1
|
Noto D, Letelier JA, Ulloa HN. Plume-scale confinement on thermal convection. Proc Natl Acad Sci U S A 2024; 121:e2403699121. [PMID: 38954544 PMCID: PMC11252973 DOI: 10.1073/pnas.2403699121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Despite the ubiquity of thermal convection in nature and artificial systems, we still lack a unified formulation that integrates the system's geometry, fluid properties, and thermal forcing to characterize the transition from free to confined convective regimes. The latter is broadly relevant to understanding how convection transports energy and drives mixing across a wide range of environments, such as planetary atmospheres/oceans and hydrothermal flows through fractures, as well as engineering heatsinks and microfluidics for the control of mass and heat fluxes. Performing laboratory experiments in Hele-Shaw geometries, we find multiple transitions that are identified as remarkable shifts in flow structures and heat transport scaling, underpinning previous numerical studies. To unveil the mechanisms of the geometrically controlled transition, we focus on the smallest structure of convection, posing the following question: How free is a thermal plume in a closed system? We address this problem by proposing the degree of confinement [Formula: see text]-the ratio of the thermal plume's thickness in an unbounded domain to the lateral extent of the system-as a universal metric encapsulating all the physical parameters. Here, we characterize four convective regimes different in flow dimensionality and time dependency and demonstrate that the transitions across the regimes are well tied with [Formula: see text]. The introduced metric [Formula: see text] offers a unified characterization of convection in closed systems from the plume's standpoint.
Collapse
Affiliation(s)
- Daisuke Noto
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA19104
| | - Juvenal A. Letelier
- Departamento de Ingeniería Civil, Universidad de Chile, SantiagoRM8370449, Chile
| | - Hugo N. Ulloa
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
2
|
McClain CR, Bryant SR, Hanks G, Bowles MW. Extremophiles in Earth's Deep Seas: A View Toward Life in Exo-Oceans. ASTROBIOLOGY 2022; 22:1009-1028. [PMID: 35549348 DOI: 10.1089/ast.2021.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Humanity's search for extraterrestrial life is a modern manifestation of the exploratory and curious nature that has led us through millennia of scientific discoveries. With the ongoing exploration of extraterrestrial bodies, the potential for discovery of extraterrestrial life has expanded. We may better inform this search through an understanding of how life persists and flourishes on Earth in a myriad of environmental extremes. A significant proportion of our knowledge of extremophiles on Earth comes from studies on deep ocean life. Here, we review and synthesize the range of environmental extremes observed in the deep sea, the life that persists in these extreme conditions, and the biological adaptations utilized by these remarkable life-forms. We also review confirmed and predicted extraterrestrial oceans in our solar system and propose deep-sea sites that may serve as planetary field analog environments. We show that the clever ingenuity of evolution under deep-sea conditions suggests that the plausibility of extraterrestrial life is much greater than previously thought.
Collapse
Affiliation(s)
- Craig R McClain
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - S River Bryant
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Granger Hanks
- Louisiana Universities Marine Consortium, Chauvin, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | | |
Collapse
|
3
|
Vance SD, Barge LM, Cardoso SSS, Cartwright JHE. Self-Assembling Ice Membranes on Europa: Brinicle Properties, Field Examples, and Possible Energetic Systems in Icy Ocean Worlds. ASTROBIOLOGY 2019; 19:685-695. [PMID: 30964322 DOI: 10.1089/ast.2018.1826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brinicles are self-assembling tubular ice membrane structures, centimeters to meters in length, found beneath sea ice in the polar regions of Earth. We discuss how the properties of brinicles make them of possible importance for chemistry in cold environments-including that of life's emergence-and we consider their formation in icy ocean worlds. We argue that the non-ice composition of the ice on Europa and Enceladus will vary spatially due to thermodynamic and mechanical properties that serve to separate and fractionate brines and solid materials. The specifics of the composition and dynamics of both the ice and the ocean in these worlds remain poorly constrained. We demonstrate through calculations using FREZCHEM that sulfate likely fractionates out of accreting ice in Europa and Enceladus, and thus that an exogenous origin of sulfate observed on Europa's surface need not preclude additional endogenous sulfate in Europa's ocean. We suggest that, like hydrothermal vents on Earth, brinicles in icy ocean worlds constitute ideal places where ecosystems of organisms might be found.
Collapse
Affiliation(s)
- Steven D Vance
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- 1 NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Silvana S S Cardoso
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- 3 Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Granada, Spain
- 4 Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| |
Collapse
|
4
|
Creamer JS, Mora MF, Willis PA. Stability of reagents used for chiral amino acid analysis during spaceflight missions in high‐radiation environments. Electrophoresis 2018; 39:2864-2871. [DOI: 10.1002/elps.201800274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jessica S. Creamer
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | - Maria F. Mora
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | - Peter A. Willis
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| |
Collapse
|
5
|
Russell MJ, Murray AE, Hand KP. The Possible Emergence of Life and Differentiation of a Shallow Biosphere on Irradiated Icy Worlds: The Example of Europa. ASTROBIOLOGY 2017; 17:1265-1273. [PMID: 29016193 PMCID: PMC5729856 DOI: 10.1089/ast.2016.1600] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/28/2017] [Indexed: 05/17/2023]
Abstract
Irradiated ice-covered ocean worlds with rocky mafic mantles may provide the conditions needed to drive the emergence and maintenance of life. Alkaline hydrothermal springs-relieving the geophysical, thermal, and chemical disequilibria between oceans and tidally stressed crusts-could generate inorganic barriers to the otherwise uncontrolled and kinetically disfavored oxidation of hydrothermal hydrogen and methane. Ionic gradients imposed across these inorganic barriers, comprising iron oxyhydroxides and sulfides, could drive the hydrogenation of carbon dioxide and the oxidation of methane through thermodynamically favorable metabolic pathways leading to early life-forms. In such chemostatic environments, fuels may eventually outweigh oxidants. Ice-covered oceans are primarily heated from below, creating convection that could transport putative microbial cells and cellular cooperatives upward to congregate beneath an ice shell, potentially giving rise to a highly focused shallow biosphere. It is here where electron acceptors, ultimately derived from the irradiated surface, could be delivered to such life-forms through exchange with the icy surface. Such zones would act as "electron disposal units" for the biosphere, and occupants might be transferred toward the surface by buoyant diapirs and even entrained into plumes. Key Words: Biofilms-Europa-Extraterrestrial life-Hydrothermal systems. Astrobiology 17, 1265-1273.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Alison E. Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada
| | - Kevin P. Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
6
|
Russell MJ, Nitschke W. Methane: Fuel or Exhaust at the Emergence of Life? ASTROBIOLOGY 2017; 17:1053-1066. [PMID: 28949766 PMCID: PMC5655419 DOI: 10.1089/ast.2016.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key Words: Green rust-Methanotrophy-Nitrate reduction-Emergence of life. Astrobiology 17, 1053-1066.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Wolfgang Nitschke
- CNRS/Aix-Marseille University, BIP UMR 7281, IMM FR 3479, Marseille, France
| |
Collapse
|
7
|
Barge LM, White LM. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds. ASTROBIOLOGY 2017; 17:820-833. [PMID: 28836818 DOI: 10.1089/ast.2016.1633] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Lauren M White
- NASA Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| |
Collapse
|
8
|
|
9
|
Noell AC, Ely T, Bolser DK, Darrach H, Hodyss R, Johnson PV, Hein JD, Ponce A. Spectroscopy and viability of Bacillus subtilis spores after ultraviolet irradiation: implications for the detection of potential bacterial life on Europa. ASTROBIOLOGY 2015; 15:20-31. [PMID: 25590531 DOI: 10.1089/ast.2014.1169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One of the most habitable environments in the Solar System outside of Earth may exist underneath the ice on Europa. In the near future, our best chance to look for chemical signatures of a habitable environment (or life itself) will likely be at the inhospitable icy surface. Therefore, it is important to understand the ability of organic signatures of life and life itself to persist under simulated europan surface conditions. Toward that end, this work examined the UV photolysis of Bacillus subtilis spores and their chemical marker dipicolinic acid (DPA) at temperatures and pressures relevant to Europa. In addition, inactivation curves for the spores at 100 K, 100 K covered in one micron of ice, and 298 K were measured to determine the probability for spore survival at the surface. Fourier transform infrared spectra of irradiated DPA showed a loss of carboxyl groups to CO2 as expected but unexpectedly showed significant opening of the heterocyclic ring, even for wavelengths>200 nm. Both DPA and B. subtilis spores showed identical unknown spectral bands of photoproducts after irradiation, further highlighting the importance of DPA in the photochemistry of spores. Spore survival was enhanced at 100 K by ∼5× relative to 298 K, but 99.9% of spores were still inactivated after the equivalent of ∼25 h of exposure on the europan surface.
Collapse
Affiliation(s)
- Aaron C Noell
- NASA Astrobiology Institute and Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Pauer M, Musiol S, Breuer D. Gravity signals on Europa from silicate shell density variations. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Billings L, Cameron V, Claire M, Dick GJ, Domagal-Goldman SD, Javaux EJ, Johnson OJ, Laws C, Race MS, Rask J, Rummel JD, Schelble RT, Vance S. The astrobiology primer: an outline of general knowledge--version 1, 2006. ASTROBIOLOGY 2006; 6:735-813. [PMID: 17067259 DOI: 10.1089/ast.2006.6.735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field.
Collapse
|
12
|
Pierrehumbert RT. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 2004; 429:646-9. [PMID: 15190348 DOI: 10.1038/nature02640] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 05/07/2004] [Indexed: 11/09/2022]
Abstract
The possibility that the Earth suffered episodes of global glaciation as recently as the Neoproterozoic period, between about 900 and 543 million years ago, has been widely discussed. Termination of such 'hard snowball Earth' climate states has been proposed to proceed from accumulation of carbon dioxide in the atmosphere. Many salient aspects of the snowball scenario depend critically on the threshold of atmospheric carbon dioxide concentrations needed to trigger deglaciation. Here I present simulations with a general circulation model, using elevated carbon dioxide levels to estimate this deglaciation threshold. The model simulates several phenomena that are expected to be significant in a 'snowball Earth' scenario, but which have not been considered in previous studies with less sophisticated models, such as a reduction of vertical temperature gradients in winter, a reduction in summer tropopause height, the effect of snow cover and a reduction in cloud greenhouse effects. In my simulations, the system remains far short of deglaciation even at atmospheric carbon dioxide concentrations of 550 times the present levels (0.2 bar of CO2). I find that at much higher carbon dioxide levels, deglaciation is unlikely unless unknown feedback cycles that are not captured in the model come into effect.
Collapse
Affiliation(s)
- Raymond T Pierrehumbert
- Department of the Geophysical Sciences, The University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA.
| |
Collapse
|