1
|
Morard G, Hernandez JA, Pege C, Nagy C, Libon L, Lacquement A, Sokaras D, Lee HJ, Galtier E, Heimann P, Cunningham E, Glenzer SH, Vinci T, Prescher C, Boccato S, Chantel J, Merkel S, Zhang Y, Yang H, Wei X, Pandolfi S, Mao WL, Gleason AE, Shim SH, Alonso-Mori R, Ravasio A. Structural evolution of liquid silicates under conditions in Super-Earth interiors. Nat Commun 2024; 15:8483. [PMID: 39362851 PMCID: PMC11452200 DOI: 10.1038/s41467-024-51796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/15/2024] [Indexed: 10/05/2024] Open
Abstract
Molten silicates at depth are crucial for planetary evolution, yet their local structure and physical properties under extreme conditions remain elusive due to experimental challenges. In this study, we utilize in situ X-ray diffraction (XRD) at the Matter in Extreme Conditions (MEC) end-station of the Linear Coherent Linac Source (LCLS) at SLAC National Accelerator Laboratory to investigate liquid silicates. Using an ultrabright X-ray source and a high-power optical laser, we probed the local atomic arrangement of shock-compressed liquid (Mg,Fe)SiO3 with varying Fe content, at pressures from 81(9) to 385(40) GPa. We compared these findings to ab initio molecular dynamics simulations under similar conditions. Results indicate continuous densification of the O-O and Mg-Si networks beyond Earth's interior pressure range, potentially altering melt properties at extreme conditions. This could have significant implications for early planetary evolution, leading to notable differences in differentiation processes between smaller rocky planets, such as Earth and Venus, and super-Earths, which are exoplanets with masses nearly three times that of Earth.
Collapse
Affiliation(s)
- Guillaume Morard
- ISTerre, Université Grenoble Alpes, CNRS, Grenoble, France.
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France.
| | | | - Clara Pege
- ISTerre, Université Grenoble Alpes, CNRS, Grenoble, France
| | - Charlotte Nagy
- ISTerre, Université Grenoble Alpes, CNRS, Grenoble, France
| | - Lélia Libon
- ISTerre, Université Grenoble Alpes, CNRS, Grenoble, France
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | | | | | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philip Heimann
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | - Tommaso Vinci
- LULI, Ecole Polytechnique, Sorbonne Université, Palaiseau, France
| | | | - Silvia Boccato
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Julien Chantel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille, France
| | - Sébastien Merkel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, Lille, France
| | - Yanyao Zhang
- Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Hong Yang
- Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Xuehui Wei
- School of Earth and Space Exploration, Arizona State University, Tempe, USA
| | - Silvia Pandolfi
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Wendy L Mao
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Arianna E Gleason
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Earth and Planetary Sciences, Stanford University, Stanford, CA, USA
| | - Sang Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, USA
| | | | | |
Collapse
|
2
|
Shim SH, Ko B, Sokaras D, Nagler B, Lee HJ, Galtier E, Glenzer S, Granados E, Vinci T, Fiquet G, Dolinschi J, Tappan J, Kulka B, Mao WL, Morard G, Ravasio A, Gleason A, Alonso-Mori R. Ultrafast x-ray detection of low-spin iron in molten silicate under deep planetary interior conditions. SCIENCE ADVANCES 2023; 9:eadi6153. [PMID: 37862409 PMCID: PMC10588943 DOI: 10.1126/sciadv.adi6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.
Collapse
Affiliation(s)
- Sang-Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - He Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Siegfried Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Tommaso Vinci
- Laboratoire pour l’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - Guillaume Fiquet
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d’Histoire Naturelle, UMR CNRS 7590, 4 Place Jussieu, 75005 Paris, France
| | - Jonathan Dolinschi
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Jackie Tappan
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Britany Kulka
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy L. Mao
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford CA 94305, USA
| | - Guillaume Morard
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d’Histoire Naturelle, UMR CNRS 7590, 4 Place Jussieu, 75005 Paris, France
- Université Grenoble Alpes, Universé Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Alessandra Ravasio
- Laboratoire pour l’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - Arianna Gleason
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford CA 94305, USA
| | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| |
Collapse
|
3
|
Kobsch A, Caracas R. The Critical Point and the Supercritical State of Alkali Feldspars: Implications for the Behavior of the Crust During Impacts. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2020; 125:e2020JE006412. [PMID: 33133994 PMCID: PMC7583489 DOI: 10.1029/2020je006412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The position of the vapor-liquid dome and of the critical point determine the evolution of the outermost parts of the protolunar disk during cooling and condensation after the Giant Impact. The parts of the disk in supercritical or liquid state evolve as a single thermodynamic phase; when the thermal trajectory of the disk reaches the liquid-vapor dome, gas and melt separate leading to heterogeneous convection and phase separation due to friction. Different layers of the proto-Earth behaved differently during the Giant Impact depending on their constituent materials and initial thermodynamic conditions. Here we use first-principles molecular dynamics to determine the position of the critical point for NaAlSi3O8 and KAlSi3O8 feldspars, major minerals of the Earth and Moon crusts. The variations of the pressure calculated at various volumes along isotherms yield the position of the critical points: 0.5-0.8 g cm-3 and 5500-6000 K range for the Na-feldspar, 0.5-0.9 g cm-3 and 5000-5500 K range for the K-feldspar. The simulations suggest that the vaporization is incongruent, with a degassing of O2 starting at 4000 K and gas component made mostly of free Na and K cations, O2, SiO and SiO2 species for densities below 1.5 g cm-3. The Hugoniot equations of state imply that low-velocity impactors (<8.3 km s-1) would at most melt a cold feldspathic crust, whereas large impacts in molten crust would see temperatures raise up to 30000 K.
Collapse
Affiliation(s)
- Anaïs Kobsch
- CNRS, École Normale Supérieure de Lyon, Laboratoire de Géologie de LyonLyonFrance
| | - Razvan Caracas
- CNRS, École Normale Supérieure de Lyon, Laboratoire de Géologie de LyonLyonFrance
- The Centre for Earth Evolution and Dynamics (CEED)University of OsloOsloNorway
| |
Collapse
|
4
|
Morard G, Hernandez JA, Guarguaglini M, Bolis R, Benuzzi-Mounaix A, Vinci T, Fiquet G, Baron MA, Shim SH, Ko B, Gleason AE, Mao WL, Alonso-Mori R, Lee HJ, Nagler B, Galtier E, Sokaras D, Glenzer SH, Andrault D, Garbarino G, Mezouar M, Schuster AK, Ravasio A. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proc Natl Acad Sci U S A 2020; 117:11981-11986. [PMID: 32414927 PMCID: PMC7275726 DOI: 10.1073/pnas.1920470117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.
Collapse
Affiliation(s)
- Guillaume Morard
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France;
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de L'aménagement et des Réseaux, ISTerre, 38000 Grenoble, France
| | - Jean-Alexis Hernandez
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
| | - Marco Guarguaglini
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Riccardo Bolis
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Alessandra Benuzzi-Mounaix
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Tommaso Vinci
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Guillaume Fiquet
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Marzena A Baron
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Sang Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Arianna E Gleason
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Wendy L Mao
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
| | | | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | | | | | - Denis Andrault
- Université Clermont Auvergne, CNRS, Institut de Recherche pour le Développement, Observatoire Physique du Globe de Clermont-Ferrand, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | | | - Mohamed Mezouar
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anja K Schuster
- Helmholtz-Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
| | - Alessandra Ravasio
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| |
Collapse
|
5
|
Lin W, Murillo MS, Feng Y. Universal relationship of compression shocks in two-dimensional Yukawa systems. Phys Rev E 2020; 101:013203. [PMID: 32069524 DOI: 10.1103/physreve.101.013203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Using molecular dynamical simulations, compressional shocks in two-dimensional (2D) dusty plasmas are quantitatively investigated under various conditions. A universal relationship between the thermal and the drift velocities after shocks is discovered in 2D Yukawa systems. Using the equation of state of 2D Yukawa liquids, and the obtained pressure from the Rankine-Hugoniot relation, an analytical relation between the thermal and the drift velocities is derived, which well agrees with the discovered universal relationship for various conditions.
Collapse
Affiliation(s)
- Wei Lin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
6
|
Electrical conductivity and magnetic dynamos in magma oceans of Super-Earths. Nat Commun 2018; 9:3883. [PMID: 30250296 PMCID: PMC6155165 DOI: 10.1038/s41467-018-06432-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
Super-Earths are extremely common among the numerous exoplanets that have been discovered. The high pressures and temperatures in their interiors are likely to lead to long-lived magma oceans. If their electrical conductivity is sufficiently high, the mantles of Super-Earth would generate their own magnetic fields. With ab initio simulations, we show that upon melting, the behavior of typical mantle silicates changes from semi-conducting to semi-metallic. The electrical conductivity increases and the optical properties are substantially modified. Melting could thus be detected with high-precision reflectivity measurements during the short time scales of shock experiments. We estimate the electrical conductivity of mantle silicates to be of the order of 100 Ω−1 cm−1, which implies that a magnetic dynamo process would develop in the magma oceans of Super-Earths if their convective velocities have typical values of 1 mm/s or higher. We predict exoplanets with rotation periods longer than 2 days to have multipolar magnetic fields. With the discovery of large rocky exoplanets called Super-Earths, questions have arisen regarding the properties of their interiors and their ability to produce a magnetic field. Here, the authors show that under high pressure, molten silicates are semi-metallic and that magma oceans would host a dynamo process.
Collapse
|
7
|
Li M, Zhang S, Zhang H, Zhang G, Wang F, Zhao J, Sun C, Jeanloz R. Continuous Sound Velocity Measurements along the Shock Hugoniot Curve of Quartz. PHYSICAL REVIEW LETTERS 2018; 120:215703. [PMID: 29883175 DOI: 10.1103/physrevlett.120.215703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Indexed: 06/08/2023]
Abstract
We report continuous measurements of the sound velocity along the principal Hugoniot curve of α quartz between 0.25 and 1.45 TPa, as determined from lateral release waves intersecting the shock front as a function of time in decaying-shock experiments. The measured sound velocities are lower than predicted by prior models, based on the properties of stishovite at densities below ∼7 g/cm^{3}, but agree with density functional theory molecular dynamics calculations and an empirical wide-regime equation of state presented here. The Grüneisen parameter calculated from the sound velocity decreases from γ∼1.3 at 0.25 TPa to 0.66 at 1.45 TPa. In combination with evidence for increased (configurational) specific heat and decreased bulk modulus, the values of γ suggest a high thermal expansion coefficient at ∼0.25-0.65 TPa, where SiO_{2} is thought to be a bonded liquid. From our measurements, dissociation of the molecular bonds persists to ∼0.65-1.0 TPa, consistent with estimates by other methods. At higher densities, the sound velocity is close to predictions from previous models, and the Grüneisen parameter approaches the ideal gas value.
Collapse
Affiliation(s)
- Mu Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
- Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Shuai Zhang
- Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Hongping Zhang
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Gongmu Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - Feng Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Jianheng Zhao
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Chengwei Sun
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Raymond Jeanloz
- Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Tschauner O, Ma C, Beckett JR, Prescher C, Prakapenka VB, Rossman GR. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 2014; 346:1100-2. [DOI: 10.1126/science.1259369] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Oliver Tschauner
- Department of Geoscience and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, NV 89134, USA
| | - Chi Ma
- Division of Geology and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - John R. Beckett
- Division of Geology and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Clemens Prescher
- Center of Advanced Radiation Sources, University of Chicago, Chicago, IL 60632, USA
| | - Vitali B. Prakapenka
- Center of Advanced Radiation Sources, University of Chicago, Chicago, IL 60632, USA
| | - George R. Rossman
- Division of Geology and Planetary Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
9
|
Kraus RG, Stewart ST, Swift DC, Bolme CA, Smith RF, Hamel S, Hammel BD, Spaulding DK, Hicks DG, Eggert JH, Collins GW. Shock vaporization of silica and the thermodynamics of planetary impact events. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004082] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Kurosawa K, Kadono T, Sugita S, Shigemori K, Sakaiya T, Hironaka Y, Ozaki N, Shiroshita A, Cho Y, Tachibana S, Vinci T, Ohno S, Kodama R, Matsui T. Shock-induced silicate vaporization: The role of electrons. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je004031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Spaulding DK, McWilliams RS, Jeanloz R, Eggert JH, Celliers PM, Hicks DG, Collins GW, Smith RF. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions. PHYSICAL REVIEW LETTERS 2012; 108:065701. [PMID: 22401087 DOI: 10.1103/physrevlett.108.065701] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Indexed: 05/31/2023]
Abstract
Laser-driven shock compression experiments reveal the presence of a phase transition in MgSiO(3) over the pressure-temperature range 300-400 GPa and 10 000-16 000 K, with a positive Clapeyron slope and a volume change of ∼6.3 (±2.0) percent. The observations are most readily interpreted as an abrupt liquid-liquid transition in a silicate composition representative of terrestrial planetary mantles, implying potentially significant consequences for the thermal-chemical evolution of extrasolar planetary interiors. In addition, the present results extend the Hugoniot equation of state of MgSiO(3) single crystal and glass to 950 GPa.
Collapse
Affiliation(s)
- D K Spaulding
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720-4767, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Mosenfelder JL, Asimow PD, Frost DJ, Rubie DC, Ahrens TJ. The MgSiO3system at high pressure: Thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jb005900] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jed L. Mosenfelder
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - Paul D. Asimow
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - Daniel J. Frost
- Bayerisches Geoinstitut; Universität Bayreuth; Bayreuth Germany
| | - David C. Rubie
- Bayerisches Geoinstitut; Universität Bayreuth; Bayreuth Germany
| | - Thomas J. Ahrens
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
- Lindhurst Laboratory of Experimental Geophysics, Seismological Laboratory; California Institute of Technology; Pasadena California USA
| |
Collapse
|
13
|
Mosenfelder JL, Asimow PD, Ahrens TJ. Thermodynamic properties of Mg2SiO4liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jb004364] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Luo SN, Strachan A, Swift DC. Vibrational density of states and Lindemann melting law. J Chem Phys 2005; 122:194709. [PMID: 16161608 DOI: 10.1063/1.1902948] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examine the Lindemann melting law at different pressures using the vibrational density of states (DOS), equilibrium melting curve, and Lindemann parameter delta(L) (fractional root-mean-squared displacement, rmsd, at equilibrium melting) calculated independently from molecular dynamics simulations of the Lennard-Jones system. The DOS is obtained using spectra analysis of atomic velocities and accounts for anharmonicity. The increase of delta(L) with pressure is non-negligible: delta(L) is about 0.116 and 0.145 at ambient and extreme pressures, respectively. If the component of rmsd normal to a reflecting plane as in the Debye-Waller-factor-type measurements using x rays is adopted for delta(L), these values are about 0.067 (+/-0.002) and 0.084 (+/-0.003), and are comparable with experimental and calculated values for face-centered-cubic elements. We find that the Lindemann relation holds accurately at ambient and high pressures. The non-negligible pressure dependence of delta(L) suggests that caution should be exerted in applying the Lindemann law to obtaining the high pressure melting curve anchored at ambient pressure.
Collapse
Affiliation(s)
- Sheng-Nian Luo
- P-24 Plasma Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|