1
|
Zhou Y, Raptis S, Wang S, Shen C, Ren N, Ma L. Magnetosheath jets at Jupiter and across the solar system. Nat Commun 2024; 15:4. [PMID: 38195592 PMCID: PMC10776788 DOI: 10.1038/s41467-023-43942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024] Open
Abstract
The study of jets in the Earth's magnetosheath has been a subject of extensive investigation for over a decade due to their profound impact on the geomagnetic environment and their close connection with shock dynamics. While the variability of the solar wind and its interaction with Earth's magnetosphere provide valuable insights into jets across a range of parameters, a broader parameter space can be explored by examining the magnetosheath of other planets. Here we report the existence of anti-sunward and sunward jets in the Jovian magnetosheath and show their close association with magnetic discontinuities. The anti-sunward jets are possibly generated by a shock-discontinuity interaction. Finally, through a comparative analysis of jets observed at Earth, Mars, and Jupiter, we show that the size of jets scales with the size of bow shock.
Collapse
Affiliation(s)
- Yufei Zhou
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Savvas Raptis
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Shan Wang
- Institute of Space Physics and Applied Technology, Peking University, Beijing, China
| | - Chao Shen
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Nian Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- School of Physics and Electronic Science, Hunan Institute of Science and Technology, Yueyang, China
| | - Lan Ma
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
2
|
Zhang H, Zong Q, Connor H, Delamere P, Facskó G, Han D, Hasegawa H, Kallio E, Kis Á, Le G, Lembège B, Lin Y, Liu T, Oksavik K, Omidi N, Otto A, Ren J, Shi Q, Sibeck D, Yao S. Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere. SPACE SCIENCE REVIEWS 2022; 218:40. [PMID: 35784192 PMCID: PMC9239986 DOI: 10.1007/s11214-021-00865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Dayside transients, such as hot flow anomalies, foreshock bubbles, magnetosheath jets, flux transfer events, and surface waves, are frequently observed upstream from the bow shock, in the magnetosheath, and at the magnetopause. They play a significant role in the solar wind-magnetosphere-ionosphere coupling. Foreshock transient phenomena, associated with variations in the solar wind dynamic pressure, deform the magnetopause, and in turn generates field-aligned currents (FACs) connected to the auroral ionosphere. Solar wind dynamic pressure variations and transient phenomena at the dayside magnetopause drive magnetospheric ultra low frequency (ULF) waves, which can play an important role in the dynamics of Earth's radiation belts. These transient phenomena and their geoeffects have been investigated using coordinated in-situ spacecraft observations, spacecraft-borne imagers, ground-based observations, and numerical simulations. Cluster, THEMIS, Geotail, and MMS multi-mission observations allow us to track the motion and time evolution of transient phenomena at different spatial and temporal scales in detail, whereas ground-based experiments can observe the ionospheric projections of transient magnetopause phenomena such as waves on the magnetopause driven by hot flow anomalies or flux transfer events produced by bursty reconnection across their full longitudinal and latitudinal extent. Magnetohydrodynamics (MHD), hybrid, and particle-in-cell (PIC) simulations are powerful tools to simulate the dayside transient phenomena. This paper provides a comprehensive review of the present understanding of dayside transient phenomena at Earth and other planets, their geoeffects, and outstanding questions.
Collapse
Affiliation(s)
- Hui Zhang
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- Shandong University, Weihai, China
| | - Qiugang Zong
- Institute of Space Physics and Applied Technology, Peking University, Beijing, 100871 China
- Polar Research Institute of China, Shanghai, 200136 China
| | - Hyunju Connor
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Peter Delamere
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
| | - Gábor Facskó
- Department of Informatics, Milton Friedman University, 1039 Budapest, Hungary
- Wigner Research Centre for Physics, Konkoly-Thege Miklós út 29-33, 1121 Budapest, Hungary
| | | | - Hiroshi Hasegawa
- Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
| | | | - Árpád Kis
- Institute of Earth Physics and Space Science (ELKH EPSS), Sopron, Hungary
| | - Guan Le
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Bertrand Lembège
- LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales), IPSL/CNRS/UVSQ, 11 Bd d’Alembert, Guyancourt, 78280 France
| | - Yu Lin
- Auburn University, Auburn, USA
| | - Terry Liu
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Kjellmar Oksavik
- Birkeland Centre for Space Science, Department of Physics and Technology, University of Bergen, Bergen, Norway
- Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
| | | | - Antonius Otto
- Physics Department & Geophysical Institute, University of Alaska Fairbanks, 2156 Koyukuk Drive, Fairbanks, AK 99775 USA
| | - Jie Ren
- Institute of Space Physics and Applied Technology, Peking University, Beijing, 100871 China
| | | | - David Sibeck
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | | |
Collapse
|
3
|
Simon Wedlund C, Volwerk M, Mazelle C, Halekas J, Rojas‐Castillo D, Espley J, Möstl C. Making Waves: Mirror Mode Structures Around Mars Observed by the MAVEN Spacecraft. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2022; 127:e2021JA029811. [PMID: 35860696 PMCID: PMC9285749 DOI: 10.1029/2021ja029811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 06/15/2023]
Abstract
We present an in-depth analysis of a time interval when quasi-linear mirror mode structures were detected by magnetic field and plasma measurements as observed by the NASA/Mars Atmosphere and Volatile EvolutioN spacecraft. We employ ion and electron spectrometers in tandem to support the magnetic field measurements and confirm that the signatures are indeed mirror modes. Wedged against the magnetic pile-up boundary, the low-frequency signatures last on average∼ 10 s with corresponding sizes of the order of 15-30 upstream solar wind proton thermal gyroradii, or 10-20 proton gyroradii in the immediate wake of the quasi-perpendicular bow shock. Their peak-to-peak amplitudes are of the order of 30-35 nT with respect to the background field, and appear as a mixture of dips and peaks, suggesting that they may have been at different stages in their evolution. Situated in a marginally stable plasma with β ‖ ∼ 1, we hypothesize that these so-called magnetic bottles, containing a relatively higher energy and denser ion population with respect to the background plasma, are formed upstream of the spacecraft behind the quasi-perpendicular shock. These signatures are very reminiscent of magnetic bottles found at other unmagnetized objects such as Venus and comets, also interpreted as mirror modes. Our case study constitutes the first unmistakable identification and characterization of mirror modes at Mars from the joint points of view of magnetic field, electron and ion measurements. Up until now, the lack of high-temporal resolution plasma measurements has prevented such an in-depth study.
Collapse
Affiliation(s)
| | - Martin Volwerk
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| | - Christian Mazelle
- Institut de Recherche en Astrophysique et Planétologie (IRAP)Université de ToulouseCNRSUPSCNESToulouseFrance
| | - Jasper Halekas
- Department of Physics and AstronomyUniversity of IowaIowa CityIAUSA
| | | | - Jared Espley
- NASA Goddard Space Flight CenterLaboratory for Planetary MagnetospheresGreenbeltMDUSA
| | - Christian Möstl
- Space Research InstituteAustrian Academy of SciencesGrazAustria
| |
Collapse
|
4
|
Li JH, Yang F, Zhou XZ, Zong QG, Artemyev AV, Rankin R, Shi Q, Yao S, Liu H, He J, Pu Z, Xiao C, Liu J, Pollock C, Le G, Burch JL. Self-consistent kinetic model of nested electron- and ion-scale magnetic cavities in space plasmas. Nat Commun 2020; 11:5616. [PMID: 33154395 PMCID: PMC7644639 DOI: 10.1038/s41467-020-19442-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/15/2020] [Indexed: 12/05/2022] Open
Abstract
NASA’s Magnetospheric Multi-Scale (MMS) mission is designed to explore the proton- and electron-gyroscale kinetics of plasma turbulence where the bulk of particle acceleration and heating takes place. Understanding the nature of cross-scale structures ubiquitous as magnetic cavities is important to assess the energy partition, cascade and conversion in the plasma universe. Here, we present theoretical insight into magnetic cavities by deriving a self-consistent, kinetic theory of these coherent structures. By taking advantage of the multipoint measurements from the MMS constellation, we demonstrate that our kinetic model can utilize magnetic cavity observations by one MMS spacecraft to predict measurements from a second/third spacecraft. The methodology of “observe and predict” validates the theory we have derived, and confirms that nested magnetic cavities are self-organized plasma structures supported by trapped proton and electron populations in analogous to the classical theta-pinches in laboratory plasmas. Magnetic cavities play important roles in the energy cascade, conversion and dissipation in turbulent plasmas. Here, the authors show a theoretical insight into magnetic cavities by deriving a self-consistent, kinetic theory of these coherent structures.
Collapse
Affiliation(s)
- Jing-Huan Li
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Fan Yang
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Xu-Zhi Zhou
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
| | - Qiu-Gang Zong
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China.
| | - Anton V Artemyev
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, 90095, USA.,Space Research Institute, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Robert Rankin
- Department of Physics, University of Alberta, Edmonton, AB, T6G2G7, Canada
| | - Quanqi Shi
- Institute of Space Sciences, Shandong University, Weihai, 264209, China
| | - Shutao Yao
- Institute of Space Sciences, Shandong University, Weihai, 264209, China
| | - Han Liu
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Jiansen He
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Zuyin Pu
- School of Earth and Space Sciences, Peking University, 100871, Beijing, China
| | - Chijie Xiao
- School of Physics, Peking University, Beijing, 100871, China
| | - Ji Liu
- National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
| | | | - Guan Le
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - James L Burch
- Southwest Research Institute, San Antonio, TX, 78238, USA
| |
Collapse
|
5
|
Khusroo M, Bora MP. Modeling aperiodic magnetospheric oscillations. Phys Rev E 2019; 99:013205. [PMID: 30780248 DOI: 10.1103/physreve.99.013205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 06/09/2023]
Abstract
We present an analysis of a Hall-magnetohydrodynamics model of the magnetospheric plasma with finite Larmor radius effect. Through a bifurcation analysis of the resultant nonlinear system, we show that this nonlinear model does not possess a limit cycle, which rules out regular periodic oscillations with constant amplitude. However, it does result in a train of magnetosonic solitons, localized in space, with amplitudes increasing in time, which are largely in agreement with what is usually observed in the magnetopause region. We call these oscillations aperiodic magnetospheric oscillations. We emphasize that most of the train of solitary oscillations observed by the Cluster fleet and other spacecrafts do not have constant amplitudes: they either continuously increase or decrease. These train of solitons with nonconstant amplitudes is a primary solution of our model.
Collapse
|
6
|
Riquelme MA, Quataert E, Verscharen D. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/0004-637x/800/1/27] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Masters A, Achilleos N, Kivelson MG, Sergis N, Dougherty MK, Thomsen MF, Arridge CS, Krimigis SM, McAndrews HJ, Kanani SJ, Krupp N, Coates AJ. Cassini observations of a Kelvin-Helmholtz vortex in Saturn's outer magnetosphere. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010ja015351] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. Masters
- Space and Atmospheric Physics Group, Blackett Laboratory; Imperial College London; London UK
- Mullard Space Science Laboratory, Department of Space and Climate Physics; University College London; Dorking UK
- Center for Planetary Sciences; University College London; London UK
| | - N. Achilleos
- Center for Planetary Sciences; University College London; London UK
- Atmospheric Physics Laboratory, Department of Physics and Astronomy; University College London; London UK
| | - M. G. Kivelson
- Institute of Geophysics and Planetary Physics; University of California; Los Angeles California USA
| | - N. Sergis
- Office of Space Research and Technology; Academy of Athens; Athens Greece
| | - M. K. Dougherty
- Space and Atmospheric Physics Group, Blackett Laboratory; Imperial College London; London UK
| | - M. F. Thomsen
- Space Science and Applications; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - C. S. Arridge
- Mullard Space Science Laboratory, Department of Space and Climate Physics; University College London; Dorking UK
- Center for Planetary Sciences; University College London; London UK
| | - S. M. Krimigis
- Johns Hopkins University Applied Physics Laboratory; Laurel Maryland USA
| | - H. J. McAndrews
- Space Science and Applications; Los Alamos National Laboratory; Los Alamos New Mexico USA
| | - S. J. Kanani
- Mullard Space Science Laboratory, Department of Space and Climate Physics; University College London; Dorking UK
- Center for Planetary Sciences; University College London; London UK
| | - N. Krupp
- Max-Planck-Institut für Sonnensystemforschung; Katlenburg-Lindau Germany
| | - A. J. Coates
- Mullard Space Science Laboratory, Department of Space and Climate Physics; University College London; Dorking UK
- Center for Planetary Sciences; University College London; London UK
| |
Collapse
|