1
|
Clapp CE, Anderson JG. Modeling the Effect of Potential Nitric Acid Removal During Convective Injection of Water Vapor Over the Central United States on the Chemical Composition of the Lower Stratosphere. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:9743-9770. [PMID: 31763110 PMCID: PMC6853249 DOI: 10.1029/2018jd029703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Tropopause-penetrating convection is a frequent seasonal feature of the Central United States climate. This convection presents the potential for consistent transport of water vapor into the upper troposphere and lower stratosphere (UTLS) through the lofting of ice, which then sublimates. Water vapor enhancements associated with convective ice lofting have been observed in both in situ and satellite measurements. These water vapor enhancements can increase the probability of sulfate aerosol-catalyzed heterogeneous reactions that convert reservoir chlorine (HCl and ClONO2) to free radical chlorine (Cl and ClO) that leads to catalytic ozone loss. In addition to water vapor transport, lofted ice may also scavenge nitric acid and further impact the chlorine activation chemistry of the UTLS. We present a photochemical model that resolves the vertical chemical structure of the UTLS to explore the effect of water vapor enhancements and potential additional nitric acid removal. The model is used to define the response of stratospheric column ozone to the range of convective water vapor transported and the temperature variability of the lower stratosphere currently observed over the Central United States in conjunction with potential nitric acid removal and to scenarios of elevated sulfate aerosol surface area density representative of possible future volcanic eruptions or solar radiation management. We find that the effect of HNO3 removal is dependent on the magnitude of nitric acid removal and has the greatest potential to increase chlorine activation and ozone loss under UTLS conditions that weakly favor the chlorine activation heterogeneous reactions by reducing NOx sources.
Collapse
Affiliation(s)
- C. E. Clapp
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMAUSA
| | - J. G. Anderson
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMAUSA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
- Department of Earth and Planetary SciencesHarvard UniversityCambridgeMAUSA
| |
Collapse
|
2
|
Schoeberl MR, Jensen EJ, Pfister L, Ueyama R, Wang T, Selkirk H, Avery M, Thornberry T, Dessler AE. Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:3984-4003. [PMID: 33868885 PMCID: PMC8051107 DOI: 10.1029/2018jd029849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/06/2019] [Indexed: 06/12/2023]
Abstract
The goal of this investigation is to understand the mechanism behind the observed high relative humidity with respect to ice (RHi) in the tropical region between ~14 km (150 hPa) and the tropopause, often referred to as the tropical tropopause layer (TTL). As shown by satellite, aircraft and balloon observations, high (>80%) RHi regions are widespread within the TTL. Regions with the highest RHi are co-located with extensive cirrus. During boreal winter, the TTL RHi is highest over the Tropical Western Pacific (TWP) with a weaker maximum over South America and Africa. In the winter, TTL temperatures are coldest and upward motion is the greatest in the TWP. It is this upward motion, driving humid air into the colder upper troposphere that produces the persistent high RHi and cirrus formation. Back trajectory calculations show that comparable adiabatic and diabatic processes contribute to this upward motion. We construct a bulk model of TWP TTL water vapor transport that includes cloud nucleation and ice microphysics that quantifies how upward motion drives the persistent high RHi in the TTL region. We find that atmospheric waves triggering cloud formation regulate the RHi, and that convection dehydrates the TTL. Our forward domain-filling trajectory (FDF) model is used to more precisely simulate the TTL spatial and vertical distribution of RHi. The observed RHi distribution is reproduced by the model and we show that convection increases RHi below the base of the TTL with little impact on the RHi in the TTL region.
Collapse
Affiliation(s)
| | - E. J. Jensen
- NASA Ames Research Center, Moffett Field, CA, USA
| | - L. Pfister
- NASA Ames Research Center, Moffett Field, CA, USA
| | - R. Ueyama
- NASA Ames Research Center, Moffett Field, CA, USA
| | - T. Wang
- Goddard Space Flight Center, Greenbelt, MD, USA
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - H. Selkirk
- Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | | | - T. Thornberry
- NOAA Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, CO, USA
| | | |
Collapse
|
3
|
Galewsky J, Steen-Larsen HC, Field RD, Worden J, Risi C, Schneider M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. REVIEWS OF GEOPHYSICS (WASHINGTON, D.C. : 1985) 2016; 54:809-865. [PMID: 32661517 PMCID: PMC7357203 DOI: 10.1002/2015rg000512] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term datasets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in-situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water- and ice-size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.
Collapse
Affiliation(s)
- Joseph Galewsky
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Robert D Field
- NASA Goddard Institute for Space Studies, New York, New York, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, USA
| | - John Worden
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Camille Risi
- Laboratoire de Meteorologie Dynamique, Institut Pierre Simon Laplace, Centre National de la Recherche Scientifique, Paris, France
| | - Matthias Schneider
- Institute for Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Dessler AE, Ye H, Wang T, Schoeberl MR, Oman LD, Douglass AR, Butler AH, Rosenlof KH, Davis SM, Portmann RW. Transport of ice into the stratosphere and the humidification of the stratosphere over the 21 st century. GEOPHYSICAL RESEARCH LETTERS 2016; 43:2323-2329. [PMID: 29551841 PMCID: PMC5854491 DOI: 10.1002/2016gl067991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Climate models predict that tropical lower-stratospheric humidity will increase as the climate warms. We examine this trend in two state-of-the-art chemistry-climate models. Under high greenhouse gas emissions scenarios, the stratospheric entry value of water vapor increases by ~1 part per million by volume (ppmv) over this century in both models. We show with trajectory runs driven by model meteorological fields that the warming tropical tropopause layer (TTL) explains 50-80% of this increase. The remainder is a consequence of trends in evaporation of ice convectively lofted into the TTL and lower stratosphere. Our results further show that, within the models we examined, ice lofting is primarily important on long time scales - on interannual time scales, TTL temperature variations explain most of the variations in lower stratospheric humidity. Assessing the ability of models to realistically represent ice-lofting processes should be a high priority in the modeling community.
Collapse
Affiliation(s)
- A E Dessler
- Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX
| | - H Ye
- Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX
| | - T Wang
- NASA Jet Propulsion Laboratory / Caltech, Pasadena, CA
| | | | - L D Oman
- NASA Goddard Space Flight Center, Greenbelt, MD
| | | | - A H Butler
- NOAA Earth System Research Lab, Boulder, CO
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder, CO
| | | | - S M Davis
- NOAA Earth System Research Lab, Boulder, CO
- Cooperative Institute for Research in Environmental Sciences, Univ. of Colorado, Boulder, CO
| | | |
Collapse
|
5
|
Abstract
Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent high-altitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to ∼70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L(-1) (often less than 20 L(-1)), whereas the high ice concentration layers (with concentrations up to 10,000 L(-1)) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as ∼1.7 times the ice saturation mixing ratio.
Collapse
|
6
|
Anderson JG, Wilmouth DM, Smith JB, Sayres DS. UV Dosage Levels in Summer: Increased Risk of Ozone Loss from Convectively Injected Water Vapor. Science 2012; 337:835-9. [DOI: 10.1126/science.1222978] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Randel WJ, Moyer E, Park M, Jensen E, Bernath P, Walker K, Boone C. Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016632] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Sayres DS, Pfister L, Hanisco TF, Moyer EJ, Smith JB, St. Clair JM, O'Brien AS, Witinski MF, Legg M, Anderson JG. Influence of convection on the water isotopic composition of the tropical tropopause layer and tropical stratosphere. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013100] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Toon OB, Starr DO, Jensen EJ, Newman PA, Platnick S, Schoeberl MR, Wennberg PO, Wofsy SC, Kurylo MJ, Maring H, Jucks KW, Craig MS, Vasques MF, Pfister L, Rosenlof KH, Selkirk HB, Colarco PR, Kawa SR, Mace GG, Minnis P, Pickering KE. Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013073] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Iannone RQ, Kassi S, Jost HJ, Chenevier M, Romanini D, Meijer HAJ, Dhaniyala S, Snels M, Kerstel ERT. Development and airborne operation of a compact water isotope ratio infrared spectrometer. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2009; 45:303-20. [PMID: 19670069 DOI: 10.1080/10256010903172715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A sensitive laser spectrometer, named IRIS (water isotope ratio infrared spectrometer), was developed for the in situ detection of the isotopic composition of water vapour in the upper troposphere and the lower stratosphere. Isotope ratio measurements can be used to quantify troposphere-stratosphere exchange, and to study the water chemistry in the stratosphere. IRIS is based on the technique of optical feedback cavity-enhanced absorption spectroscopy. It uses a room temperature near-infrared laser, and does not require cryogenic cooling of laser or detectors. The instrument weighs 51 kg including its support structure. Airborne operation was demonstrated during three flights aboard the European M55-Geophysica stratospheric research aircraft, as part of the AMMA/SCOUT-03 (African Monsoon Multidisciplinary Analysis/Stratospheric Climate links with emphasis on the Upper Troposphere and lower stratosphere) campaign in Burkina Faso in August 2006. One-second averaged, vertical profiles of delta(2)H, delta(17)O and delta(18)O in the upper troposphere are shown, as are the delta(17)O-delta(18)O and delta(2)H-delta(18)O relations. The data are discussed with reference to a Rayleigh distillation model. As expected, there is no indication of non-mass-dependent fractionation (also known as mass-independent fractionation) in the troposphere. Furthermore, improvements to the thermal management system and a move to a (cryogen-free) longer-wavelength laser source are discussed, which together should result in approximately two orders of magnitude improvement of the sensitivity.
Collapse
Affiliation(s)
- Rosario Q Iannone
- Centrum voor IsotopenOnderzoek (CIO), University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dessler AE. Clouds and water vapor in the Northern Hemisphere summertime stratosphere. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd012075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Liu C, Zipser EJ. Implications of the day versus night differences of water vapor, carbon monoxide, and thin cloud observations near the tropical tropopause. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011524] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Mace GG, Zhang Q, Vaughan M, Marchand R, Stephens G, Trepte C, Winker D. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2007jd009755] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Leblanc T, McDermid IS. Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements. APPLIED OPTICS 2008; 47:5592-5603. [PMID: 18936807 DOI: 10.1364/ao.47.005592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A Raman lidar calibration method adapted to the long-term monitoring of atmospheric water vapor is proposed. The accuracy of Raman lidar water vapor profiles is limited by that of the calibration process. Typically, calibration using in situ balloon-borne measurements suffers from the nonsimultaneity and noncollocation of the lidar and in situ measurements, while calibration from passive remote sensors suffers from the lower accuracy of the retrievals and incomplete sampling of the water vapor column observed by lidar. We propose a new hybrid calibration method using a combination of absolute calibration from radiosonde campaigns and routine-basis (off-campaign) partial calibration using a standard lamp. This new method takes advantage of the stability of traceable calibrated lamps as reliable sources of known spectral irradiance combined with the best available in situ measurements. An integrated approach is formulated, which can be used for the future long-term monitoring of water vapor by Raman lidars within the international Network for the Detection of Atmospheric Composition Change and other networks.
Collapse
Affiliation(s)
- Thierry Leblanc
- Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, California 92397-0367, USA.
| | | |
Collapse
|
15
|
Bony S, Risi C, Vimeux F. Influence of convective processes on the isotopic composition (δ18O andδD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean–Global Atmosphere–Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009942] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|