1
|
Hao Y, Pan X, Song L, Ding Y, Xia W, Wang S, Yu H, Kang L, Yao L. Anharmonic effect of the rate constant of the reactions of CH3SCH2OO system in high-temperature combustion. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study mainly focuses on the anharmonic effect of the reactions of CH3SCH2OO system. The geometries of the reactants and the transition states are optimized with Gaussian 09. The barrier heights are calculated with the energy of the reactants and the transition states. The RRKM theory is utilized to calculate the anharmonic and harmonic rate constants of the reactions. The anharmonic effect of these reactions can be clearly demonstrated by our results. Generally speaking, in the study, for most reactions, the rate constants increase with the temperature in the canonical case and the total energy in the microcanonical case, and the anharmonic effect of these reactions is significant and should not be neglected in high-temperature combustion. In CH3SCH2OO system, CH3SCH2OO → CH2SCH2OOH → CH2S + CH2O + OH is the main reaction channel. After a series of calculations, the anharmonic effect is remarkable, especially in high-temperature combustion. By analyzing other meaningful reactions that followed that channel above, the anharmonic effect of these reactions is generally obvious enough, especially for those reactions whose barrier heights are relatively low.
Collapse
Affiliation(s)
- Yu Hao
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Xinxiang Pan
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Liguo Song
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Yang Ding
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Wenwen Xia
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Shiye Wang
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Hongjing Yu
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Liqiang Kang
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| | - Li Yao
- Dalian Maritime University, Dalian 116026, China
- Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
2
|
Ng NL, Brown SS, Archibald AT, Atlas E, Cohen RC, Crowley JN, Day DA, Donahue NM, Fry JL, Fuchs H, Griffin RJ, Guzman MI, Herrmann H, Hodzic A, Iinuma Y, Jimenez JL, Kiendler-Scharr A, Lee BH, Luecken DJ, Mao J, McLaren R, Mutzel A, Osthoff HD, Ouyang B, Picquet-Varrault B, Platt U, Pye HOT, Rudich Y, Schwantes RH, Shiraiwa M, Stutz J, Thornton JA, Tilgner A, Williams BJ, Zaveri RA. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:2103-2162. [PMID: 30147712 PMCID: PMC6104845 DOI: 10.5194/acp-17-2103-2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
Collapse
Affiliation(s)
- Nga Lee Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steven S. Brown
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Elliot Atlas
- Department of Atmospheric Sciences, RSMAS, University of Miami, Miami, FL, USA
| | - Ronald C. Cohen
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - John N. Crowley
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Mainz, Germany
| | - Douglas A. Day
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Juliane L. Fry
- Department of Chemistry, Reed College, Portland, OR, USA
| | - Hendrik Fuchs
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Robert J. Griffin
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | - Hartmut Herrmann
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Alma Hodzic
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Yoshiteru Iinuma
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - José L. Jimenez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Astrid Kiendler-Scharr
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Ben H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Deborah J. Luecken
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jingqiu Mao
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - Robert McLaren
- Centre for Atmospheric Chemistry, York University, Toronto, Ontario, Canada
| | - Anke Mutzel
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Hans D. Osthoff
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Bin Ouyang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Benedicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), CNRS, Universities of Paris-Est Créteil and ì Paris Diderot, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Ulrich Platt
- Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot, Israel
| | - Rebecca H. Schwantes
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Andreas Tilgner
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Brent J. Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul A. Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|