1
|
Sun VZ, Milliken RE. Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. ASTROBIOLOGY 2020; 20:453-474. [PMID: 31545076 DOI: 10.1089/ast.2018.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Certain martian hydrated silica deposits have been hypothesized to represent ancient hot spring environments, but many environments can produce hydrated silica on Earth. This study compares the mineral assemblages produced in terrestrial hot springs to those observed in silica-producing volcanic fumarolic environments to determine which diagnostic features of hot springs could be remotely sensed on Mars. We find that hot spring environments are more likely to produce geochemically mature silica (i.e., opal-CT and microcrystalline quartz) in addition to opal-A, whereas volcanic fumarolic environments tend to produce only opal-A, potentially reflecting differences in water-to-rock ratios. Neutral/alkaline hot springs contain few accessory minerals (typically calcite and Fe/Mg clays), while acidic hot springs commonly contain accessory kaolinite. By comparison, mineral assemblages at volcanic fumaroles contain protolith igneous minerals and a diversity of alteration minerals indicative of acidic conditions. Based on these terrestrial observations, the presence of opal-CT and/or microcrystalline quartz could be more diagnostic of a hot spring origin rather than a fumarolic origin, and accessory mineralogy could provide information on formation pH. On Mars, we observe that most orbital opal detections in outcrop are opal-A, sometimes accompanied by Fe/Mg clays, suggestive of neutral/alkaline conditions. However, these observations do not uniquely distinguish between hot springs and fumarolic environments, as opal-A can occur in both environments. Many martian silica detections occur in regionally extensive units, and sometimes in association with fluvial landforms suggesting a detrital or lower temperature authigenic origin. Thus, only a few martian opal detections may be mineralogically, spatially, and morphologically consistent with a hot spring origin. However, although it is difficult to unambiguously identify martian hot spring environments from orbital data sets, the orbital data are still valuable for identifying siliceous sites that are consistent with higher biosignature preservation potential, that is, sites with opal-A (not opal-CT), for future in situ investigations.
Collapse
Affiliation(s)
- Vivian Z Sun
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Ralph E Milliken
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
2
|
Taubner RS, Olsson-Francis K, Vance SD, Ramkissoon NK, Postberg F, de Vera JP, Antunes A, Camprubi Casas E, Sekine Y, Noack L, Barge L, Goodman J, Jebbar M, Journaux B, Karatekin Ö, Klenner F, Rabbow E, Rettberg P, Rückriemen-Bez T, Saur J, Shibuya T, Soderlund KM. Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. SPACE SCIENCE REVIEWS 2020; 216:9. [PMID: 32025060 PMCID: PMC6977147 DOI: 10.1007/s11214-020-0635-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/06/2020] [Indexed: 05/05/2023]
Abstract
The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus' plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Biology and Ecogenomics Division, University of Vienna, Vienna, Austria
| | | | | | | | | | | | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau SAR, China
| | | | | | - Lena Noack
- Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | - Elke Rabbow
- German Aerospace Center (DLR), Cologne, Germany
| | | | | | | | - Takazo Shibuya
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | |
Collapse
|
3
|
Tosca NJ, Ahmed IA, Tutolo BM, Ashpitel A, Hurowitz JA. Magnetite Authigenesis and the Warming of Early Mars. NATURE GEOSCIENCE 2018; 11:635-639. [PMID: 30123317 PMCID: PMC6092749 DOI: 10.1038/s41561-018-0203-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/10/2018] [Indexed: 05/14/2023]
Abstract
The Curiosity rover has documented lacustrine sediments at Gale Crater, but how liquid water became physically stable on the early Martian surface is a matter of significant debate. To constrain the composition of the early Martian atmosphere during sediment deposition, we experimentally investigated the nucleation and growth kinetics of authigenic Fe-minerals in Gale Crater mudstones. Experiments show that pH variations within anoxic basaltic waters trigger a series of mineral transformations that rapidly generate magnetite and H2(aq). Magnetite continues to form through this mechanism despite high PCO2 and supersaturation with respect to Fe-carbonate minerals. Reactive transport simulations that incorporate these experimental data show that groundwater infiltration into a lake equilibrated with a CO2-rich atmosphere can trigger the production of both magnetite and H2(aq) in the mudstones. H2(aq), generated at concentrations that would readily exsolve from solution, is capable of increasing annual mean surface temperatures above freezing in CO2-dominated atmospheres. We therefore suggest that magnetite authigenesis could have provided a short-term feedback for stabilizing liquid water, as well as a principal feedstock for biologically relevant chemical reactions, at the early Martian surface.
Collapse
Affiliation(s)
- Nicholas J. Tosca
- Dept. of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Imad A.M. Ahmed
- Dept. of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Benjamin M. Tutolo
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Alice Ashpitel
- Dept. of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Joel A. Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
| |
Collapse
|
4
|
Abstract
Silica polymorphs, such as quartz, tridymite, cristobalite, coesite, stishovite, seifertite, baddeleyite-type SiO2, high-pressure silica glass, moganite, and opal, have been found in lunar and/or martian rocks by macro-microanalyses of the samples and remote-sensing observations on the celestial bodies. Because each silica polymorph is stable or metastable at different pressure and temperature conditions, its appearance is variable depending on the occurrence of the lunar and martian rocks. In other words, types of silica polymorphs provide valuable information on the igneous process (e.g., crystallization temperature and cooling rate), shock metamorphism (e.g., shock pressure and temperature), and hydrothermal fluid activity (e.g., pH and water content), implying their importance in planetary science. Therefore, this article focused on reviewing and summarizing the representative and important investigations of lunar and martian silica from the viewpoints of its discovery from lunar and martian materials, the formation processes, the implications for planetary science, and the future prospects in the field of “micro-mineralogy”.
Collapse
|
5
|
McMahon S, Bosak T, Grotzinger JP, Milliken RE, Summons RE, Daye M, Newman SA, Fraeman A, Williford KH, Briggs DEG. A Field Guide to Finding Fossils on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:1012-1040. [PMID: 30034979 PMCID: PMC6049883 DOI: 10.1029/2017je005478] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have supported life at or near the surface. This evidence has motivated National Aeronautics and Space Administration and European Space Agency to prioritize the search for any remains or traces of organisms from early Mars in forthcoming missions. Informed by (1) stratigraphic, mineralogical and geochemical data collected by previous and current missions, (2) Earth's fossil record, and (3) experimental studies of organic decay and preservation, we here consider whether, how, and where fossils and isotopic biosignatures could have been preserved in the depositional environments and mineralizing media thought to have been present in habitable settings on early Mars. We conclude that Noachian-Hesperian Fe-bearing clay-rich fluvio-lacustrine siliciclastic deposits, especially where enriched in silica, currently represent the most promising and best understood astropaleontological targets. Siliceous sinters would also be an excellent target, but their presence on Mars awaits confirmation. More work is needed to improve our understanding of fossil preservation in the context of other environments specific to Mars, particularly within evaporative salts and pore/fracture-filling subsurface minerals.
Collapse
Affiliation(s)
- S. McMahon
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
- UK Centre for Astrobiology, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
| | - T. Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - R. E. Milliken
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - R. E. Summons
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - M. Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - S. A. Newman
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. H. Williford
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - D. E. G. Briggs
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
| |
Collapse
|
6
|
Sanchez-Arenillas M, Mateo-Marti E. Pyrite surface environment drives molecular adsorption: cystine on pyrite(100) investigated by X-ray photoemission spectroscopy and low energy electron diffraction. Phys Chem Chem Phys 2018; 18:27219-27225. [PMID: 27711447 DOI: 10.1039/c6cp03760g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have demonstrated that the annealing process for cleaning pyrite surfaces is a critical parameter in promoting ordering on the surface and driving surface reactivity. Furthermore, we describe a spectroscopic surface characterization of the presence or absence of the surface ordering, as indicated by the Low Energy Electron Diffraction (LEED) pattern, as a function of the surface annealing process. Complementary X-ray photoemission spectroscopy (XPS) results provide evidence that longer annealing processes of over 3 hours repair the sulfur vacancies in the pyrite, making FeS species partially disappear in favor of FeS2 species. These features play an important role in molecular adsorption. We show that in the case of the cystine amino acid on the (100) pyrite surface, the substrate structure is responsible for the chemical adsorption form. The presence of an ordered structure on the surface, as indicated by the LEED pattern, favors the cystine NH3+ chemical form, whereas the absence of the surface ordering promotes cystine NH2 adsorption due to the sulfur-deficient surface. The cystine molecule could then act by changing its chemical functionalities to compensate for the iron surface coordination. The chemical molecular adsorption form can be selected by the surface annealing conditions, implying that environmental conditions could drive molecular adsorption on mineral surfaces. These findings are relevant in several surface processes, and they could play a possible role in prebiotic chemistry surface reactions and iron-sulfur scenarios.
Collapse
Affiliation(s)
- M Sanchez-Arenillas
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | - E Mateo-Marti
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| |
Collapse
|
7
|
Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars. Nat Commun 2017; 8:1230. [PMID: 29089493 PMCID: PMC5663933 DOI: 10.1038/s41467-017-01235-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/01/2017] [Indexed: 12/04/2022] Open
Abstract
Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe3+ with small amounts of aqueous Mg2+. Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars. In the Gale Crater on Mars, organic matter has been detected, but in much lower concentrations than expected. Here, the authors conduct clay mineral synthesis experiments which suggest that clay minerals may rapidly form under oxidized conditions and thus explain the low organic concentrations in Gale Crater.
Collapse
|
8
|
Niles PB, Michalski J, Ming DW, Golden DC. Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars. Nat Commun 2017; 8:998. [PMID: 29044111 PMCID: PMC5647339 DOI: 10.1038/s41467-017-01227-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/31/2017] [Indexed: 11/12/2022] Open
Abstract
Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as −60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars. Sulphate-rich sediments have been taken as evidence of surface water on Mars. Here, the authors show that cryo-concentrated brines chemically weather olivine minerals forming sulfate minerals at up to −60 °C, showing that cryogenic weathering and sulfate formation can occur under current Martian conditions.
Collapse
Affiliation(s)
- Paul B Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, 77058, USA.
| | - Joseph Michalski
- Department of Earth Sciences and Laboratory for Space Research, University of Hong Kong, Hong Kong, China
| | - Douglas W Ming
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, 77058, USA
| | | |
Collapse
|
9
|
Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars. Nat Commun 2016; 7:13459. [PMID: 27834377 PMCID: PMC5114618 DOI: 10.1038/ncomms13459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 09/26/2016] [Indexed: 11/08/2022] Open
Abstract
Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. Little is known about the impacts of Mars' contemporary dryness on weathering processes. Here, using iron oxidation estimates from the Mars Rover Opportunity, the authors quantify chemical weathering rates for Mars, finding appreciably slower rates compared with the lowest values on Earth.
Collapse
|
10
|
Adcock CT, Hausrath EM. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters. ASTROBIOLOGY 2015; 15:1060-1075. [PMID: 26684505 DOI: 10.1089/ast.2015.1291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. KEY WORDS Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.
Collapse
|
11
|
Sklute EC, Jensen HB, Rogers AD, Reeder RJ. Morphological, structural, and spectral characteristics of amorphous iron sulfates. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2015; 120:809-830. [PMID: 29675340 PMCID: PMC5903680 DOI: 10.1002/2014je004784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.
Collapse
Affiliation(s)
- E. C. Sklute
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
- Now at Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - H. B. Jensen
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - A. D. Rogers
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - R. J. Reeder
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
12
|
Martin D, Cockell CS. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments. ASTROBIOLOGY 2015; 15:111-118. [PMID: 25651097 DOI: 10.1089/ast.2014.1240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.
Collapse
Affiliation(s)
- Derek Martin
- School of Physics and Astronomy, University of Edinburgh , Edinburgh, UK
| | | |
Collapse
|
13
|
Marcucci EC, Hynek BM. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2014; 119:679-703. [PMID: 26213665 PMCID: PMC4508920 DOI: 10.1002/2013je004439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 02/27/2014] [Indexed: 05/23/2023]
Abstract
We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1-60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals.
Collapse
Affiliation(s)
- Emma C Marcucci
- Department of Geological Sciences, University of Colorado BoulderBoulder, Colorado, USA
- Laboratory for Atmospheric and Space Physics, University of Colorado BoulderBoulder, Colorado, USA
- Now at Geophysical Institute, University of Alaska FairbanksFairbanks, Alaska, USA
- Correspondence to: E. C. Marcucci,
| | - Brian M Hynek
- Department of Geological Sciences, University of Colorado BoulderBoulder, Colorado, USA
- Laboratory for Atmospheric and Space Physics, University of Colorado BoulderBoulder, Colorado, USA
| |
Collapse
|
14
|
Hausrath EM, Tschauner O. Natural fumarolic alteration of fluorapatite, olivine, and basaltic glass, and implications for habitable environments on Mars. ASTROBIOLOGY 2013; 13:1049-64. [PMID: 24283927 PMCID: PMC3865726 DOI: 10.1089/ast.2013.0985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 09/14/2013] [Indexed: 05/19/2023]
Abstract
Fumaroles represent a very important potential habitat on Mars because they contain water and nutrients. Global deposition of volcanic sulfate aerosols may also have been an important soil-forming process affecting large areas of Mars. Here we identify alteration from the Senator fumarole, northwest Nevada, USA, and in low-temperature environments near the fumarole to help interpret fumarolic and acid vapor alteration of rocks and soils on Mars. We analyzed soil samples and fluorapatite, olivine, and basaltic glass placed at and near the fumarole in in situ mineral alteration experiments designed to measure weathering under natural field conditions. Using synchrotron X-ray diffraction, we clearly observe hydroxyl-carbonate-bearing fluorapatite as a fumarolic alteration product of the original material, fluorapatite. The composition of apatites as well as secondary phosphates has been previously used to infer magmatic conditions as well as fumarolic conditions on Mars. To our knowledge, the observations reported here represent the first documented instance of formation of hydroxyl-carbonate-bearing apatite from fluorapatite in a field experiment. Retreat of olivine surfaces, as well as abundant NH4-containing minerals, was also characteristic of fumarolic alteration. In contrast, alteration in the nearby low-temperature environment resulted in formation of large pits on olivine surfaces, which were clearly distinguishable from the fumarolic alteration. Raman signatures of some fumarolically impacted surfaces are consistent with detection of the biological molecules chlorophyll and scytenomin, potentially useful biosignatures. Observations of altered minerals on Mars may therefore help identify the environment of formation and understand the aqueous history and potential habitability of that planet.
Collapse
Affiliation(s)
| | - Oliver Tschauner
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Nevada
- HiPSEC, University of Nevada Las Vegas, Las Vegas, Nevada
| |
Collapse
|
15
|
Thollot P, Mangold N, Ansan V, Le Mouélic S, Milliken RE, Bishop JL, Weitz CM, Roach LH, Mustard JF, Murchie SL. Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je004028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Le Deit L, Flahaut J, Quantin C, Hauber E, Mège D, Bourgeois O, Gurgurewicz J, Massé M, Jaumann R. Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003983] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
McGlynn IO, Fedo CM, McSween HY. Soil mineralogy at the Mars Exploration Rover landing sites: An assessment of the competing roles of physical sorting and chemical weathering. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je003861] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Wang A, Freeman JJ, Chou IM, Jolliff BL. Stability of Mg-sulfates at −10°C and the rates of dehydration/rehydration processes under conditions relevant to Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011je003818] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Tosca NJ, McLennan SM, Lamb MP, Grotzinger JP. Physicochemical properties of concentrated Martian surface waters. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003700] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Ruff SW, Farmer JD, Calvin WM, Herkenhoff KE, Johnson JR, Morris RV, Rice MS, Arvidson RE, Bell JF, Christensen PR, Squyres SW. Characteristics, distribution, origin, and significance of opaline silica observed by the Spirit rover in Gusev crater, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003767] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Wang A, Ling ZC. Ferric sulfates on Mars: A combined mission data analysis of salty soils at Gusev crater and laboratory experimental investigations. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Wray JJ, Milliken RE, Dundas CM, Swayze GA, Andrews-Hanna JC, Baldridge AM, Chojnacki M, Bishop JL, Ehlmann BL, Murchie SL, Clark RN, Seelos FP, Tornabene LL, Squyres SW. Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003694] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Seelos KD, Arvidson RE, Jolliff BL, Chemtob SM, Morris RV, Ming DW, Swayze GA. Silica in a Mars analog environment: Ka'u Desert, Kilauea Volcano, Hawaii. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003347] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Chemtob SM, Jolliff BL, Rossman GR, Eiler JM, Arvidson RE. Silica coatings in the Ka'u Desert, Hawaii, a Mars analog terrain: A micromorphological, spectral, chemical, and isotopic study. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003473] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Karunatillake S, Wray JJ, Squyres SW, Taylor GJ, Gasnault O, McLennan SM, Boynton W, El Maarry MR, Dohm JM. Chemically striking regions on Mars and Stealth revisited. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003303] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Wang A, Freeman JJ, Jolliff BL. Phase transition pathways of the hydrates of magnesium sulfate in the temperature range 50°C to 5°C: Implication for sulfates on Mars. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003266] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
McAdam AC, Zolotov MY, Mironenko MV, Sharp TG. Formation of silica by low-temperature acid alteration of Martian rocks: Physical-chemical constraints. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003056] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Le Deit L, Le Mouélic S, Bourgeois O, Combe JP, Mège D, Sotin C, Gendrin A, Hauber E, Mangold N, Bibring JP. Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: Identification and geological interpretation. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002950] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Schmidt ME, Ruff SW, McCoy TJ, Farrand WH, Johnson JR, Gellert R, Ming DW, Morris RV, Cabrol N, Lewis KW, Schroeder C. Hydrothermal origin of halogens at Home Plate, Gusev Crater. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003027] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Tosca NJ, Knoll AH, McLennan SM. Water Activity and the Challenge for Life on Early Mars. Science 2008; 320:1204-7. [DOI: 10.1126/science.1155432] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
McSween HY, Ruff SW, Morris RV, Gellert R, Klingelhöfer G, Christensen PR, McCoy TJ, Ghosh A, Moersch JM, Cohen BA, Rogers AD, Schröder C, Squyres SW, Crisp J, Yen A. Mineralogy of volcanic rocks in Gusev Crater, Mars: Reconciling Mössbauer, Alpha Particle X-Ray Spectrometer, and Miniature Thermal Emission Spectrometer spectra. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002970] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Tosca NJ, McLennan SM, Dyar MD, Sklute EC, Michel FM. Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Zolotov MY, Mironenko MV. Timing of acid weathering on Mars: A kinetic-thermodynamic assessment. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002882] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Fishbaugh KE, Poulet F, Chevrier V, Langevin Y, Bibring JP. On the origin of gypsum in the Mars north polar region. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002862] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Minitti ME, Weitz CM, Lane MD, Bishop JL. Morphology, chemistry, and spectral properties of Hawaiian rock coatings and implications for Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002839] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Hahn BC, McLennan SM, Taylor GJ, Boynton WV, Dohm JM, Finch MJ, Hamara DK, Janes DM, Karunatillake S, Keller JM, Kerry KE, Metzger AE, Williams RMS. Mars Odyssey Gamma Ray Spectrometer elemental abundances and apparent relative surface age: Implications for Martian crustal evolution. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002821] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Rogers AD, Christensen PR. Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002727] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Keller JM, Boynton WV, Karunatillake S, Baker VR, Dohm JM, Evans LG, Finch MJ, Hahn BC, Hamara DK, Janes DM, Kerry KE, Newsom HE, Reedy RC, Sprague AL, Squyres SW, Starr RD, Taylor GJ, Williams RMS. Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002679] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Squyres SW, Aharonson O, Arvidson RE, Bell JF, Christensen PR, Clark BC, Crisp JA, Farrand W, Glotch T, Golombek MP, Grant J, Grotzinger J, Herkenhoff KE, Johnson JR, Jolliff BL, Knoll AH, McLennan SM, McSween HY, Moore JM, Rice JW, Tosca N. Planetary science: bedrock formation at Meridiani Planum. Nature 2006; 443:E1-2; discussion E2. [PMID: 16957684 DOI: 10.1038/nature05212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Mars Exploration Rover Opportunity discovered sulphate-rich sedimentary rocks at Meridiani Planum on Mars, which are interpreted by McCollom and Hynek as altered volcanic rocks. However, their conclusions are derived from an incorrect representation of our depositional model, which is upheld by more recent Rover data. We contend that all the available data still support an aeolian and aqueous sedimentary origin for Meridiani bedrock.
Collapse
Affiliation(s)
- S W Squyres
- Department of Astronomy, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Glotch TD, Bandfield JL, Christensen PR, Calvin WM, McLennan SM, Clark BC, Rogers AD, Squyres SW. Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002672] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timothy D. Glotch
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - Joshua L. Bandfield
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | | | - Wendy M. Calvin
- Department of Geological Sciences; University of Nevada; Reno Nevada USA
| | - Scott M. McLennan
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | | | - A. Deanne Rogers
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | | |
Collapse
|
41
|
Wang A, Haskin LA, Squyres SW, Jolliff BL, Crumpler L, Gellert R, Schröder C, Herkenhoff K, Hurowitz J, Tosca NJ, Farrand WH, Anderson R, Knudson AT. Sulfate deposition in subsurface regolith in Gusev crater, Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002513] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alian Wang
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - L. A. Haskin
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - B. L. Jolliff
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - L. Crumpler
- New Mexico Museum of Natural History and Science; Albuquerque New Mexico USA
| | - R. Gellert
- Abteilung Kosmochemie; Max-Planck-Institut für Chemie; Mainz Germany
| | - C. Schröder
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | | | - J. Hurowitz
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | - N. J. Tosca
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | | | - Robert Anderson
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - A. T. Knudson
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
42
|
Wang A, Korotev RL, Jolliff BL, Haskin LA, Crumpler L, Farrand WH, Herkenhoff KE, de Souza P, Kusack AG, Hurowitz JA, Tosca NJ. Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002516] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alian Wang
- Department of Earth and Planetary Sciences and McDonnell Center for Space Science; Washington University in St. Louis; St. Louis Missouri USA
| | - Randy L. Korotev
- Department of Earth and Planetary Sciences and McDonnell Center for Space Science; Washington University in St. Louis; St. Louis Missouri USA
| | - Bradley L. Jolliff
- Department of Earth and Planetary Sciences and McDonnell Center for Space Science; Washington University in St. Louis; St. Louis Missouri USA
| | - Larry A. Haskin
- Department of Earth and Planetary Sciences and McDonnell Center for Space Science; Washington University in St. Louis; St. Louis Missouri USA
| | - Larry Crumpler
- New Mexico Museum of Natural History and Science; Albuquerque New Mexico USA
| | | | | | | | | | - Joel A. Hurowitz
- Department of Geosciences; State University of New York; Stony Brook New York USA
| | - Nicholas J. Tosca
- Department of Geosciences; State University of New York; Stony Brook New York USA
| |
Collapse
|
43
|
Ming DW, Mittlefehldt DW, Morris RV, Golden DC, Gellert R, Yen A, Clark BC, Squyres SW, Farrand WH, Ruff SW, Arvidson RE, Klingelhöfer G, McSween HY, Rodionov DS, Schröder C, de Souza PA, Wang A. Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002560] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- D. W. Ming
- NASA Johnson Space Center; Houston Texas USA
| | | | | | | | - R. Gellert
- Institut für Inorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
- Max-Planck-Institut für Chemie; Mainz Germany
- University of Guelph; Guelph Canada
| | - A. Yen
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - B. C. Clark
- Lockheed Martin Corporation; Littleton Colorado USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | | | - S. W. Ruff
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - G. Klingelhöfer
- Institut für Inorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - H. Y. McSween
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - D. S. Rodionov
- Institut für Inorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
- Space Research Institute IKI; Moscow Russia
| | - C. Schröder
- Institut für Inorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | | | - A. Wang
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| |
Collapse
|
44
|
Hurowitz JA, McLennan SM, Tosca NJ, Arvidson RE, Michalski JR, Ming DW, Schröder C, Squyres SW. In situ and experimental evidence for acidic weathering of rocks and soils on Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002515] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- J. A. Hurowitz
- Department of Geosciences; State University of New York at Stony Brook; Stony Brook New York USA
| | - S. M. McLennan
- Department of Geosciences; State University of New York at Stony Brook; Stony Brook New York USA
| | - N. J. Tosca
- Department of Geosciences; State University of New York at Stony Brook; Stony Brook New York USA
| | - R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - J. R. Michalski
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - D. W. Ming
- NASA Johnson Space Center; Houston Texas USA
| | - C. Schröder
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
45
|
Bibring JP, Langevin Y, Gendrin A, Gondet B, Poulet F, Berthé M, Soufflot A, Arvidson R, Mangold N, Mustard J, Drossart P. Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science 2005; 307:1576-81. [PMID: 15718430 DOI: 10.1126/science.1108806] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) investigation, on board the European Space Agency Mars Express mission, is mapping the surface composition of Mars at a 0.3- to 5-kilometer resolution by means of visible-near-infrared hyperspectral reflectance imagery. The data acquired during the first 9 months of the mission already reveal a diverse and complex surface mineralogy, offering key insights into the evolution of Mars. OMEGA has identified and mapped mafic iron-bearing silicates of both the northern and southern crust, localized concentrations of hydrated phyllosilicates and sulfates but no carbonates, and ices and frosts with a water-ice composition of the north polar perennial cap, as for the south cap, covered by a thin carbon dioxide-ice veneer.
Collapse
Affiliation(s)
- Jean-Pierre Bibring
- Institut d'Astrophysique Spatiale (IAS), Bâtiment 121, 91405 Orsay Campus, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Golden DC, Ming DW, Morris RV, Mertzman SA. Laboratory-simulated acid-sulfate weathering of basaltic materials: Implications for formation of sulfates at Meridiani Planum and Gusev crater, Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002451] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Hurowitz JA. Experimental epithermal alteration of synthetic Los Angeles meteorite: Implications for the origin of Martian soils and identification of hydrothermal sites on Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004je002391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
King PL, McSween HY. Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002482] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|