1
|
Xu J, Xu J, Tong Z, Yu S, Liu B, Mu X, Du B, Liu Z, Wang J, Liu D. Investigating the impact of attenuated fluorescence spectra on protein discrimination. OPTICS EXPRESS 2023; 31:35507-35518. [PMID: 38017719 DOI: 10.1364/oe.499362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/18/2023] [Indexed: 11/30/2023]
Abstract
The optical remote sensing techniques are promising for the real-time detection, and identification of different types of hazardous biological materials. However, the received fluorescent spectra from a remote distance suffer from the atmospheric attenuation effect upon the spectral shape. To investigate the influence of atmospheric attenuation on characterizing, and classifying biological agents, the laboratory-measured fluorescence data of fourteen proteins combined with the atmospheric transmission factors of the MODTRAN model were conducted with different detection ranges. The multivariate analysis techniques of principal component analysis (PCA) and linear discriminant analysis (LDA), and the predictors of Random Forest and XGBoost were employed to assess the separability and distinguishability of different spectra recorded. The results showed that the spectral-shift effect on attenuated spectra varied as a function of the detection range, the atmospheric visibility, and the spectral distribution. According to the PCA and LDA analysis, the distribution of decomposed factors changed in the spectral explanatory power with the increasing attenuation effect, which was consistent with the hierarchical clustering results. Random Forest exhibited higher performance in classifying protein samples than that of XGBoost, while the two methods performed similarly in identifying harmful and harmless subgroups of proteins. Fewer subgroups decreased the sensitivity of the classification accuracy to the attenuation effect. Our analysis demonstrated that combining atmospheric transport models to build a fluorescence spectral database is essential for fast identification between spectra, and reduced classification criteria could facilitate the compatibility of spectral database and classification algorithms.
Collapse
|
2
|
Addor YS, Newman N, Baumgardner D, Indugula R, Hughes D, Jandarov R, Reponen T. Assessment of indoor bioaerosol exposure using direct-reading versus traditional methods-potential application to home health care. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:401-413. [PMID: 37163743 DOI: 10.1080/15459624.2023.2212007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Home healthcare workers (HHCWs) can be occupationally exposed to bioaerosols in their clients' homes. However, choosing the appropriate method to measure bioaerosol exposures remains a challenge. Therefore, a systematic comparison of existing measurement approaches is essential. Bioaerosol measurements with a real-time, fluorescence-based Wideband Integrated Bioaerosol Sensor (WIBS) were compared to measurements with four traditional off-line methods (TOLMs). The TOLMS included optical microscopic counting of spore trap samples, microbial cultivation of impactor samples, qPCR, and next-generation sequencing (NGS) of filter samples. Measurements were conducted in an occupied apartment simulating the environments that HHCWs could encounter in their patients' homes. Descriptive statistics and Spearman's correlation test were computed to compare the real-time measurement with those of each TOLM. The results showed that the geometric mean number concentrations of the total fluorescent aerosol particles (TFAPs) detected with the WIBS were several orders of magnitude higher than those of total fungi or bacteria measured with the TOLMs. Among the TOLMs, concentrations obtained with qPCR and NGS were the closest to the WIBS detections. Correlations between the results obtained with the WIBS and TOLMs were not consistent. No correlation was found between the concentrations of fungi detected using microscopic counting and any of the WIBS fluorescent aerosol particle (FAP) types, either indoors or outdoors. In contrast, the total concentrations detected with microbial cultivation correlated with the WIBS TFAP results, both indoors and outdoors. Outdoors, the total concentration of culturable bacteria correlated with FAP-type AC. In addition, fungal and bacterial concentrations obtained with qPCR correlated with FAP types AB and AC. For a continuous, high-time resolution but broad scope, the real-time WIBS could be considered, whereas a TOLM would be the best choice for specific and more accurate microbial characterization. HHCWs' activities tend to re-aerosolize bioaerosols causing wide temporal variation in bioparticle concentrations. Thus, the advantage of using the real-time instrument is to capture those variations. This study lays a foundation for future exposure assessment studies targeting HHCWs.
Collapse
Affiliation(s)
- Yao S Addor
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Nicholas Newman
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Reshmi Indugula
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Dagen Hughes
- Droplet Measurement Technologies LLC, Longmont, Colorado
| | - Roman Jandarov
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
3
|
Santarpia JL, Klug E, Ravnholdt A, Kinahan SM. Environmental sampling for disease surveillance: Recent advances and recommendations for best practice. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:434-461. [PMID: 37224401 DOI: 10.1080/10962247.2023.2197825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 05/26/2023]
Abstract
The study of infectious diseases includes both the progression of the disease in its host and how it transmits between hosts. Understanding disease transmission is important for recommending effective interventions, protecting healthcare workers, and informing an effective public health response. Sampling the environment for infectious diseases is critical to public health since it can provide an understanding of the mechanisms of transmission, characterization of contamination in hospitals and other public areas, and the spread of a disease within a community. Measurements of biological aerosols, particularly those that may cause disease, have been an ongoing topic of research for decades, and so a wide variety of technological solutions exist. This wide field of possibilities can create confusion, particularly when different approaches yield different answers. Therefore, guidelines for best practice in this area are important to allow more effective use of this data in public health decisions. This review examines air, surface and water/wastewater sampling methods, with a focus on aerosol sampling, and a goal of recommending approaches to designing and implementing sampling systems that may incorporate multiple strategies. This is accomplished by developing a framework for designing and evaluating a sampling strategy, reviewing current practices and emerging technologies for sampling and analysis, and recommending guidelines for best practice in the area of aerosol sampling for infectious disease.
Collapse
Affiliation(s)
- Joshua L Santarpia
- The Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- National Strategic Research Institute, Omaha, NE, USA
| | - Elizabeth Klug
- The Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashley Ravnholdt
- The Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean M Kinahan
- The Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE, USA
- National Strategic Research Institute, Omaha, NE, USA
| |
Collapse
|
4
|
Kwaśny M, Bombalska A, Kaliszewski M, Włodarski M, Kopczyński K. Fluorescence Methods for the Detection of Bioaerosols in Their Civil and Military Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:3339. [PMID: 36992050 PMCID: PMC10054245 DOI: 10.3390/s23063339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The article presents the history of the development and the current state of the apparatus for the detection of interferents and biological warfare simulants in the air with the laser-induced fluorescence (LIF) method. The LIF method is the most sensitive spectroscopic method and also enables the measurement of single particles of biological aerosols and their concentration in the air. The overview covers both the on-site measuring instruments and remote methods. The spectral characteristics of the biological agents, steady-state spectra, excitation-emission matrices, and their fluorescence lifetimes are presented. In addition to the literature, we also present our own detection systems for military applications.
Collapse
|
5
|
Mendes R, da Silva JCB, Magalhaes JM, St-Denis B, Bourgault D, Pinto J, Dias JM. On the generation of internal waves by river plumes in subcritical initial conditions. Sci Rep 2021; 11:1963. [PMID: 33479402 PMCID: PMC7820228 DOI: 10.1038/s41598-021-81464-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022] Open
Abstract
Internal waves (IWs) in the ocean span across a wide range of time and spatial scales and are now acknowledged as important sources of turbulence and mixing, with the largest observations having 200 m in amplitude and vertical velocities close to 0.5 m s-1. Their origin is mostly tidal, but an increasing number of non-tidal generation mechanisms have also been observed. For instance, river plumes provide horizontally propagating density fronts, which were observed to generate IWs when transitioning from supercritical to subcritical flow. In this study, satellite imagery and autonomous underwater measurements are combined with numerical modeling to investigate IW generation from an initial subcritical density front originating at the Douro River plume (western Iberian coast). These unprecedented results may have important implications in near-shore dynamics since that suggest that rivers of moderate flow may play an important role in IW generation between fresh riverine and coastal waters.
Collapse
Affiliation(s)
- R Mendes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.
- CESAM - Centre for Environmental and Marine Studies, Physics Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - J C B da Silva
- Department of Geoscience, Environment and Spatial Planning (DGAOT), Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 687, 4169-007, Porto, Portugal
- Instituto de Ciências da Terra, Polo Porto, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - J M Magalhaes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
- Department of Geoscience, Environment and Spatial Planning (DGAOT), Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - B St-Denis
- Institut de Sciences de La Mer de Rimouski, Université du Québec À Rimouski, 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - D Bourgault
- Institut de Sciences de La Mer de Rimouski, Université du Québec À Rimouski, 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - J Pinto
- LSTS - Underwater Systems and Technology Laboratory, Department of Electrical and Computer Engineering, School of Engineering University of Porto, University of Porto, 4200-465, Porto, Portugal
| | - J M Dias
- CESAM - Centre for Environmental and Marine Studies, Physics Department, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
6
|
Swanson BE, Huffman JA. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. OPTICS EXPRESS 2018; 26:3646-3660. [PMID: 29401892 DOI: 10.1364/oe.26.003646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/24/2018] [Indexed: 06/07/2023]
Abstract
Laser-induced fluorescence (LIF) techniques to analyze atmospheric aerosols are commonly applied for research and human exposure monitoring, but are very expensive or offer poor spectral resolution. Here, we discuss how a recently proposed instrument can acquire resolved fluorescence spectra from many individual particles in a single camera image using four excitation wavelengths matched with common biological fluorophores for particle discrimination at lower cost. We discuss emission intensity calibration and demonstrate spectral differentiation among four species of pollen. These data provide context for how the instrument could be developed for pollen and mold-spore detection or for use by citizen scientists.
Collapse
|
7
|
Anderson DC, Nicely JM, Salawitch RJ, Canty TP, Dickerson RR, Hanisco TF, Wolfe GM, Apel EC, Atlas E, Bannan T, Bauguitte S, Blake NJ, Bresch JF, Campos TL, Carpenter LJ, Cohen MD, Evans M, Fernandez RP, Kahn BH, Kinnison DE, Hall SR, Harris NRP, Hornbrook RS, Lamarque JF, Le Breton M, Lee JD, Percival C, Pfister L, Pierce RB, Riemer DD, Saiz-Lopez A, Stunder BJB, Thompson AM, Ullmann K, Vaughan A, Weinheimer AJ. A pervasive role for biomass burning in tropical high ozone/low water structures. Nat Commun 2016; 7:10267. [PMID: 26758808 PMCID: PMC4735513 DOI: 10.1038/ncomms10267] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/23/2015] [Indexed: 11/09/2022] Open
Abstract
Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.
Collapse
Affiliation(s)
- Daniel C Anderson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland 20742, USA
| | - Julie M Nicely
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Ross J Salawitch
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland 20742, USA.,Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.,Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 20742, USA
| | - Timothy P Canty
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland 20742, USA
| | - Russell R Dickerson
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland 20742, USA
| | - Thomas F Hanisco
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Glenn M Wolfe
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA.,Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | - Eric C Apel
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Elliot Atlas
- Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, USA
| | - Thomas Bannan
- Centre for Atmospheric Science, School of Earth, Atmospheric, and Environmental Science, The University of Manchester, Manchester M13 9PL, UK
| | | | - Nicola J Blake
- Deparment of Chemistry, University of California, Irvine, California 92697, USA
| | - James F Bresch
- Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Teresa L Campos
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Lucy J Carpenter
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Mark D Cohen
- NOAA Air Resources Laboratory, College Park, Maryland 20740, USA
| | - Mathew Evans
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK.,National Centre for Atmospheric Science, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Rafael P Fernandez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain.,Department of Natural Science, National Research Council (CONICET), FCEN-UNCuyo, Mendoza 5501, Argentina
| | - Brian H Kahn
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
| | - Douglas E Kinnison
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Samuel R Hall
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Neil R P Harris
- Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| | - Rebecca S Hornbrook
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Jean-Francois Lamarque
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA.,Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Michael Le Breton
- Centre for Atmospheric Science, School of Earth, Atmospheric, and Environmental Science, The University of Manchester, Manchester M13 9PL, UK
| | - James D Lee
- National Centre for Atmospheric Science, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Carl Percival
- Centre for Atmospheric Science, School of Earth, Atmospheric, and Environmental Science, The University of Manchester, Manchester M13 9PL, UK
| | - Leonhard Pfister
- Earth Sciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - R Bradley Pierce
- NOAA/NESDIS Center for Satellite Applications and Research, Madison, Wisconsin 53706, USA
| | - Daniel D Riemer
- Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, USA
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid 28006, Spain
| | | | - Anne M Thompson
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Kirk Ullmann
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| | - Adam Vaughan
- National Centre for Atmospheric Science, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Andrew J Weinheimer
- Atmospheric Chemistry Observation and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80305, USA
| |
Collapse
|
8
|
Bhangar S, Huffman JA, Nazaroff WW. Size-resolved fluorescent biological aerosol particle concentrations and occupant emissions in a university classroom. INDOOR AIR 2014; 24:604-17. [PMID: 24654966 DOI: 10.1111/ina.12111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/14/2014] [Indexed: 05/12/2023]
Abstract
UNLABELLED This study is among the first to apply laser-induced fluorescence to characterize bioaerosols at high time and size resolution in an occupied, common-use indoor environment. Using an ultraviolet aerodynamic particle sizer, we characterized total and fluorescent biological aerosol particle (FBAP) levels (1-15 μm diameter) in a classroom, sampling with 5-min resolution continuously during eighteen occupied and eight unoccupied days distributed throughout a one-year period. A material-balance model was applied to quantify per-person FBAP emission rates as a function of particle size. Day-to-day and seasonal changes in FBAP number concentration (NF ) values in the classroom were small compared to the variability within a day that was attributable to variable levels of occupancy, occupant activities, and the operational state of the ventilation system. Occupancy conditions characteristic of lecture classes were associated with mean NF source strengths of 2 × 10(6) particles/h/person, and 9 × 10(4) particles per metabolic g CO2 . During transitions between lectures, occupant activity was more vigorous, and estimated mean, per-person NF emissions were 0.8 × 10(6) particles per transition. The observed classroom peak in FBAP size at 3-4 μm is similar to the peak in fluorescent and biological aerosols reported from several studies outdoors. PRACTICAL IMPLICATIONS Coarse particles that exhibit fluorescence at characteristic wavelengths are considered to be proxies for biological particles. Recently developed instruments permit their detection and sizing in real time. In a mechanically ventilated classroom, emissions from human occupants were a strong determinant of coarse-mode fluorescent biological aerosol particle (FBAP) levels. Human FBAP emission rates were significant under quiet occupancy conditions and increased with activity level. Fluorescent particle emissions peaked at a diameter of 3–4 μm, which is the expected modal size of airborne particles with associated microbes. Human activity patterns, and associated coarse FBAP and total particle levels varied strongly on short timescales. Thus, the dynamic temporal behavior of aerosol concentrations must be considered when determining collection protocols for samples meant to be representative of average concentrations using time-integrated or ‘snapshot’ bioaerosol measurement techniques.
Collapse
Affiliation(s)
- S Bhangar
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
9
|
|
10
|
|
11
|
Pan YL, Hill SC, Santarpia JL, Brinkley K, Sickler T, Coleman M, Williamson C, Gurton K, Felton M, Pinnick RG, Baker N, Eshbaugh J, Hahn J, Smith E, Alvarez B, Prugh A, Gardner W. Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory. OPTICS EXPRESS 2014; 22:8165-8189. [PMID: 24718194 DOI: 10.1364/oe.22.008165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B. atrophaeus var. globigii (BG) (formerly known as Bacillus globigii), B. thuringiensis israelensis (Bti), B. thuringiensis kurstaki (Btk), B. anthracis Sterne (BaS); (2) vegetative bacteria: Escherichia coli (E. coli), Pantoea agglomerans (Eh) (formerly known as Erwinia herbicola), Yersinia rohdei (Yr), Yersinia pestis CO92 (Yp); and (3) virus preparations: Venezuelan equine encephalitis TC83 (VEE) and the bacteriophage MS2. The excitation wavelengths were 266 nm, 273 nm, 280 nm, 365 nm and 405 nm.
Collapse
|
12
|
Direct on-strip analysis of size- and time-resolved aerosol impactor samples using laser induced fluorescence spectra excited at 263 and 351 nm. Anal Chim Acta 2014; 820:119-32. [DOI: 10.1016/j.aca.2014.02.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 11/19/2022]
|
13
|
Zheng G, He K, Duan F, Cheng Y, Ma Y. Measurement of humic-like substances in aerosols: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:301-14. [PMID: 23830737 DOI: 10.1016/j.envpol.2013.05.055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 05/20/2023]
Abstract
Aerosol-phase humic-like substances (HULIS) have received increasingly attention due to their universal ambient presence, active participation in atmospheric chemistry and important environmental and health effects. In last decade, intensive field works have promoted development of quantification and analysis method, unearthed spatio-temporal variation, and proved evidence for source identification of HULIS. These important developments were summarized in this review to provide a global perspective of HULIS. The diverse operational HULIS definitions were gradually focused onto several versions. Although found globally in Europe, Asia, Australasia and North America, HULIS are far more typical in continental and near-ground aerosols. HULIS concentrations varied from <1 μg/m(3) to >13 μg/m(3), with their carbon fraction making up 9%-72% of water soluble organic carbon. Dominant HULIS source was suggested as secondary processes and biomass burning, with the detailed formation pathways suggested and verified in laboratory works.
Collapse
Affiliation(s)
- Guangjie Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
Hill SC, Pan YL, Williamson C, Santarpia JL, Hill HH. Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria. OPTICS EXPRESS 2013; 21:22285-313. [PMID: 24104120 DOI: 10.1364/oe.21.022285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B₆ and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.
Collapse
|
15
|
Lee HJJ, Laskin A, Laskin J, Nizkorodov SA. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5763-5770. [PMID: 23663151 DOI: 10.1021/es400644c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.
Collapse
Affiliation(s)
- Hyun Ji Julie Lee
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | | | | |
Collapse
|
16
|
Kiselev D, Bonacina L, Wolf JP. A flash-lamp based device for fluorescence detection and identification of individual pollen grains. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:033302. [PMID: 23556810 DOI: 10.1063/1.4793792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present a novel optical aerosol particle detector based on Xe flash lamp excitation and spectrally resolved fluorescence acquisition. We demonstrate its performances on three natural pollens acquiring in real-time scattering intensity at two wavelengths, sub-microsecond time-resolved scattering traces of the particles' passage in the focus, and UV-excited fluorescence spectra. We show that the device gives access to a rather specific detection of the bioaerosol particles.
Collapse
Affiliation(s)
- Denis Kiselev
- GAP-Biophotonics, Université de Genève, 22 chemin de Pinchat, 1211 Genève 4, Switzerland.
| | | | | |
Collapse
|
17
|
Santarpia JL, Pan YL, Hill SC, Baker N, Cottrell B, McKee L, Ratnesar-Shumate S, Pinnick RG. Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging. OPTICS EXPRESS 2012; 20:29867-29881. [PMID: 23388813 DOI: 10.1364/oe.20.029867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A laboratory system for exposing aerosol particles to ozone and rapidly measuring the subsequent changes in their single-particle fluorescence is reported. The system consists of a rotating drum chamber and a single-particle fluorescence spectrometer (SPFS) utilizing excitation at 263 nm. Measurements made with this system show preliminary results on the ultra-violet laser-induced-fluorescence (UV-LIF) spectra of single aerosolized particles of Yersinia rohdei, and of MS2 (bacteriophage) exposed to ozone. When bioparticles are exposed in the chamber the fluorescence emission peak around 330 nm: i) decreases in intensity relative to that of the 400-550 nm band; and ii) shifts slightly toward shorter-wavelengths (consistent with further drying of the particles). In these experiments, changes were observed at exposures below the US Environmental Protection Agency (EPA) limits for ozone.
Collapse
Affiliation(s)
- Joshua L Santarpia
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Castillo JA, Staton SJR, Taylor TJ, Herckes P, Hayes MA. Exploring the feasibility of bioaerosol analysis as a novel fingerprinting technique. Anal Bioanal Chem 2012; 403:15-26. [PMID: 22311424 PMCID: PMC3319984 DOI: 10.1007/s00216-012-5725-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/30/2011] [Accepted: 01/09/2012] [Indexed: 01/29/2023]
Abstract
The purpose of this review is to investigate the feasibility of bioaerosol fingerprinting based on current understanding of cellular debris (with emphasis on human-emitted particulates) in aerosols and arguments regarding sampling, sensitivity, separations, and detection schemes. Target aerosol particles include cellular material and proteins emitted by humans, animals, and plants and can be regarded as information-rich packets that carry biochemical information specific to the living organisms present where the sample is collected. In this work we discuss sampling and analysis techniques that can be integrated with molecular (e.g. protein)-detection procedures to properly assess the aerosolized cellular material of interest. Developing a detailed understanding of bioaerosol molecular profiles in different environments suggests exciting possibilities of bioaerosol analysis with applications ranging from military defense to medical diagnosis and wildlife identification.
Collapse
Affiliation(s)
- Josemar A. Castillo
- Department of Chemistry and Biochemistry, Arizona State University, Physical Science Building PO Box 871604, Tempe 85281, AZ USA
| | - Sarah J. R. Staton
- Department of Chemistry and Biochemistry, Arizona State University, Physical Science Building PO Box 871604, Tempe 85281, AZ USA
| | - Thomas J. Taylor
- Department of Mathematics and Statistical Sciences, Arizona State University, Physical Science Building PO Box 871604, Tempe 85281, AZ USA
| | - Pierre Herckes
- Department of Chemistry and Biochemistry, Arizona State University, Physical Science Building PO Box 871604, Tempe 85281, AZ USA
| | - Mark A. Hayes
- Department of Chemistry and Biochemistry, Arizona State University, Physical Science Building PO Box 871604, Tempe 85281, AZ USA
| |
Collapse
|
19
|
Pan YL, Hill SC, Coleman M. Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra. OPTICS EXPRESS 2012; 20:5325-5334. [PMID: 22418339 DOI: 10.1364/oe.20.005325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new method is demonstrated for optically trapping micron-sized absorbing particles in air and obtaining their single-particle Raman spectra. A 488-nm Gaussian beam from an Argon ion laser is transformed by conical lenses (axicons) and other optics into two counter-propagating hollow beams, which are then focused tightly to form hollow conical beams near the trapping region. The combination of the two coaxial conical beams, with focal points shifted relative to each other along the axis of the beams, generates a low-light-intensity biconical region totally enclosed by the high-intensity light at the surface of the bicone, which is a type of bottle beam. Particles within this region are trapped by the photophoretic forces that push particles toward the low-intensity center of this region. Raman spectra from individual trapped particles made from carbon nanotubes are measured. This trapping technique could lead to the development of an on-line real-time single-particle Raman spectrometer for characterization of absorbing aerosol particles.
Collapse
Affiliation(s)
- Yong-Le Pan
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA.
| | | | | |
Collapse
|
20
|
Pan YL, Hill SC, Pinnick RG, Huang H, Bottiger JR, Chang RK. Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results. OPTICS EXPRESS 2010; 18:12436-57. [PMID: 20588371 DOI: 10.1364/oe.18.012436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An improved Dual-wavelength-excitation Particle Fluorescence Spectrometer (DPFS) has been reported. It measures two fluorescence spectra excited sequentially by lasers at 263 nm and 351 nm, from single atmospheric aerosol particles in the 1-10 mum diameter size range. Here we investigate the different levels of discrimination capability obtained when different numbers of excitation and fluorescence-emission wavelengths are used for analysis. We a) use the DPFS to measure fluorescence spectra of Bacillus subtilis and other aerosol particles, and a 25-hour sample of atmospheric aerosol at an urban site in Maryland, USA; b) analyze the data using six different algorithms that employ different levels of detail of the measured data; and c) show that when more of the data measured by the DPFS is used, the ability to discriminate among particle types is significantly increased.
Collapse
Affiliation(s)
- Yong-Le Pan
- US Army Research Laboratory, Adelphi, MD 20783, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Knox KJ, Symes R, Reid JP. Fluorescence spectroscopy and signalling from optically-tweezed aerosol droplets. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Manninen A, Putkiranta M, Saarela J, Rostedt A, Sorvajärvi T, Toivonen J, Marjamäki M, Keskinen J, Hernberg R. Fluorescence cross sections of bioaerosols and suspended biological agents. APPLIED OPTICS 2009; 48:4320-4328. [PMID: 19649034 DOI: 10.1364/ao.48.004320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Laser-induced fluorescence is used to investigate fluorescence properties of unwashed Bacillus thuringiensis and Bacillus subtilis spores, ovalbumin, and washed bacteriophage MS2. A fluorescence detector is calibrated to obtain absolute fluorescence cross sections. Fluorescence maps of biological aerosols and suspensions are measured at a wide excitation range from 210 to 419 nm and a wide detection range from 315 to 650 nm. The dominant features of the measured spectra are the amino acid peaks, having excitation maxima at 220 and 280 nm. The peaks are similar for the bacterial spores, both for aerosols and suspensions, whereas the peaks are shifted toward the shorter emission wavelengths for the suspended ovalbumin and MS2. Moreover, the fluorescence emission, excited above 320 nm is more intensive for the aerosols than the suspensions.
Collapse
Affiliation(s)
- Albert Manninen
- Optics Laboratory, Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ariya PA, Sun J, Eltouny NA, Hudson ED, Hayes CT, Kos G. Physical and chemical characterization of bioaerosols – Implications for nucleation processes. INT REV PHYS CHEM 2009. [DOI: 10.1080/01442350802597438] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Huang HC, Pan YL, Hill SC, Pinnick RG, Chang RK. Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles. OPTICS EXPRESS 2008; 16:16523-8. [PMID: 18852760 DOI: 10.1364/oe.16.016523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report the development of an in-situ aerosol detection system capable of rapidly measuring dual-wavelength laser-induced fluorescence spectra of single particles on the fly using a single spectrometer and a single 32-anode photomultiplier array. We demonstrate the capability of this system with both reference samples and outdoor air. We present spectra from separate excitation wavelengths from the same particle that demonstrate improved discrimination capability compared with only using one excitation wavelength.
Collapse
Affiliation(s)
- Hermes C Huang
- Department of Applied Physics, Yale University, New Haven, CT 06511, USA.
| | | | | | | | | |
Collapse
|
25
|
Bhartia R, Hug WF, Salas EC, Reid RD, Sijapati KK, Tsapin A, Abbey W, Nealson KH, Lane AL, Conrad PG. Classification of organic and biological materials with deep ultraviolet excitation. APPLIED SPECTROSCOPY 2008; 62:1070-1077. [PMID: 18926014 DOI: 10.1366/000370208786049123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We show that native fluorescence can be used to differentiate classes or groups of organic molecules and biological materials when excitation occurs at specific excitation wavelengths in the deep ultraviolet (UV) region. Native fluorescence excitation-emission maps (EEMs) of pure organic materials, microbiological samples, and environmental background materials were compared using excitation wavelengths between 200-400 nm with emission wavelengths from 270 to 500 nm. These samples included polycyclic aromatic hydrocarbons (PAHs), nitrogen- and sulfur-bearing organic heterocycles, bacterial spores, and bacterial vegetative whole cells (both Gram positive and Gram negative). Each sample was categorized into ten distinct groups based on fluorescence properties. Emission spectra at each of 40 excitation wavelengths were analyzed using principal component analysis (PCA). Optimum excitation wavelengths for differentiating groups were determined using two metrics. We show that deep UV excitation at 235 (+/-2) nm optimally separates all organic and biological groups within our dataset with >90% confidence. For the specific case of separation of bacterial spores from all other samples in the database, excitation at wavelengths less than 250 nm provides maximum separation with >6sigma confidence.
Collapse
Affiliation(s)
- Rohit Bhartia
- Planetary Science and Life Detection, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|