1
|
Dunn WR, Weigt DM, Grodent D, Yao ZH, May D, Feigelman K, Sipos B, Fleming D, McEntee S, Bonfond B, Gladstone GR, Johnson RE, Jackman CM, Guo RL, Branduardi‐Raymont G, Wibisono AD, Kraft RP, Nichols JD, Ray LC. Jupiter's X-Ray and UV Dark Polar Region. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097390. [PMID: 35865009 PMCID: PMC9287093 DOI: 10.1029/2021gl097390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
We present 14 simultaneous Chandra X-ray Observatory (CXO)-Hubble Space Telescope (HST) observations of Jupiter's Northern X-ray and ultraviolet (UV) aurorae from 2016 to 2019. Despite the variety of dynamic UV and X-ray auroral structures, one region is conspicuous by its persistent absence of emission: the dark polar region (DPR). Previous HST observations have shown that very little UV emission is produced by the DPR. We find that the DPR also produces very few X-ray photons. For all 14 observations, the low level of X-ray emission from the DPR is consistent (within 2-standard deviations) with scattered solar emission and/or photons spread by Chandra's Point Spread Function from known X-ray-bright regions. We therefore conclude that for these 14 observations the DPR produced no statistically significant detectable X-ray signature.
Collapse
Affiliation(s)
- W. R. Dunn
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - D. M. Weigt
- School of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
- School of PhysicsTrinity College DublinDublinIreland
| | - D. Grodent
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | - Z. H. Yao
- Key Laboratory of Earth and Planetary PhysicsInstitute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
- College of Earth and Planetary SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - D. May
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - K. Feigelman
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - B. Sipos
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - D. Fleming
- Department of ScienceSt. Gilgen International SchoolSt. GilgenAustria
| | - S. McEntee
- School of PhysicsTrinity College DublinDublinIreland
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - B. Bonfond
- Laboratoire de Physique Atmosphérique et PlanétaireSTAR InstituteUniversité de LiègeLiègeBelgium
| | - G. R. Gladstone
- Division of Space Science and EngineeringSouthwest Research InstituteSan AntonioTXUSA
- Department of Physics and AstronomyUniversity of Texas at San AntonioSan AntonioTXUSA
| | - R. E. Johnson
- Department of PhysicsAberystwyth UniversityCeredigionUK
| | - C. M. Jackman
- School of Cosmic PhysicsDIAS Dunsink ObservatoryDublin Institute for Advanced StudiesDublinIreland
| | - R. L. Guo
- Laboratory of Optical Astronomy and Solar‐Terrestrial EnvironmentSchool of Space Science and PhysicsInstitute of Space SciencesShandong UniversityWeihaiChina
| | - G. Branduardi‐Raymont
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - A. D. Wibisono
- Mullard Space Science LaboratoryUniversity College LondonDorkingUK
- The Centre for Planetary Science at UCL/BirkbeckLondonUK
| | - R. P. Kraft
- Harvard‐Smithsonian Center for AstrophysicsSmithsonian Astrophysical ObservatoryCambridgeMAUSA
| | - J. D. Nichols
- Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
| | - L. C. Ray
- Department of PhysicsLancaster UniversityLancasterUK
| |
Collapse
|
2
|
Yao Z, Dunn WR, Woodfield EE, Clark G, Mauk BH, Ebert RW, Grodent D, Bonfond B, Pan D, Rae IJ, Ni B, Guo R, Branduardi-Raymont G, Wibisono AD, Rodriguez P, Kotsiaros S, Ness JU, Allegrini F, Kurth WS, Gladstone GR, Kraft R, Sulaiman AH, Manners H, Desai RT, Bolton SJ. Revealing the source of Jupiter's x-ray auroral flares. SCIENCE ADVANCES 2021; 7:7/28/eabf0851. [PMID: 34244139 PMCID: PMC8270495 DOI: 10.1126/sciadv.abf0851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Jupiter's rapidly rotating, strong magnetic field provides a natural laboratory that is key to understanding the dynamics of high-energy plasmas. Spectacular auroral x-ray flares are diagnostic of the most energetic processes governing magnetospheres but seemingly unique to Jupiter. Since their discovery 40 years ago, the processes that produce Jupiter's x-ray flares have remained unknown. Here, we report simultaneous in situ satellite and space-based telescope observations that reveal the processes that produce Jupiter's x-ray flares, showing surprising similarities to terrestrial ion aurora. Planetary-scale electromagnetic waves are observed to modulate electromagnetic ion cyclotron waves, periodically causing heavy ions to precipitate and produce Jupiter's x-ray pulses. Our findings show that ion aurorae share common mechanisms across planetary systems, despite temporal, spatial, and energetic scales varying by orders of magnitude.
Collapse
Affiliation(s)
- Zhonghua Yao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - William R Dunn
- Mullard Space Science Laboratory, University College London, Dorking, UK
- Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, MA, USA
- The Centre for Planetary Science at UCL/Birkbeck, Gower Street, London WC1E 6BT, UK
| | | | - George Clark
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Barry H Mauk
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Robert W Ebert
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Denis Grodent
- Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, Liège, Belgium
| | - Bertrand Bonfond
- Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, Liège, Belgium
| | - Dongxiao Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Binbin Ni
- Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan, Hubei, China
- CAS Center for Excellence in Comparative Planetology, Hefei, Anhui, China
| | - Ruilong Guo
- Laboratoire de Physique Atmosphérique et Planétaire, STAR institute, Université de Liège, Liège, Belgium
| | | | - Affelia D Wibisono
- Mullard Space Science Laboratory, University College London, Dorking, UK
- The Centre for Planetary Science at UCL/Birkbeck, Gower Street, London WC1E 6BT, UK
| | - Pedro Rodriguez
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
| | | | - Jan-Uwe Ness
- European Space Agency (ESA), European Space Astronomy Centre (ESAC), Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
| | - Frederic Allegrini
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - William S Kurth
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - G Randall Gladstone
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ralph Kraft
- Harvard-Smithsonian Center for Astrophysics, Smithsonian Astrophysical Observatory, Cambridge, MA, USA
| | - Ali H Sulaiman
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA
| | - Harry Manners
- Blackett Laboratory, Imperial College London, London, UK
| | | | - Scott J Bolton
- Space Science and Engineering Division, Southwest Research Institute, San Antonio, TX, USA
| |
Collapse
|
3
|
Dunn WR, Branduardi-Raymont G, Elsner RF, Vogt MF, Lamy L, Ford PG, Coates AJ, Gladstone GR, Jackman CM, Nichols JD, Rae IJ, Varsani A, Kimura T, Hansen KC, Jasinski JM. The impact of an ICME on the Jovian X-ray aurora. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2016; 121:2274-2307. [PMID: 27867794 PMCID: PMC5111422 DOI: 10.1002/2015ja021888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 06/06/2023]
Abstract
We report the first Jupiter X-ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of ∼8 enhancement in Jupiter's X-ray aurora. Within 1.5 h of this enhancement, intense bursts of non-Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another X-ray observation two days later. Gladstone et al. (2002) discovered the polar X-ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter's dayside, produced the X-ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 RJ were dominated by emission from precipitating sulfur ions (S7+,…,14+). Emissions mapping to closed field lines between 70 and 120 RJ and to open field lines were generated by a mixture of precipitating oxygen (O7+,8+) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the X-ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a large-scale dayside reconnection event.
Collapse
Affiliation(s)
- William R Dunn
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK
| | | | - Ronald F Elsner
- ZP12, NASA Marshall Space Flight Center Huntsville Alabama USA
| | - Marissa F Vogt
- Center for Space Physics Boston University Boston Massachusetts USA
| | - Laurent Lamy
- LESIA, Observatoire de Paris, CNRS, UPMC Université Paris Diderot Meudon France
| | - Peter G Ford
- Kavli Institute for Astrophysics and Space Research MIT Cambridge Massachusetts USA
| | - Andrew J Coates
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK
| | - G Randall Gladstone
- Space Science and Engineering Division Southwest Research Institute San Antonio Texas USA
| | - Caitriona M Jackman
- Department of Physics and Astronomy University of Southampton Southampton UK
| | - Jonathan D Nichols
- Department of Physics and Astronomy University of Leicester Leicester UK
| | - I Jonathan Rae
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK
| | - Ali Varsani
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Space Research Institute Austrian Academy of Sciences Graz Austria
| | - Tomoki Kimura
- Institute of Space and Astronautical Science Japan Aerospace Exploration Agency Sagamihara Japan; Nishina Center for Accelerator-Based Science RIKEN Wako Japan
| | - Kenneth C Hansen
- Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor Michigan USA
| | - Jamie M Jasinski
- Mullard Space Science Laboratory, Department of Space and Climate Physics University College London Dorking UK; Centre for Planetary Science UCL/Birkbeck London UK; Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor Michigan USA
| |
Collapse
|