1
|
Färber M, Vereecken L, Fuchs H, Gkatzelis GI, Rohrer F, Wedel S, Wahner A, Novelli A. Impact of temperature-dependent non-PAN peroxynitrate formation, RO 2NO 2, on nighttime atmospheric chemistry. Phys Chem Chem Phys 2024; 26:5183-5194. [PMID: 38261377 DOI: 10.1039/d3cp04163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The formation of peroxynitrates (RO2NO2) from the reaction of peroxy radicals (RO2) and nitrogen dioxide (NO2) and their subsequent redissociation are typically not included in chemical mechanisms. This is often done to save computational time as the assumption is that the equilibrium is strongly towards the RO2 + NO2 reaction for most conditions. Exceptions are the reactions of the methyl peroxy radical due to its abundance in the atmosphere and of acyl-RO2 radicals due to the long lifetime of peroxyacyl nitrates RO2NO2 (PANs). In this study, the nighttime oxidation of cis-2-butene and trans-2-hexene in the presence of NO2 is investigated in the atmospheric simulation chamber SAPHIR, Forschungszentrum Jülich, Germany, at atmospherically-relevant conditions at different temperatures (≈276 K, ≈293 K, ≈305 K). Measured concentrations of peroxy and hydroperoxy radicals as well as other trace gases (ozone, NO2, volatile organic compounds) are compared to state-of-the-art zero-dimensional box model calculations. Good model-measurement agreement can only be achieved when reversible RO2 + NO2 reactions are included for all RO2 species using literature values available from the latest SAR by [Jenkin et al., Atmos. Chem. Phys., 2019, 19, 7691]. The good agreement observed gives confidence that the SAR, derived originally for aliphatic RO2, can be applied to a large range of substituted RO2 radicals, simplifying generalised implementation in chemical models. RO2NO2 concentrations from non-acyl RO2 radicals of up to 2 × 10 cm-3 are predicted at 276 K, impacting effectively the kinetics of RO2 radicals. Under these conditions, peroxy radicals are slowly regenerated downwind of the pollution source and may be lost in the atmosphere through deposition of RO2NO2. Based on this study, 60% of RO2 radicals would be stored as RO2NO2 at a temperature of 10 °C and in the presence of a few ppbv of NO2. The fraction increases further at colder temperatures and/or higher NO2 mixing ratios. This does not only affect the expected concentrations of RO2 radicals but, as the peroxynitrates can react with OH radicals or photolyse, they could comprise a net sink for RO2 radicals as well as increase the production of NOx (= NO + NO2) in different locations depending on their lifetime. Omitting this chemistry from the kinetic model can lead to misinterpreted product formation and may prevent reconciling observations and model predictions.
Collapse
Affiliation(s)
- Michelle Färber
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Luc Vereecken
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Hendrik Fuchs
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
- Department of Physics, University of Cologne, 50932 Cologne, Germany
| | - Georgios I Gkatzelis
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Franz Rohrer
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Sergej Wedel
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Andreas Wahner
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| | - Anna Novelli
- Institute for Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
2
|
Lewis AC, Hopkins JR, Carslaw DC, Hamilton JF, Nelson BS, Stewart G, Dernie J, Passant N, Murrells T. An increasing role for solvent emissions and implications for future measurements of volatile organic compounds. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190328. [PMID: 32981432 PMCID: PMC7536026 DOI: 10.1098/rsta.2019.0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Volatile organic compounds (VOCs) are a broad class of air pollutants which act as precursors to tropospheric ozone and secondary organic aerosols. Total UK emissions of anthropogenic VOCs peaked in 1990 at 2,840 kt yr-1 and then declined to approximately 810 kt yr-1 in 2017 with large reductions in road transport and fugitive fuel emissions. The atmospheric concentrations of many non-methane hydrocarbons (NMHC) in the UK have been observed to fall over this period in broadly similar proportions. The relative contribution to emissions from solvents and industrial processes is estimated to have increased from approximately 35% in 1990 to approximately 63% in 2017. In 1992, UK national monitoring quantified 19 of the 20 most abundant individual anthropogenic VOCs emitted (all were NMHCs), but by 2017 monitoring captured only 13 of the top 20 emitted VOCs. Ethanol is now estimated to be the most important VOC emitted by mass (in 2017 approx. 136 kt yr-1 and approx. 16.8% of total emissions) followed by n-butane (52.4 kt yr-1) and methanol (33.2 kt yr-1). Alcohols have grown in significance representing approximately 10% of emissions in 1990 rising to approximately 30% in 2017. The increased role of solvent emissions should now be reflected in European monitoring strategies to verify total VOC emission reduction obligations in the National Emissions Ceiling Directive. Adding ethanol, methanol, formaldehyde, acetone, 2-butanone and 2-propanol to the existing NMHC measurements would provide full coverage of the 20 most significant VOCs emitted on an annual mass basis. This article is part of a discussion meeting issue 'Air quality, past present and future'.
Collapse
Affiliation(s)
- Alastair C. Lewis
- National Centre for Atmospheric Science, University of York, Heslington, York YO10 5DD, UK
| | - Jim R. Hopkins
- National Centre for Atmospheric Science, University of York, Heslington, York YO10 5DD, UK
| | - David C. Carslaw
- Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York YO10 5DD, UK
- Ricardo Energy and Environment Gemini Building, Fermi Avenue, Harwell, Oxon OX11 0QR, UK
| | - Jacqueline F. Hamilton
- Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York YO10 5DD, UK
| | - Beth S. Nelson
- Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York YO10 5DD, UK
| | - Gareth Stewart
- Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York YO10 5DD, UK
| | - James Dernie
- Ricardo Energy and Environment Gemini Building, Fermi Avenue, Harwell, Oxon OX11 0QR, UK
| | - Neil Passant
- Ricardo Energy and Environment Gemini Building, Fermi Avenue, Harwell, Oxon OX11 0QR, UK
| | - Tim Murrells
- Ricardo Energy and Environment Gemini Building, Fermi Avenue, Harwell, Oxon OX11 0QR, UK
| |
Collapse
|
3
|
Yu Z, Liu C, Niu H, Wu M, Gao W, Zhou Z, Huang Z, Li X. Real time analysis of trace volatile organic compounds in ambient air: a comparison between membrane inlet single photon ionization mass spectrometry and proton transfer reaction mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4343-4350. [PMID: 32844845 DOI: 10.1039/d0ay01102a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Real-time monitoring of volatile organic compounds (VOCs) is critical for a better understanding of chemical processes in ambient air or making minute-by-minute decisions in emergency situations. Proton transfer reaction mass spectrometry (PTR-MS) is nowadays the most commonly used technique for real-time monitoring of VOCs while membrane single photon ionization mass spectrometry (MI-SPI-MS) is a promising MS technique for online detection of trace VOCs. Here, to evaluate the potential of MI-SPI-MS as a complementary tool to PTR-MS, a comprehensive comparison has been performed between MI-SPI-MS and PTR-MS. By using two sets of standard gas mixtures TO15 and PAMS, SPI-MS shows advantages in the detection of ≥C5 alkanes, aromatics and halogens; especially for aromatics, the LODs can reach the ppt level. PTR-MS has performed better in the detection of alkenes, ketones and aldehydes. For outdoor measurements, a number of VOCs have been detected while using MI-SPI-MS and PTR-MS in parallel. Consistent temporal variations have been observed for toluene, C8-aromatics and C9-aromatics by the two instruments, with a more sensitive response from the MI-SPI-MS. Thus by measuring both standard gas mixture and complex ambient air samples, we have successfully demonstrated that MI-SPI-MS will be a helpful tool to provide important complementary information on aromatics and alkanes in air, and proper application of MI-SPI-MS will benefit the real-time monitoring of trace VOCs in relative fields.
Collapse
Affiliation(s)
- Zhujun Yu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Travis KR, Heald CL, Allen HM, Apel EC, Arnold SR, Blake DR, Brune WH, Chen X, Commane R, Crounse JD, Daube BC, Diskin GS, Elkins JW, Evans MJ, Hall SR, Hintsa EJ, Hornbrook RS, Kasibhatla PS, Kim MJ, Luo G, McKain K, Millet DB, Moore FL, Peischl J, Ryerson TB, Sherwen T, Thames AB, Ullmann K, Wang X, Wennberg PO, Wolfe GM, Yu F. Constraining remote oxidation capacity with ATom observations. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:7753-7781. [PMID: 33688335 PMCID: PMC7939060 DOI: 10.5194/acp-20-7753-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The global oxidation capacity, defined as the tropospheric mean concentration of the hydroxyl radical (OH), controls the lifetime of reactive trace gases in the atmosphere such as methane and carbon monoxide (CO). Models tend to underestimate the methane lifetime and CO concentrations throughout the troposphere, which is consistent with excessive OH. Approximately half of the oxidation of methane and non-methane volatile organic compounds (VOCs) is thought to occur over the oceans where oxidant chemistry has received little validation due to a lack of observational constraints. We use observations from the first two deployments of the NASA ATom aircraft campaign during July-August 2016 and January-February 2017 to evaluate the oxidation capacity over the remote oceans and its representation by the GEOS-Chem chemical transport model. The model successfully simulates the magnitude and vertical profile of remote OH within the measurement uncertainties. Comparisons against the drivers of OH production (water vapor, ozone, and NO y concentrations, ozone photolysis frequencies) also show minimal bias, with the exception of wintertime NO y . The severe model overestimate of NO y during this period may indicate insufficient wet scavenging and/or missing loss on sea-salt aerosols. Large uncertainties in these processes require further study to improve simulated NO y partitioning and removal in the troposphere, but preliminary tests suggest that their overall impact could marginally reduce the model bias in tropospheric OH. During the ATom-1 deployment, OH reactivity (OHR) below 3 km is significantly enhanced, and this is not captured by the sum of its measured components (cOHRobs) or by the model (cOHRmod). This enhancement could suggest missing reactive VOCs but cannot be explained by a comprehensive simulation of both biotic and abiotic ocean sources of VOCs. Additional sources of VOC reactivity in this region are difficult to reconcile with the full suite of ATom measurement constraints. The model generally reproduces the magnitude and seasonality of cOHRobs but underestimates the contribution of oxygenated VOCs, mainly acetaldehyde, which is severely underestimated throughout the troposphere despite its calculated lifetime of less than a day. Missing model acetaldehyde in previous studies was attributed to measurement uncertainties that have been largely resolved. Observations of peroxyacetic acid (PAA) provide new support for remote levels of acetaldehyde. The underestimate in both model acetaldehyde and PAA is present throughout the year in both hemispheres and peaks during Northern Hemisphere summer. The addition of ocean sources of VOCs in the model increases cOHRmod by 3% to 9% and improves model-measurement agreement for acetaldehyde, particularly in winter, but cannot resolve the model summertime bias. Doing so would require 100 Tg yr-1 of a long-lived unknown precursor throughout the year with significant additional emissions in the Northern Hemisphere summer. Improving the model bias for remote acetaldehyde and PAA is unlikely to fully resolve previously reported model global biases in OH and methane lifetime, suggesting that future work should examine the sources and sinks of OH over land.
Collapse
Affiliation(s)
- Katherine R. Travis
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colette L. Heald
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah M. Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Eric C. Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Stephen R. Arnold
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
| | - Donald R. Blake
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - William H. Brune
- Department of Meteorology, Pennsylvania State University, University Park, PA, USA
| | - Xin Chen
- University of Minnesota, Department of Soil, Water and Climate, St. Paul, MN, USA
| | - Róisín Commane
- Dept. of Earth & Environmental Sciences of Lamont-Doherty Earth Observatory and Columbia University, Palisades, NY, USA
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Bruce C. Daube
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | - James W. Elkins
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Mathew J. Evans
- Wolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, York, UK
- National Centre for Atmospheric Science (NCAS), University of York, York, UK
| | - Samuel R. Hall
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Eric J. Hintsa
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Science, University of Colorado, CO, USA
| | - Rebecca S. Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | | | - Michelle J. Kim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Gan Luo
- Atmospheric Sciences Research Center, University of Albany, Albany, NY, USA
| | - Kathryn McKain
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Science, University of Colorado, CO, USA
| | - Dylan B. Millet
- University of Minnesota, Department of Soil, Water and Climate, St. Paul, MN, USA
| | - Fred L. Moore
- Global Monitoring Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Science, University of Colorado, CO, USA
| | - Jeffrey Peischl
- Cooperative Institute for Research in Environmental Science, University of Colorado, CO, USA
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Thomas B. Ryerson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Tomás Sherwen
- Wolfson Atmospheric Chemistry Laboratories (WACL), Department of Chemistry, University of York, York, UK
- National Centre for Atmospheric Science (NCAS), University of York, York, UK
| | - Alexander B. Thames
- Department of Meteorology, Pennsylvania State University, University Park, PA, USA
| | - Kirk Ullmann
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Xuan Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Paul O. Wennberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Glenn M. Wolfe
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University of Albany, Albany, NY, USA
| |
Collapse
|
5
|
Wang S, Apel EC, Hornbrook RS, Hills A, Emmons LK, Tilmes S, Lamarque JF, Jimenez JL, Campuzano-Jost P, Nault BA, Crounse JD, Wennberg PO, Ryerson TB, Thompson CR, Peischl J, Moore F, Nance D, Hall B, Elkins J, Tanner D, Gregory Huey L, Hall SR, Ullmann K, Orlando JJ, Tyndall GS, Flocke FM, Ray E, Hanisco TF, Wolfe GM, St.Clair J, Commane R, Daube B, Barletta B, Blake DR, Weinzierl B, Dollner M, Conley A, Vitt F, Wofsy SC, Riemer DD. Atmospheric Acetaldehyde: Importance of Air-Sea Exchange and a Missing Source in the Remote Troposphere. GEOPHYSICAL RESEARCH LETTERS 2019; 46:5601-5613. [PMID: 32606484 PMCID: PMC7325730 DOI: 10.1029/2019gl082034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/18/2019] [Indexed: 06/02/2023]
Abstract
We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.
Collapse
Affiliation(s)
- Siyuan Wang
- Advanced Study Program (ASP), National Center for Atmospheric Research, Boulder CO, 80301
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Eric C. Apel
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Rebecca S. Hornbrook
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Alan Hills
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Louisa K. Emmons
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Simone Tilmes
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
- Climate and Global Dynamics, National Center for Atmospheric Research, Boulder CO, 80301
| | - Jean-François Lamarque
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
- Climate and Global Dynamics, National Center for Atmospheric Research, Boulder CO, 80301
| | - Jose L. Jimenez
- Department of Chemistry and Biochemistry, University of Colorado Boulder, CO 80309
- Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, CO 80309
| | - Pedro Campuzano-Jost
- Department of Chemistry and Biochemistry, University of Colorado Boulder, CO 80309
- Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, CO 80309
| | - Benjamin A. Nault
- Department of Chemistry and Biochemistry, University of Colorado Boulder, CO 80309
- Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, CO 80309
| | - John D. Crounse
- Division of Engineering and Applied Science, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Paul O. Wennberg
- Division of Engineering and Applied Science, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Thomas B. Ryerson
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - Chelsea R. Thompson
- Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, CO 80309
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - Jeff Peischl
- Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, CO 80309
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - Fred Moore
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - David Nance
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - Brad Hall
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - James Elkins
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - David Tanner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - L. Gregory Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Samuel R. Hall
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Kirk Ullmann
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - John J. Orlando
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Geoff S. Tyndall
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Frank M. Flocke
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Eric Ray
- Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305
| | - Thomas F. Hanisco
- Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD 20771
| | - Glenn M. Wolfe
- Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD 20771
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21228
| | - Jason St.Clair
- Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD 20771
- Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21228
| | - Róisín Commane
- Harvard School of Engineering and Applied Sciences, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
- Department of Earth & Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964
| | - Bruce Daube
- Harvard School of Engineering and Applied Sciences, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | - Barbara Barletta
- Department of Chemistry, University of California Irvine, Irvine; CA 92697
| | - Donald R. Blake
- Department of Chemistry, University of California Irvine, Irvine; CA 92697
| | - Bernadett Weinzierl
- Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, Wien, Austria
| | - Maximilian Dollner
- Faculty of Physics, Aerosol Physics and Environmental Physics, University of Vienna, Wien, Austria
| | - Andrew Conley
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Francis Vitt
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder CO, 80301
| | - Steven C. Wofsy
- Harvard School of Engineering and Applied Sciences, Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
6
|
Yuan B, Koss AR, Warneke C, Coggon M, Sekimoto K, de Gouw JA. Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chem Rev 2017; 117:13187-13229. [DOI: 10.1021/acs.chemrev.7b00325] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bin Yuan
- Institute
for Environment and Climate Research, Jinan University, Guangzhou 510632, China
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Laboratory
of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Abigail R. Koss
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Carsten Warneke
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Matthew Coggon
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Kanako Sekimoto
- Chemical
Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder, Colorado 80305, United States
- Graduate
School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Joost A. de Gouw
- Cooperative
Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, United States
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Nozière B, Kalberer M, Claeys M, Allan J, D'Anna B, Decesari S, Finessi E, Glasius M, Grgić I, Hamilton JF, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf CJ, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt JD, Szidat S, Szmigielski R, Wisthaler A. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem Rev 2015; 115:3919-83. [PMID: 25647604 DOI: 10.1021/cr5003485] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Nozière
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Barbara D'Anna
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Irena Grgić
- ○National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | | | | | - Yoshiteru Iinuma
- ¶Leibniz-Institut für Troposphärenforschung, 04318 Leipzig, Germany
| | | | | | | | - Ivan Kourtchev
- ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Willy Maenhaut
- §University of Antwerp, 2000 Antwerp, Belgium.,□Ghent University, 9000 Gent, Belgium
| | | | | | | | - Jason D Surratt
- ▼University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
8
|
Kim S, Guenther A, Apel E. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1301-1314. [PMID: 23748571 DOI: 10.1039/c3em00040k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.
Collapse
Affiliation(s)
- Saewung Kim
- Department of Earth System Science, School of Physical Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
9
|
Zhan X, Duan J, Duan Y. Recent developments of proton-transfer reaction mass spectrometry (PTR-MS) and its applications in medical research. MASS SPECTROMETRY REVIEWS 2013; 32:143-165. [PMID: 23097015 DOI: 10.1002/mas.21357] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 05/05/2012] [Indexed: 06/01/2023]
Abstract
Proton-transfer reaction mass spectrometry (PTR-MS) allows for real-time, on-line determination of absolute concentrations of volatile organic compounds (VOCs) with a high sensitivity and low detection limits (in the pptv range). The technique utilizes H₃O⁺ ions for proton-transfer reactions with many common VOCs while having little to no reaction with any constituents commonly present in air. Over the past decades, research has greatly improved the applications and instrumental design of PTR-MS. In this article, we give an overview of the development of PTR-MS in recent years and its application in medical research. The theory of PTR-MS and various methods for discriminating isobaric VOCs are also described. We also show several specialized designs of sample inlet system, some of those may make PTR-MS suitable for the detection of aqueous solution and/or non-volatile samples.
Collapse
Affiliation(s)
- Xuefang Zhan
- Research Center of Analytical Instrumentation, Analytical & Testing Center, College of Chemistry, Sichuan University, Chengdu, China
| | | | | |
Collapse
|
10
|
Lin YC, Schwab JJ, Demerjian KL, Bae MS, Chen WN, Sun Y, Zhang Q, Hung HM, Perry J. Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016504] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Li M, Biswas S, Nantz MH, Higashi RM, Fu XA. Preconcentration and Analysis of Trace Volatile Carbonyl Compounds. Anal Chem 2012; 84:1288-93. [DOI: 10.1021/ac2021757] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mingxiao Li
- Department
of Chemical Engineering, ‡Department of Chemistry, §Center for Regulatory and Environmental
Analytical Metabolomics (CREAM), and ∥James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky 40292, United States
| | - Souvik Biswas
- Department
of Chemical Engineering, ‡Department of Chemistry, §Center for Regulatory and Environmental
Analytical Metabolomics (CREAM), and ∥James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky 40292, United States
| | - Michael H. Nantz
- Department
of Chemical Engineering, ‡Department of Chemistry, §Center for Regulatory and Environmental
Analytical Metabolomics (CREAM), and ∥James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky 40292, United States
| | - Richard M. Higashi
- Department
of Chemical Engineering, ‡Department of Chemistry, §Center for Regulatory and Environmental
Analytical Metabolomics (CREAM), and ∥James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky 40292, United States
| | - Xiao-An Fu
- Department
of Chemical Engineering, ‡Department of Chemistry, §Center for Regulatory and Environmental
Analytical Metabolomics (CREAM), and ∥James Graham Brown Cancer Center, University of Louisville, Louisville,
Kentucky 40292, United States
| |
Collapse
|
12
|
Gómez Alvarez E, Moreno MV, Gligorovski S, Wortham H, Cases MV. Characterisation and calibration of active sampling Solid Phase Microextraction applied to sensitive determination of gaseous carbonyls. Talanta 2012; 88:252-8. [DOI: 10.1016/j.talanta.2011.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/09/2011] [Accepted: 10/16/2011] [Indexed: 11/26/2022]
|
13
|
Roukos J, Plaisance H, Leonardis T, Bates M, Locoge N. Development and validation of an automated monitoring system for oxygenated volatile organic compounds and nitrile compounds in ambient air. J Chromatogr A 2009; 1216:8642-51. [DOI: 10.1016/j.chroma.2009.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 11/30/2022]
|
14
|
Olaguer EP, Rappenglück B, Lefer B, Stutz J, Dibb J, Griffin R, Brune WH, Shauck M, Buhr M, Jeffries H, Vizuete W, Pinto JP. Deciphering the role of radical precursors during the Second Texas Air Quality Study. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2009; 59:1258-1277. [PMID: 19947108 DOI: 10.3155/1047-3289.59.11.1258] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb. Moreover, Ship Channel petrochemical flares were observed to produce plumes of apparent primary HCHO. In one such combustion plume that was depleted of ozone by large emissions of oxides of nitrogen (NOx), the Piper Aztec measured a ratio of HCHO to carbon monoxide (CO) 3 times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares or mobile sources can increase peak ozone in Houston by up to 30 ppb. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of nighttime radicals (approximately30 parts per trillion [ppt] HO2). HONO may be formed heterogeneously on urban canopy or particulate matter surfaces and may be enhanced by organic aerosol of industrial or motor vehicular origin, such as through conversion of nitric acid (HNO3). Additional HONO sources may increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the simulated effectiveness of control strategies.
Collapse
|