1
|
Dong T, Liu J, Liu D, He P, Li Z, Shi M, Xu J. Spatiotemporal variability characteristics of extreme climate events in Xinjiang during 1960-2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57316-57330. [PMID: 36961640 DOI: 10.1007/s11356-023-26514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
Under the global warming, it is particularly important to explore the response of extreme climate to global climate change over the arid regions. Based on daily temperature (maximum, minimum, and average) and precipitation data from meteorological stations in Xinjiang, China, we analyzed the spatiotemporal characteristics of extreme temperature and extreme precipitation events via combining thin plate smoothing spline function interpolation, Sen's slope, and Mann-Kendall test. Our results showed that during 1960-2019, the extreme low temperature index of frost days (FD), icing days (ID), cold days (TX10p), cold nights (TN10p), and cold speel duration index (CSDI) all showed the downward trend to varying degrees, and the extreme high temperature index of summer days (SD25), warm days (TX90p), warm night (TN90p), and warm speel duration index (WSDI) all showed an upward trend to varying degrees, and the extreme low temperature index of high altitude mountains decreases more than that of the basin and plains. In addition, all the extreme temperature indices are closely related to the annual average temperature in Xinjiang (R > 0.6). Among the extreme precipitation indices, except for the consecutive dry days (CDD), the other extreme precipitation indices showed increasing trends to different degrees, but the changes in extreme precipitation in Xinjiang were mainly manifested by the increase of heavy precipitation in a short period (the increase of heavy precipitation and extreme heavy precipitation was the largest, 44.8 mm/10a and 17.6 mm/10a, respectively) and spatially concentrated in the Ili River and Altai Mountains in northern Xinjiang. Meanwhile, annual precipitation was positively correlated with the extreme precipitation index (R > 0.4), except for the CDD. This study provides theoretical support for the prevention and control of natural disasters in the dry zone.
Collapse
Affiliation(s)
- Tong Dong
- Key Laboratory of Coastal Science and Integrated Management, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jing Liu
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
- Hengxing University, Qingdao, 266000, China
| | - Dahai Liu
- Key Laboratory of Coastal Science and Integrated Management, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Panxing He
- Henan Normal University, Xinxiang, 453002, China
| | - Zheng Li
- College of Equipment Engineering, Shanxi Vocational University of Engineering Science and Technology, Jinzhong, 030600, China
| | - Mingjie Shi
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Jia Xu
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
2
|
Gwatida T, Kusangaya S, Gwenzi J, Mushore T, Shekede M, Viriri N. Is climate really changing? Insights from analysis of 30-year daily CHIRPS and station rainfall data in Zimbabwe. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
3
|
Chapman CA, Abernathy K, Chapman LJ, Downs C, Effiom EO, Gogarten JF, Golooba M, Kalbitzer U, Lawes MJ, Mekonnen A, Omeja P, Razafindratsima O, Sheil D, Tabor GM, Tumwesigye C, Sarkar D. The future of sub-Saharan Africa’s biodiversity in the face of climate and societal change. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.790552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many of the world’s most biodiverse regions are found in the poorest and second most populous continent of Africa; a continent facing exceptional challenges. Africa is projected to quadruple its population by 2100 and experience increasingly severe climate change and environmental conflict—all of which will ravage biodiversity. Here we assess conservation threats facing Africa and consider how these threats will be affected by human population growth, economic expansion, and climate change. We then evaluate the current capacity and infrastructure available to conserve the continent’s biodiversity. We consider four key questions essential for the future of African conservation: (1) how to build societal support for conservation efforts within Africa; (2) how to build Africa’s education, research, and management capacity; (3) how to finance conservation efforts; and (4) is conservation through development the appropriate approach for Africa? While the challenges are great, ways forward are clear, and we present ideas on how progress can be made. Given Africa’s current modest capacity to address its biodiversity crisis, additional international funding is required, but estimates of the cost of conserving Africa’s biodiversity are within reach. The will to act must build on the sympathy for conservation that is evident in Africa, but this will require building the education capacity within the continent. Considering Africa’s rapidly growing population and the associated huge economic needs, options other than conservation through development need to be more effectively explored. Despite the gravity of the situation, we believe that concerted effort in the coming decades can successfully curb the loss of biodiversity in Africa.
Collapse
|
4
|
Simanjuntak C, Gaiser T, Ahrends HE, Srivastava AK. Spatial and temporal patterns of agrometeorological indicators in maize producing provinces of South Africa. Sci Rep 2022; 12:12072. [PMID: 35840590 PMCID: PMC9287399 DOI: 10.1038/s41598-022-15847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Climate change impacts on maize production in South Africa, i.e., interannual yield variabilities, are still not well understood. This study is based on a recently released reanalysis of climate observations (AgERA5), i.e., temperature, precipitation, solar radiation, and wind speed data. The study assesses climate change effects by quantifying the trend of agrometeorological indicators, their correlation with maize yield, and analyzing their spatiotemporal patterns using Empirical Orthogonal Function. Thereby, the main agrometeorological factors that affected yield variability for the last 31 years (1990/91-2020/21 growing season) in major maize production provinces, namely Free State, KwaZulu-Natal, Mpumalanga, and North West are identified. Results show that there was a significant positive trend in temperature that averages 0.03-0.04 °C per year and 0.02-0.04 °C per growing season. There was a decreasing trend in precipitation in Free State with 0.01 mm per year. Solar radiation did not show a significant trend. Wind speed in Free State increased at a rate of 0.01 ms-1 per growing season. Yield variabilities in Free State, Mpumalanga, and North West show a significant positive correlation (r > 0.43) with agrometeorological variables. Yield in KwaZulu-Natal is not influenced by climate factors. The leading mode (50-80% of total variance) of each agrometeorological variable indicates spatially homogenous pattern across the regions. The dipole patterns of the second and the third mode suggest the variabilities of agrometeorological indicators are linked to South Indian high pressure and the warm Agulhas current. The corresponding principal components were mainly associated with strong climate anomalies which are identified as El Niño and La Niña events.
Collapse
Affiliation(s)
- Christian Simanjuntak
- Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Thomas Gaiser
- Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Hella Ellen Ahrends
- Department of Agricultural Sciences, University of Helsinki, Koetilantie 5, 00014, Helsinki, Finland
| | - Amit Kumar Srivastava
- Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| |
Collapse
|
5
|
Spatio-Temporal Trends of Precipitation and Temperature Extremes across the North-East Region of Côte d’Ivoire over the Period 1981–2020. CLIMATE 2022. [DOI: 10.3390/cli10050074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The northeast region of Côte d’Ivoire, where agriculture is the main economic activity, is potentially vulnerable to extreme climatic conditions. This study aims to make a comprehensive spatio-temporal analysis of trends in extreme indices related to precipitation and temperature for the Zanzan region of Côte d’Ivoire over the period of 1981–2020. The statistical significance of the calculated trends was assessed using the non-parametric Mann–Kendall test, while Sen’s slope estimation was used to define the amount of change. For extreme precipitations, the results showed a decreasing trend in annual total precipitations estimated at 112.37 mm and in daily precipitations intensity indices. Furthermore, the consecutive dry days’ index showed an increasing trend estimated at 18.67 days. Unlike the trends in precipitation extremes, which showed statistically non-significant trends, the trends in temperature extremes were mostly significant over the entire study area. The cold spells indices all show decreasing trends, while the warm spells show increasing trends. Drawing inferences from the results, it becomes clear that the study area may be threatened by food insecurity and water scarcity. The results are aimed to support climate adaptation efforts and policy intervention in the region.
Collapse
|
6
|
Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models. WATER 2021. [DOI: 10.3390/w13172358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents an analysis of projected precipitation extremes over the East African region. The study employs six indices defined by the Expert Team on Climate Change Detection Indices to evaluate extreme precipitation. Observed datasets and Coupled Model Intercomparison Project Phase six (CMIP6) simulations are employed to assess the changes during the two main rainfall seasons: March to May (MAM) and October to December (OND). The results show an increase in consecutive dry days (CDD) and decrease in consecutive wet days (CWD) towards the end of the 21st century (2081–2100) relative to the baseline period (1995–2014) in both seasons. Moreover, simple daily intensity (SDII), very wet days (R95 p), very heavy precipitation >20 mm (R20 mm), and total wet-day precipitation (PRCPTOT) demonstrate significant changes during OND compared to the MAM season. The spatial variation for extreme incidences shows likely intensification over Uganda and most parts of Kenya, while a reduction is observed over the Tanzania region. The increase in projected extremes may pose a serious threat to the sustainability of societal infrastructure and ecosystem wellbeing. The results from these analyses present an opportunity to understand the emergence of extreme events and the capability of model outputs from CMIP6 in estimating the projected changes. More studies are recommended to examine the underlying physical features modulating the occurrence of extreme incidences projected for relevant policies.
Collapse
|
7
|
Trends and Interannual Variability of Extreme Rainfall Indices over Cameroon. SUSTAINABILITY 2021. [DOI: 10.3390/su13126803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Central African citizens are highly vulnerable to extreme hydroclimatic events due to excess precipitation or to dry spells. This study makes use of CHIRPS precipitation data gridded at 0.05° × 0.05° resolution and extended from 1981 to 2019 to analyze spatial variabilities and trends of six extreme precipitation indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) over Cameroon. They are the number of wet days (RR1), the simple daily intensity index (SDII), the annual total precipitation from days greater than the 95th percentile (R95ptot), the maximum number of consecutive wet days (CWD), the maximum number of consecutive dry days (CDD), the number of very heavy rainfall (RR20). The standard precipitation index (SPI) time series were also examined in the five agro-climatic regions of the domain. The pattern of annual precipitation was first checked over the entire domain. We obtain a well-known pattern showing a decreased precipitation northward with the highest values around the Atlantic Ocean coast. The analysis shows that all indices represent patterns approximately similar to that of annual rainfall except CDD where the spatial south-north gradient is reversed. RR20 shows the lowest spatial variability. Trend study of RR1 indicates negative values south of the domain and predominated positive values in the northern part, where CDD, on the contrary, shows a decreased trend. The highest trends are observed in the northernmost area for CWD and around the coast for SDII and R95ptot. SPI time series indicate an alternative dry and wet period and the years between 1990 and 2000 witnessed more annual wet conditions. Such a study is very important in this domain where variabilities of climatic components are very high due to climate change impact and diversified relief. The results can serve as a reference for agricultural activity, hydropower management, civil engineering, planning of economic activities and can contribute to the understanding of the climate system in Cameroon.
Collapse
|
8
|
Ojo O, Emmanuel I, Adeyemi B, Ogolo E. Effect of the radiation balance on warming occurrence over West Africa. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Zhu M, Fan B. Exploring the Relationship between Rising Temperatures and the Number of Climate-Related Natural Disasters in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020745. [PMID: 33467203 PMCID: PMC7829798 DOI: 10.3390/ijerph18020745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
Warming has strongly influenced the quantity and variability of natural disasters around the globe. This study aims to characterize the varying patterns between rising temperatures and climate-related natural disasters in China from 1951 to 2010. We examined the overall trend in the patterns of an 11-year cycle, and climate-related natural disaster responses to periods of rising and dropping temperature. We used Morlet wavelet analysis to determine the length of a temperature cycle period, and the arc elasticity coefficient to assess the number of climate-related natural disasters in response to the changing temperature. We found that: (1) the overall relationship between temperature and the number of climate-related natural disasters was positive; (2) however, on the cycle level, the pattern of climate-related natural disasters was found to be independent of temperature variation; (3) on the rise-drop level, temperature increases were associated with declines in the number of climate-related natural disasters. Moreover, as temperature decreased, the number of climate-related natural disasters increased substantially, such that temperature had a more considerable influence on the quantity of climate-related natural disasters during the temperature-drop period. Findings in this study can help enhance the dissemination of warning and mitigation efforts to combat natural disasters in the changing climate.
Collapse
Affiliation(s)
- Mingan Zhu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China;
- School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Bihang Fan
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China;
- Correspondence:
| |
Collapse
|
10
|
Abdelrahim E. Jahelnabi, Wu W, Boloorani AD, Salem HM, Nazeer M, Fadoul SM, Khan MS. Assessment the Influence of Climate and Human Activities in Vegetation Degradation using GIS and Remote Sensing Techniques. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425520060025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Impacts of Agroclimatic Variability on Maize Production in the Setsoto Municipality in the Free State Province, South Africa. CLIMATE 2020. [DOI: 10.3390/cli8120147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The majority of people in South Africa eat maize, which is grown as a rain-fed crop in the summer rainfall areas of the country, as their staple food. The country is usually food secure except in drought years, which are expected to increase in severity and frequency. This study investigated the impacts of rainfall and minimum and maximum temperatures on maize yield in the Setsoto municipality of the Free State province of South Africa from 1985 to 2016. The variation of the agroclimatic variables, including the Palmer stress diversity index (PSDI), was investigated over the growing period (Oct–Apr) which varied across the four target stations (Clocolan, Senekal, Marquard and Ficksburg). The highest coefficients of variance (CV) recorded for the minimum and maximum temperatures and rainfall were 16.2%, 6.2% and 29% during the growing period. Non-parametric Mann Kendal and Sen’s slope estimator were used for the trend analysis. The result showed significant positive trends in minimum temperature across the stations except for Clocolan where a negative trend of 0.2 to 0.12 °C year−1 was observed. The maximum temperature increased significantly across all the stations by 0.04–0.05 °C year−1 during the growing period. The temperature effects were most noticeable in the months of November and February when leaf initiation and kernel filling occur, respectively. The changes in rainfall were significant only in Ficksburg in the month of January with a value of 2.34 mm year−1. Nevertheless, the rainfall showed a strong positive correlation with yield (r 0.46, p = < 0.05). The overall variation in maize production is explained by the contribution of the agroclimatic parameters; the minimum temperature (R2 0.13–0.152), maximum temperature (R2 0.214–0.432) and rainfall (R2 0.17–0.473) for the growing period across the stations during the study period. The PSDI showed dry years and wet years but with most of the years recording close to normal rainfall. An increase in both the minimum and maximum temperatures over time will have a negative impact on crop yield.
Collapse
|
12
|
Rainfall Trend and Its Relationship with Normalized Difference Vegetation Index in a Restored Semi-Arid Wetland of South Africa. SUSTAINABILITY 2020. [DOI: 10.3390/su12218919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clearance of terrestrial wetland vegetation and rainfall variations affect biodiversity. The rainfall trend–NDVI (Normalized Difference Vegetation Index) relationship was examined to assess the extent to which rainfall affects vegetation productivity within Nylsvley, Ramsar site in Limpopo Province, South Africa. Daily rainfall data measured from eight rainfall stations between 1950 and 2016 were used to generate seasonal and annual rainfall data. Mann-Kendall and quantile regression were applied to assess trends in rainfall data. NDVI was derived from satellite images from between 1984 and 2003 using Zonal statistics and correlated with rainfall of the same period to assess vegetation dynamics. Mann-Kendall and Sen’s slope estimator showed only one station had a significant increasing rainfall trend annually and seasonally at p < 0.05, whereas all the other stations showed insignificant trends in both rainfall seasons. Quantile regression showed 50% and 62.5% of the stations had increasing annual and seasonal rainfall, respectively. Of the stations, 37.5% were statistically significant at p < 0.05, indicating increasing and decreasing rainfall trends. These rainfall trends show that the rainfall of Nylsvley decreased between 1995 and 2003. The R2 between rainfall and NDVI of Nylsvley is 55% indicating the influence of rainfall variability on vegetation productivity. The results underscore the impact of decadal rainfall patterns on wetland ecosystem change.
Collapse
|
13
|
Trends of Climate Change and Variability in Three Agro-Ecological Settings in Central Ethiopia: Contrasts of Meteorological Data and Farmers’ Perceptions. CLIMATE 2020. [DOI: 10.3390/cli8110121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using gridded daily temperature and rainfall data covering 30 years (1988–2017), this study investigates trends in rainfall, temperature, and extreme events in three agro-ecological settings in central Ethiopia. The Mann Kendall test and Sen’s slope estimator were used to examine the trends and slope of changes in climate indices. The profile of farmers whose perception converges with or diverges from meteorological data was characterized using polling. The average annual temperature has increased by 0.4 and 0.3 °C per decade in the lowland and midland areas, respectively. Average annual rainfall has increased only in the midland areas by 178 mm per decade. Farmers’ perception of increasing temperature fairly aligns with meteorological data. However, there is a noticeable difference between farmers’ perception of rainfall and meteorological data. The perception of farmers with poor economic status, access to media, and higher social capital aligns with measured trends. Conversely, the perception of economically better-off and uneducated farmers diverges from meteorological data. Accurate perception is constrained by the failure of the traditional forecast methods to describe complex weather variabilities and lack of access to down-scaled weather information. The findings highlight the importance of availing specific and agro-ecologically relevant weather forecasts to overcome perceptual problems and to support effective adaptation.
Collapse
|
14
|
Bivariate Assessment of Drought Return Periods and Frequency in Brazilian Northeast Using Joint Distribution by Copula Method. GEOSCIENCES 2020. [DOI: 10.3390/geosciences10040135] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Northeast region of Brazil (NRB) is the most populous semiarid area in the world and is extremely susceptible to droughts. The severity and duration of these droughts depend on several factors, and they do not necessarily follow the same behavior. The aim of this work is to evaluate the frequency of droughts in the NRB and calculate the return period of each drought event using the copula technique, which integrates the duration and severity of the drought in the NRB in a joint bivariate distribution. Monthly precipitation data from 96 meteorological stations spatially distributed in the NRB, ranging from 1961 to 2017, are used. The copula technique is applied to the Standardized Precipitation Index (SPI) on the three-month time scale, testing three families of Archimedean copula functions (Gumbel–Hougaard, Clayton and Frank) to reveal which model is best suited for the data. Averagely, the most frequent droughts observed in the NRB are concentrated in the northern sector of the region, with an observed duration varying from three and a half to five and a half months. However, the eastern NRB experiences the most severe droughts, lasting for 14 to 24 months. The probability distributions that perform better in modeling the series of severity and duration of droughts are exponential, normal and lognormal. The observed severity and duration values show that, for average values, the return period across the region is approximately 24 months. Still in this regard, the southernmost tip of the NRB stands out for having a return period of over 35 months. Regarding maximum observed values of severity and duration, the NRB eastern strip has the longest return period (>60 months), mainly in the southeastern portion where a return period above 90 months was observed. The northern NRB shows the shortest return period (~45 months), indicating that it is the NRB sector with the highest frequency of intense droughts. These results provide useful information for drought risk management in the NRB.
Collapse
|
15
|
Changes in Precipitation Extremes over the Source Region of the Yellow River and Its Relationship with Teleconnection Patterns. WATER 2020. [DOI: 10.3390/w12040978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Precipitation extremes and their underlying causes are important processes to understand to plan appropriate adaptation measures. This paper presents an analysis of the spatiotemporal variability and trend of precipitation extremes in the important source region of the Yellow River and explores the connection to global teleconnection patterns and the 850-mb vector wind. Six indices for precipitation extremes were computed and analyzed for assessment of a changing regional climate. Results showed that these indices have a strong gradient from the northwest to the southeast part for the period 1961–2015, due to the great influence from the south-easterly summer monsoon flow. However, no statistically significant trends were found for the defined indices at the majority of stations, and their spatial distribution are noticed by irregularly mixed positive and negative changes except for the maximum number of consecutive wet days (CWD). Singular value decomposition analysis revealed that the precipitation extreme indices—including annual total precipitation when daily precipitation >95th percentile (R95p), annual count of days with daily precipitation ≥10 mm (R10mm), annual maximum consecutive 5-day precipitation (R5d), total precipitation divided by the number of wet days (SDII), and CWD—are negatively related to the El Nino-Southern Oscillation (NINO 3.4) in the first mode, and the maximum number of consecutive dry days (CDD) is positively related to the Scandinavian pattern in the second mode at 0.05 significance level. The 850-mb vector wind analysis showed that the southwestern monsoon originating from the Indian Ocean brings sufficient moisture to this region. Furthermore, the anti-cyclone in the western part of the North Pacific plays a significant role in the transport of moisture to the source region of the Yellow River. The links between precipitation extremes and teleconnection patterns explored in this study are important for better prediction and preparedness of climatic extremes.
Collapse
|
16
|
Zhao Y, Huang A, Kan M, Dong X, Yu X, Wu Y, Zhang X, Cai S. Characteristics of Hourly Extreme Precipitation along the Yangtze River Basin, China during Warm Season. Sci Rep 2020; 10:5613. [PMID: 32221333 PMCID: PMC7101396 DOI: 10.1038/s41598-020-62535-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/11/2020] [Indexed: 11/24/2022] Open
Abstract
Based on the hourly gauge-satellite merged precipitation data with the spatial resolution of 0.1° × 0.1° during 2008–2016, the characteristics of extreme precipitation (EP) diurnal cycle along the Yangtze River Basin (YRB) and their regional and sub-seasonal differences during warm season have been indicated and revealed in this study. Results show that the EP amount (EPA) over most lower reaches of YRB exhibits two diurnal peaks with one in late afternoon and the other in morning, while the EPA over most eastern Tibetan Plateau (the Sichuan Basin and the northern Yunnan-Guizhou Plateau) generally peaks during late afternoon to midnight (midnight to early morning). The afternoon (morning) EPA diurnal peaks over the areas east to 110°E is mainly resulted from the short (long) duration EP events. However, both the short and long duration EP events lead to the nocturnal diurnal peaks and eastward propagating features of EPA over the regions west to110°E. The EP events over the Sichuan Basin generally begin at midnight and mostly peak around 03:00-04:00 Beijing time, and they start earlier and end later with the duration time increased. However, the EP events with short (long) duration over the lower reaches of YRB frequently start and peak in afternoon (early morning) and typically end at around 18:00 (07:00-08:00) Beijing time, and they start later (earlier) and end later with the duration time increased. Meanwhile, the EP frequency (EPF) diurnal cycles over the lower reaches of YRB exhibit obvious sub-seasonal differences in warm season, which show only a morning peak in the pre-Meiyu period, two comparable peaks with one in afternoon and the other in morning during the Meiyu period, and a predominant afternoon peak and a secondary morning peak in the post-Meiyu period, respectively. While the EPF over Sichuan Basin characterized by only one dominant early morning peak during all periods of the warm season exhibits much smaller sub-seasonal differences in the diurnal phase relative to that over the lower reaches of YRB.
Collapse
Affiliation(s)
- Yong Zhao
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China, 610225
| | - Anning Huang
- State Key Laboratory State of Severe Weather and Joint Center for Atmospheric Radar Research of CMA/NJU, School of Atmospheric Sciences, Nanjing University, Nanjing, China, 210023.
| | - Menyun Kan
- Glarun Technology Co., ltd, Nanjing, China, 211106
| | - Xinning Dong
- Chongqing Climate Center, Chongqing, China, 401147
| | - Xiaojing Yu
- Institute of Desert Meteorology, China Meteorological Administration, Urumqi, China, 830002
| | - Yang Wu
- State Key Laboratory State of Severe Weather and Joint Center for Atmospheric Radar Research of CMA/NJU, School of Atmospheric Sciences, Nanjing University, Nanjing, China, 210023
| | - Xindan Zhang
- State Key Laboratory State of Severe Weather and Joint Center for Atmospheric Radar Research of CMA/NJU, School of Atmospheric Sciences, Nanjing University, Nanjing, China, 210023
| | - Shuxin Cai
- State Key Laboratory State of Severe Weather and Joint Center for Atmospheric Radar Research of CMA/NJU, School of Atmospheric Sciences, Nanjing University, Nanjing, China, 210023
| |
Collapse
|
17
|
Abstract
Sierra Leone on the west coast of Africa has a monsoon-type climate. Reports by politically influential donors regularly state that Sierra Leone is extremely vulnerable to climate change, but the objective evidence backing these statements is often unreported. Predicting the future climate depends on modelling the West African monsoon; unfortunately, current models give conflicting results. Instead, changes in rainfall over the last four decades are examined to see if there are already significant changes. Rainfall records are extremely limited, so the Climate Hazards Group InfraRed Precipitation with Station daily data at a spatial resolution of 0.05 degrees was used. In addition to total annual rainfall, the characteristics of the early rainy season (critical for farmers), the length of the rainy season and growing season, and the frequency of extreme events were calculated. There is evidence for a significant reduction in annual rainfall in the northwest. There is only limited support for the widely held belief that the start of the rainy season is becoming more erratic and that extreme events are becoming more common. El-Niño was significant in the southeast. If these trends continue, they will exacerbate the consequences of temperature increases (predicted to be between 1 and 2.6 °C by 2060) and negatively affect the livelihoods and agricultural practices of the rural poor.
Collapse
|
18
|
Multiscale Spatio-Temporal Changes of Precipitation Extremes in Beijing-Tianjin-Hebei Region, China during 1958–2017. ATMOSPHERE 2019. [DOI: 10.3390/atmos10080462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, based on daily precipitation records during 1958–2017 from 28 meteorological stations in the Beijing-Tianjin-Hebei (BTH) region, the spatio-temporal variations in precipitation extremes defined by twelve indices are analyzed by the methods of linear regression, Mann-Kendall test and continuous wavelet transform. The results showed that the spatial patterns of all the indices except for consecutive dry days (CDD) and consecutive wet days (CWD) were similar to that of annual total precipitation with the high values in the east and the low value in the west. Regionally averaged precipitation extremes were characterized by decreasing trends, of which five indices (i.e., very heavy precipitation days (R50), very wet precipitation (R95p), extreme wet precipitation (R99p), max one-day precipitation (R × 1day), and max five-day precipitation (R × 5day)) exhibited significantly decreasing trends at 5% level. From monthly and seasonal scale, almost all of the highest values in R × 1day and R × 5day occurred in summer, especially in July and August due to the impacts of East Asian monsoon climate on inter-annual uneven distribution of precipitation. The significant decreasing trends in annual R×1day and R×5day were mainly caused by the significant descend in summer. Besides, the possible associations between precipitation extremes and large-scale climate anomalies (e.g., ENSO (El Niño Southern Oscillation), NAO (North Atlantic Oscillation), IOD (Indian Ocean Dipole), and PDO (Pacific Decadal Oscillation)) were also investigated using the correlation analysis. The results showed that the precipitation extremes were significantly influenced by ENSO with one-year ahead, and the converse correlations between the precipitation extremes and climate indices with one-year ahead and 0-year ahead were observed. Moreover, all the indices show significant two- to four-year periodic oscillation during the entire period of 1958–2017, and most of indices show significant four- to eight-year periodic oscillation during certain periods. The influences of climate anomalies on precipitation extremes were composed by different periodic components, with most of higher correlations occurring in low-frequency components.
Collapse
|
19
|
Study on Temporal Variations of Surface Temperature and Rainfall at Conakry Airport, Guinea: 1960–2016. CLIMATE 2019. [DOI: 10.3390/cli7070093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The monthly averaged data time series of temperatures and rainfall without interruption of Conakry Airport (9.34° N 13.37° W, Guinea) from 1960 to 2016 were used. Inter-annual and annual changes in temperature and rainfall were investigated. Then, different models: Mann-Kendall Test, Multi-Linear-Regression analysis, Theil-Sen’s slope estimates and wavelet analysis where used for trend analysis and the dependency with these climate forcings. Results showed an increase in temperature with semi-annual and annual cycles. A sharp and abrupt rise in the temperature in 1998 was found. The results of study have shown increasing trends for temperature (about 0.21°/year). A decrease in rainfall (about −8.14 mm/year) is found since the end of 1960s and annual cycle with a maximum value of about 1118.3 mm recorded in August in average. The coherence between the two parameters and climate indices: El Niño 3.4, Atlantic Meridional Mode, Tropical Northern Atlantic and Atlantic Niño, were investigated. Thus, there is a clear need for increased and integrated research efforts in climate parameters variations to improve knowledge in climate change.
Collapse
|
20
|
Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015). WATER 2019. [DOI: 10.3390/w11071453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Tibetan Plateau is one of the most vulnerable areas to extreme precipitation. In recent decades, water cycles have accelerated, and the temporal and spatial characteristics of extreme precipitation have undergone dramatic changes across the Tibetan Plateau, especially in its various ecosystems. However, there are few studies that considered the variation of extreme precipitation in various ecosystems, and the impact of El Niño-Southern Oscillation (ENSO), and few researchers have made a quantitative analysis between them. In this study, we analyzed the spatial and temporal pattern of 10 extreme precipitation indices across the Tibetan Plateau (including its four main ecosystems: Forest, alpine meadow, alpine steppe, and desert steppe) based on daily precipitation from 76 meteorological stations over the past 30 years. We used the linear least squares method and Pearson correlation coefficient to examine variation magnitudes of 10 extreme precipitation indices and correlation. Temporal pattern indicated that consecutive wet days (CWD) had a slightly decreasing trend (slope = −0.006), consecutive dry days (CDD), simple daily intensity (SDII), and extreme wet day precipitation (R99) displayed significant increasing trends, while the trends of other indices were not significant. For spatial patterns, the increasing trends of nine extreme precipitation indices (excluding CDD) occurred in the southwestern, middle and northern regions of the Tibetan Plateau; decreasing trends were distributed in the southeastern region, while the spatial pattern of CDD showed the opposite distribution. As to the four different ecosystems, the number of moderate precipitation days (R10mm), number of heavy precipitation days (R20mm), wet day precipitation (PRCPTOT), and very wet day precipitation (R95) in forest ecosystems showed decreasing trends, but CDD exhibited a significant increasing trend (slope = 0.625, P < 0.05). In the other three ecosystems, all extreme precipitation indices generally exhibited increasing trends, except for CWD in alpine meadow (slope = −0.001) and desert steppe (slope = −0.005). Furthermore, the crossover wavelet transform indicated that the ENSO had a 4-year resonance cycle with R95, SDII, R20mm, and CWD. These results provided additional evidence that ENSO play an important remote driver for extreme precipitation variation in the Tibetan Plateau.
Collapse
|
21
|
Abstract
The climate of the Arabian Peninsula is characterized by significant spatial and temporal variations, due to its complex topography and the large-scale atmospheric circulation. Furthermore, the role of dust in the formation of regional climate is considered to be crucial. In this work, the regional climatology for the Arabian Peninsula has been studied by employing a high resolution state of the art atmospheric model that included sophisticated physical parameterization schemes and online treatment of natural aerosol particles. The simulations covered a 30-year period (1986–2015) with a temporal resolution of 3 h and a spatial distance of 9 km. The main focus was given to the spatial and temporal variations of mean temperature and temperature extremes, wind speed and direction, and relative humidity. The results were evaluated using in situ measurements indicating a good agreement. An examination of possible climatic changes during the present climate was also performed through a comprehensive analysis of the trends of mean temperature and temperature extremes. The statistical significant trend values were overall positive and increased over the northwestern parts of the examined area. Similar spatial distributions were found for the daily minimum and maximum temperatures. Higher positive values emerged for the daily maxima.
Collapse
|
22
|
D'Onofrio D, Sweeney L, von Hardenberg J, Baudena M. Grass and tree cover responses to intra-seasonal rainfall variability vary along a rainfall gradient in African tropical grassy biomes. Sci Rep 2019; 9:2334. [PMID: 30787370 PMCID: PMC6382848 DOI: 10.1038/s41598-019-38933-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
Although it is well known that mean annual rainfall (MAR) and rainfall seasonality have a key role in influencing the distribution of tree and grass cover in African tropical grassy biomes (TGBs), the impact of intra-seasonal rainfall variability on these distributions is less agreed upon. Since the prevalent mechanisms determining biome occurrence and distribution change with MAR, this research investigates the role of intra-seasonal rainfall variability for three different MAR ranges, assessing satellite data on grass and tree cover, rainfall and fire intervals at a sub-continental scale in sub-Saharan Africa. For MAR below 630 mm y−1, rainfall frequency had a positive relationship with grass cover; this relationship however became mostly negative at intermediate MAR (630–1200 mm y−1), where tree cover correspondingly mostly increased with rainfall frequency. In humid TGBs, tree cover decreased with rainfall intensity. Overall, intra-seasonal rainfall variability plays a role in determining vegetation cover, especially in mesic TGBs, where the relative dominance of trees and grasses has previously been largely unexplained. Importantly, the direction of the effect of intra-seasonal variability changes with MAR. Given the predicted increases in rainfall intensity in Africa as a consequence of climate change, the effects on TGBs are thus likely to vary depending on the MAR levels.
Collapse
Affiliation(s)
- Donatella D'Onofrio
- Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Corso Fiume 4, 10133, Torino, Italy.,Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
| | - Luke Sweeney
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands
| | - Jost von Hardenberg
- Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR), Corso Fiume 4, 10133, Torino, Italy
| | - Mara Baudena
- Copernicus Institute of Sustainable Development, Environmental Science Group, Utrecht University, Princetonlaan 8a, 3584 CB, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Tong S, Li X, Zhang J, Bao Y, Bao Y, Na L, Si A. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:75-89. [PMID: 30172136 DOI: 10.1016/j.scitotenv.2018.08.262] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Due to global warming, extreme climate events have become an important issue, and different geographical regions have different sensitivities to climate change. Therefore, temporal and spatial variations in extreme temperature and precipitation events in Inner Mongolia were analyzed based on the daily maximum temperature, minimum temperature, and precipitation data during the period of 1960-2017. The results showed that warm extreme indices, such as SU25, TX90p, TN90p, and WSDI, significantly increased, whereas the cold extreme indices, such as FD0, TX10p, TN10p, and CSDI, significantly decreased; all indices have obvious abrupt changes based on the Mann-Kendall test; nighttime warming was higher than daytime warming. Extreme precipitation indices slightly decreased overall. All of the extreme temperature and precipitation indices had long-range correlations based on detrended fluctuation analysis (a > 0.5), thereby indicating that the extreme climate indices will maintain their current trend directions in the future. ENSO, AO, and IOD had a strong positive influence on warm extremes and a strong negative influence on cold extremes in Inner Mongolia. NCEP/NCAR and ERA-20CM reanalysis showed that strengthening anticyclone circulation, increasing geopotential height, decreasing daytime cloudiness and increasing nightime cloudiness contributed to changes in climate extremes in Inner Mongolia.
Collapse
Affiliation(s)
- Siqin Tong
- School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; College of Geography, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xiangqian Li
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Jiquan Zhang
- School of Environment, Northeast Normal University, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Yuhai Bao
- College of Geography, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yongbin Bao
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Li Na
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Alu Si
- School of Environment, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
24
|
Analysis of Precipitation Extremes in the Source Region of the Yangtze River during 1960–2016. WATER 2018. [DOI: 10.3390/w10111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The source region of the Yangtze River (SRYR) on the central Tibetan Plateau has seen one of the most significant increases in temperature in the world. Climate warming has altered the temporal and spatial characteristics of precipitation in the SRYR. In this study, we analyzed the temporal trends and spatial distributions of extreme precipitation in the SRYR during 1960–2016 using 11 extreme precipitation indices (EPIs) derived from daily precipitation data collected at five meteorological stations in the region. The trends in the EPIs were estimated using the linear least squares method, and their statistical significance was assessed using the Mann–Kendall test. The results show the following. Temporally, the majority of SRYR EPIs (including the simple daily intensity index, annual maximum 1-day precipitation (RX1day), annual maximum 5-day precipitation (RX5day), very wet day precipitation, extremely wet day precipitation, number of heavy precipitation days, number of very heavy precipitation days, and number of consecutive wet days) exhibited statistically nonsignificant increasing trends during the study period, while annual total wet-day precipitation (PRCPTOT) and the number of wet days exhibited statistically significant increasing trends. In addition, the number of consecutive dry days (CDD) exhibited a statistically significant decreasing trend. For the seasonal EPIs, the PRCPTOT, RX1day, and RX5day all exhibited nonsignificant increasing trends during the wet season, and significant increasing trends during the dry season. Spatially, changes in the annual and wet season EPIs in the study area both exhibited significant differences in their spatial distribution. By contrast, changes in dry season PRCPTOT, RX1day, and RX5day exhibited notable spatial consistency. These three indices exhibited increasing trends at each station. Moreover, there was a statistically significant positive correlation between the annual PRCPTOT and each of the other EPIs (except CDD). However, the contribution of extreme precipitation to annual PRCPTOT exhibited a nonsignificant decreasing trend.
Collapse
|
25
|
Spatiotemporal Variability in Extreme Precipitation in China from Observations and Projections. WATER 2018. [DOI: 10.3390/w10081089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extreme precipitation events, which have intensified with global warming over the past several decades, will become more intense in the future according to model projections. Although many studies have been performed, the occurrence patterns for extreme precipitation events in past and future periods in China remain unresolved. Additionally, few studies have explained how extreme precipitation events developed over the past 58 years and how they will evolve in the next 90 years as global warming becomes much more serious. In this paper, we evaluated the spatiotemporal characteristics of extreme precipitation events using indices for the frequency, quantity, intensity, and proportion of extreme precipitation, which were proposed by the World Meteorological Organization. We simultaneously analyzed the spatiotemporal characteristics of extreme precipitation in China from 2011 to 2100 using data obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Despite the fixed threshold, 95th percentile precipitation values were also used as the extreme precipitation threshold to reduce the influence of various rainfall events caused by different geographic locations; then, eight extreme precipitation indices (EPIs) were calculated to evaluate extreme precipitation in China. We found that the spatial characteristics of the eight EPIs exhibited downward trends from south to north. In the periods 1960–2017 and 2011–2100, trends in the EPIs were positive, but there were differences between different regions. In the past 58 years, the extreme precipitation increased in the northwest, southeast, and the Tibet Plateau of China, while decreased in northern China. Almost all the trends of EPIs are positive in the next two periods (2011–2055 and 2056–2100) except for some EPIs, such as intensity of extreme precipitation, which decrease in southeastern China in the second period (2056–2100). This study suggests that the frequency of extreme precipitation events in China will progressively increase, which implies that a substantial burden will be placed on social economies and terrestrial ecological processes.
Collapse
|
26
|
Sanganyado E, Teta C, Masiri B. Impact of African traditional worldviews on climate change adaptation. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:189-193. [PMID: 29193692 DOI: 10.1002/ieam.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
Recent studies show cultural worldviews are a key determinant of environmental risk perceptions; thus, they could influence climate change adaptation strategies. African traditional worldviews encourage harmony between humans and the environment through a complex metaphysical belief system transmitted through folklore, taboos, and traditional knowledge. However, African traditional worldviews hold a belief in traditional gods that was shown to have a low connectedness to nature and a low willingness to change. In Makueni District, Kenya, 45% of agropastoralists surveyed believed drought was god's plan and could not be changed. In contrast, traditional knowledge, which is shaped by African traditional worldviews, is often used to frame adaptive strategies such as migration, changing modes of production, and planting different crop varieties. Furthermore, traditional knowledge has been used as a complement to science in areas where meteorological data was unavailable. However, the role of African traditional worldviews on climate change adaption remains understudied. Hence, there is a need to systematically establish the influence of African traditional worldviews on climate change risk perception, development of adaptive strategies, and policy formulation and implementation. In this commentary, we discuss the potential impacts of African traditional worldviews on climate change adaptation. Integr Environ Assess Manag 2018;14:189-193. © 2018 SETAC.
Collapse
Affiliation(s)
- Edmond Sanganyado
- Marine Biology Institute, Shantou University, Shantou, Guangdong Province, China
| | - Charles Teta
- Department of Ichthyology & Fisheries Science, Rhodes University, Grahamstown, South Africa
| | - Busani Masiri
- Water Research Node, Monash South Africa, Roodepoort, South Africa
| |
Collapse
|
27
|
Changes in Extremes of Temperature, Precipitation, and Runoff in California’s Central Valley During 1949–2010. HYDROLOGY 2017. [DOI: 10.3390/hydrology5010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Impact of Parameter Variability and Environmental Noise on the Klausmeier Model of Vegetation Pattern Formation. MATHEMATICS 2017. [DOI: 10.3390/math5040069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Semi-arid ecosystems made up of patterned vegetation, for instance, are thought to be highly sensitive. This highlights the importance of understanding the dynamics of the formation of vegetation patterns. The most renowned mathematical model describing such pattern formation consists of two partial differential equations and is often referred to as the Klausmeier model. This paper provides analytical and numerical investigations regarding the influence of different parameters, including the so-far not contemplated evaporation, on the long-term model results. Another focus is set on the influence of different initial conditions and on environmental noise, which has been added to the model. It is shown that patterning is beneficial for semi-arid ecosystems, that is, vegetation is present for a broader parameter range. Both parameter variability and environmental noise have only minor impacts on the model results. Increasing mortality has a high, nonlinear impact underlining the importance of further studies in order to gain a sufficient understanding allowing for suitable management strategies of this natural phenomenon.
Collapse
|
29
|
Decreasing Past and Mid-Century Rainfall Indices over the Ouémé River Basin, Benin (West Africa). CLIMATE 2017. [DOI: 10.3390/cli5030074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Trend Analysis for Extreme Rainfall at Sub-Daily and Daily Timescales in Côte d’Ivoire. CLIMATE 2016. [DOI: 10.3390/cli4030037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat Commun 2016; 7:11236. [PMID: 27068129 PMCID: PMC4832063 DOI: 10.1038/ncomms11236] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/04/2016] [Indexed: 11/24/2022] Open
Abstract
Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20–30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region. Black carbon aerosols in the atmosphere absorb solar radiation and affect the hydrological cycle. Here, the authors show that local aerosol emissions from biomass burning activities are a main cause of observed decline in southern African dry season precipitation over the last century.
Collapse
|
32
|
Safari B. Trend Analysis of the Mean Annual Temperature in Rwanda during the Last Fifty Two Years. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jep.2012.36065] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Yang T, Wang X, Zhao C, Chen X, Yu Z, Shao Q, Xu CY, Xia J, Wang W. Changes of climate extremes in a typical arid zone: Observations and multimodel ensemble projections. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015192] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
AlSarmi S, Washington R. Recent observed climate change over the Arabian Peninsula. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015459] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Vincent LA, Aguilar E, Saindou M, Hassane AF, Jumaux G, Roy D, Booneeady P, Virasami R, Randriamarolaza LYA, Faniriantsoa FR, Amelie V, Seeward H, Montfraix B. Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015303] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Abstract
Four mean temperature variables, namely maximum (MAX), minimum (MIN), mean (MEAN) and diurnal temperature range (DTR), were considered for 14 selected observational stations throughout Sudan. The objectives were to investigate the seasonal and annual regimes, the seasonal and annual trends, the intra-annual variability (IAV) by the coefficient of variation (CV), and the interrelationships between the temperature variables and percent of possible sunshine. A mounting evidence of daytime and nighttime warming since the 1940s until 2005 is presented. The exception is the dry season which is dominated by daytime cooling attributable to the damping effect of dust haze/storms. Apparently, the progressive drought across inland locations has raised the MAXs, and to a lesser extent the MINs, of the wet season over those for the hot season. Accordingly, maximum rates of 0.451 and 0.336 degrees C decade(-1) were found for the nighttime and daytime temperatures, respectively. The extreme eastern and western locations have been frequently dominated by the warmest trend rates obtained nationwide. The prevalence of significant decreases (increases) of DTR is more apparent in the dry, hot and annual series (wet series). Depending on the temperature variable under consideration, many stations possessed significant trends toward either increased or decreased variability of the within-year monthly values, i.e. IAV. The correlation between the time series of annual CV and extreme values for each of the four temperature variables shows generally that warmer climate in Sudan is associated with higher intra-annual temperature variability and vise versa, i.e. the CV is directly correlated with the highest value within the year, but inversely correlated with the lowest one. The findings of this investigation also indicate that the DTR is directly related to percent of possible sunshine, but the relationship of the latter parameter is not so clear with MAX, MIN and MEAN.
Collapse
Affiliation(s)
- Nadir Ahmed Elagib
- Department of Water Resources Engineering, Sudan University of Sciences and Technology, Khartoum North, Sudan.
| |
Collapse
|