
We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) discovered the polar X-ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter's dayside, produced the X-ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 RJ were dominated by emission from precipitating sulfur ions (S7+,…,14+). Emissions mapping to closed field lines between 70 and 120 RJ and to open field lines were generated by a mixture of precipitating oxygen (O7+,8+) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X-ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large-scale dayside reconnection event.
Collapse
Affiliation(s)
- William R Dunn
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK
| | | | - Ronald F Elsner
- ZP12, NASA Marshall Space Flight Center Huntsville Alabama USA
| | - Marissa F Vogt
- Center for Space Physics Boston University Boston Massachusetts USA
| | - Laurent Lamy
- LESIA, Observatoire de Paris, CNRS, UPMC Université Paris Diderot Meudon France
| | - Peter G Ford
- Kavli Institute for Astrophysics and Space Research MIT Cambridge Massachusetts USA
| | - Andrew J Coates
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK
| | - G Randall Gladstone
- Space Science and Engineering Division Southwest Research Institute San Antonio Texas USA
| | - Caitriona M Jackman
- Department of Physics and Astronomy University of Southampton Southampton UK
| | - Jonathan D Nichols
- Department of Physics and Astronomy University of Leicester Leicester UK
| | - I Jonathan Rae
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK
| | - Ali Varsani
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Space Research Institute Austrian Academy of Sciences Graz Austria
| | - Tomoki Kimura
- Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Sagamihara Japan; Nishina Center for Accelerator-Based Science RIKEN Wako Japan
| | - Kenneth C Hansen
- Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor Michigan USA
| | - Jamie M Jasinski
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK; Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
9
|
Nichols JD. Magnetosphere-ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self-consistent current sheet magnetic field model. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011ja016922] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- J. D. Nichols
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| |
Collapse
|
10
|
Radioti A, Grodent D, Gérard JC, Vogt MF, Lystrup M, Bonfond B. Nightside reconnection at Jupiter: Auroral and magnetic field observations from 26 July 1998. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010ja016200] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. Radioti
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - D. Grodent
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - J.-C. Gérard
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - M. F. Vogt
- Department of Earth and Space Sciences; University of California; Los Angeles California USA
| | - M. Lystrup
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| | - B. Bonfond
- Laboratoire de Physique Atmosphérique et Planétaire, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| |
Collapse
|
11
|
Affiliation(s)
- P. A. Delamere
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| | - F. Bagenal
- Laboratory for Atmospheric and Space Physics; University of Colorado at Boulder; Boulder Colorado USA
| |
Collapse
|
12
|
Grodent D, Bonfond B, Radioti A, Gérard JC, Jia X, Nichols JD, Clarke JT. Auroral footprint of Ganymede. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009ja014289] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Denis Grodent
- Institut d'Astrophysique et de Géophysique, Laboratory for Planetary and Atmospheric Physics; Université de Liège; Liège Belgium
| | - Bertrand Bonfond
- Institut d'Astrophysique et de Géophysique, Laboratory for Planetary and Atmospheric Physics; Université de Liège; Liège Belgium
| | - Aikaterini Radioti
- Institut d'Astrophysique et de Géophysique, Laboratory for Planetary and Atmospheric Physics; Université de Liège; Liège Belgium
| | - Jean-Claude Gérard
- Institut d'Astrophysique et de Géophysique, Laboratory for Planetary and Atmospheric Physics; Université de Liège; Liège Belgium
| | - Xianzhe Jia
- Institute of Geophysics and Planetary Physics; University of California; Los Angeles California USA
| | | | - John T. Clarke
- Center for Space Physics; Boston University; Boston Massachusetts USA
| |
Collapse
|
13
|
Clarke JT, Nichols J, Gérard JC, Grodent D, Hansen KC, Kurth W, Gladstone GR, Duval J, Wannawichian S, Bunce E, Cowley SWH, Crary F, Dougherty M, Lamy L, Mitchell D, Pryor W, Retherford K, Stallard T, Zieger B, Zarka P, Cecconi B. Response of Jupiter's and Saturn's auroral activity to the solar wind. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008ja013694] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- J. T. Clarke
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | - J. Nichols
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | | | - D. Grodent
- LPAP; Université de Liège; Liege Belgium
| | - K. C. Hansen
- AOSS Department; University of Michigan; Ann Arbor Michigan USA
| | - W. Kurth
- Department of Physics and Astronomy; University of Iowa; Iowa City Iowa USA
| | | | - J. Duval
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | - S. Wannawichian
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | - E. Bunce
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - S. W. H. Cowley
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - F. Crary
- Southwest Research Institute; San Antonio Texas USA
| | - M. Dougherty
- Blackett Laboratory; Imperial College; London UK
| | - L. Lamy
- LESIA, Observatoire de Paris; UPMC, CNRS, Université Paris Diderot; Meudon France
| | - D. Mitchell
- Johns Hopkins University Applied Physics Laboratory; Laurel Maryland USA
| | - W. Pryor
- Department of Science; Central Arizona College; Coolidge Arizona USA
| | | | - T. Stallard
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - B. Zieger
- AOSS Department; University of Michigan; Ann Arbor Michigan USA
| | - P. Zarka
- LESIA, Observatoire de Paris; UPMC, CNRS, Université Paris Diderot; Meudon France
| | - B. Cecconi
- LESIA, Observatoire de Paris; UPMC, CNRS, Université Paris Diderot; Meudon France
| |
Collapse
|
14
|
Complex structure within Saturn's infrared aurora. Nature 2008; 456:214-7. [PMID: 19005549 DOI: 10.1038/nature07440] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/12/2008] [Indexed: 11/09/2022]
Abstract
The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H(3)(+) infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown.
Collapse
|
15
|
Stallard T, Miller S, Melin H, Lystrup M, Cowley SWH, Bunce EJ, Achilleos N, Dougherty M. Jovian-like aurorae on Saturn. Nature 2008; 453:1083-5. [PMID: 18563160 DOI: 10.1038/nature07077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 04/29/2008] [Indexed: 11/09/2022]
Abstract
Planetary aurorae are formed by energetic charged particles streaming along the planet's magnetic field lines into the upper atmosphere from the surrounding space environment. Earth's main auroral oval is formed through interactions with the solar wind, whereas that at Jupiter is formed through interactions with plasma from the moon Io inside its magnetic field (although other processes form aurorae at both planets). At Saturn, only the main auroral oval has previously been observed and there remains much debate over its origin. Here we report the discovery of a secondary oval at Saturn that is approximately 25 per cent as bright as the main oval, and we show this to be caused by interaction with the middle magnetosphere around the planet. This is a weak equivalent of Jupiter's main oval, its relative dimness being due to the lack of as large a source of ions as Jupiter's volcanic moon Io. This result suggests that differences seen in the auroral emissions from Saturn and Jupiter are due to scaling differences in the conditions at each of these two planets, whereas the underlying formation processes are the same.
Collapse
Affiliation(s)
- Tom Stallard
- Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wannawichian S, Clarke JT, Pontius DH. Interaction evidence between Enceladus' atmosphere and Saturn's magnetosphere. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007ja012899] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Wannawichian
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | - J. T. Clarke
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | - D. H. Pontius
- Physics Department; Birmingham-Southern College; Birmingham Alabama USA
| |
Collapse
|
17
|
Radioti A, Gérard JC, Grodent D, Bonfond B, Krupp N, Woch J. Discontinuity in Jupiter's main auroral oval. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007ja012610] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. Radioti
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Belgium
| | - J.-C. Gérard
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Belgium
| | - D. Grodent
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Belgium
| | - B. Bonfond
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Belgium
| | - N. Krupp
- Max-Planck-Institut für Sonnensystemforschung; Katlenburg-Lindau Germany
| | - J. Woch
- Max-Planck-Institut für Sonnensystemforschung; Katlenburg-Lindau Germany
| |
Collapse
|
18
|
Grodent D, Gérard JC, Radioti A, Bonfond B, Saglam A. Jupiter’s changing auroral location. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007ja012601] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Denis Grodent
- Laboratory for Planetary and Atmospheric Physics; Université de Liège; Belgium
| | - Jean-Claude Gérard
- Laboratory for Planetary and Atmospheric Physics; Université de Liège; Belgium
| | - Aikaterini Radioti
- Laboratory for Planetary and Atmospheric Physics; Université de Liège; Belgium
| | - Bertrand Bonfond
- Laboratory for Planetary and Atmospheric Physics; Université de Liège; Belgium
| | - Adem Saglam
- Laboratory for Planetary and Atmospheric Physics; Université de Liège; Belgium
| |
Collapse
|
19
|
Gladstone GR, Stern SA, Slater DC, Versteeg M, Davis MW, Retherford KD, Young LA, Steffl AJ, Throop H, Parker JW, Weaver HA, Cheng AF, Orton GS, Clarke JT, Nichols JD. Jupiter's Nightside Airglow and Aurora. Science 2007; 318:229-31. [DOI: 10.1126/science.1147613] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- G. Randall Gladstone
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - S. Alan Stern
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - David C. Slater
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Maarten Versteeg
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Michael W. Davis
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Kurt D. Retherford
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Leslie A. Young
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Andrew J. Steffl
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Henry Throop
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Joel Wm. Parker
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Harold A. Weaver
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Andrew F. Cheng
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Glenn S. Orton
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - John T. Clarke
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| | - Jonathan D. Nichols
- Southwest Research Institute, San Antonio, TX 78238, USA
- NASA Headquarters, Washington, DC 20546, USA
- Southwest Research Institute, Boulder, CO 80302, USA
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
- Jet Propulsion Laboratory, Pasadena, CA 91109, USA
| |
Collapse
|
20
|
Nichols JD, Bunce EJ, Clarke JT, Cowley SWH, Gérard JC, Grodent D, Pryor WR. Response of Jupiter's UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006ja012005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. D. Nichols
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - E. J. Bunce
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - J. T. Clarke
- Center for Space Physics; Boston University; Boston Massachusetts USA
| | - S. W. H. Cowley
- Department of Physics and Astronomy; University of Leicester; Leicester UK
| | - J.-C. Gérard
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - D. Grodent
- LPAP, Institut d'Astrophysique et de Géophysique; Université de Liège; Liège Belgium
| | - W. R. Pryor
- Central Arizona College; Coolidge Arizona USA
| |
Collapse
|
21
|
Gustin J, Cowley SWH, Gérard JC, Gladstone GR, Grodent D, Clarke JT. Characteristics of Jovian morning bright FUV aurora from Hubble Space Telescope/Space Telescope Imaging Spectrograph imaging and spectral observations. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006ja011730] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Kronberg EA. Mass release at Jupiter: Substorm-like processes in the Jovian magnetotail. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004ja010777] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Elsner RF. Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter's aurora. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004ja010717] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Cowley SWH, Alexeev II, Belenkaya ES, Bunce EJ, Cottis CE, Kalegaev VV, Nichols JD, Prangé R, Wilson FJ. A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter's polar ionosphere. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005ja011237] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Tomás AT. Energetic electrons in the inner part of the Jovian magnetosphere and their relation to auroral emissions. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004ja010405] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Gérard JC. Characteristics of Saturn's FUV aurora observed with the Space Telescope Imaging Spectrograph. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004ja010513] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Jackman CM. Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn's magnetospheric dynamics. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2004ja010614] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Grodent D. A possible auroral signature of a magnetotail reconnection process on Jupiter. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003ja010341] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Gustin J. Energy-flux relationship in the FUV Jovian aurora deduced from HST-STIS spectral observations. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003ja010365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
|
31
|
|