1
|
Liu S, Galeazzo T, Valorso R, Shiraiwa M, Faiola CL, Nizkorodov SA. Secondary Organic Aerosol from OH-Initiated Oxidation of Mixtures of d-Limonene and β-Myrcene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39018113 PMCID: PMC11295129 DOI: 10.1021/acs.est.4c04870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The chemical composition and physical properties of secondary organic aerosol (SOA) generated through OH-initiated oxidation of mixtures containing β-myrcene, an acyclic monoterpene, and d-limonene, a cyclic monoterpene, were investigated to assess the extent of the chemical interactions between their oxidation products. The SOA samples were prepared in an environmental smog chamber, and their composition was analyzed offline using ultraperformance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UPLC-ESI-HRMS). Our results suggested that SOA containing β-myrcene showed a higher proportion of oligomeric compounds with low volatility compared to that of SOA from d-limonene. The formula distribution and signal intensities of the mixed SOA could be accurately predicted by a linear combination of the mass spectra of the SOA from individual precursors. Effects of cross-reactions were observed in the distribution of isomeric oxidation products within the mixed SOA, as made evident by chromatographic analysis. On the whole, β-myrcene and d-limonene appear to undergo oxidation by OH largely independently from each other, with only subtle effects from cross-reactions influencing the yields of specific oxidation products.
Collapse
Affiliation(s)
- Sijia Liu
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Tommaso Galeazzo
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Richard Valorso
- Univ
Paris Est Creteil and Université Paris Cité, CNRS, LISA, Créteil F-94010, France
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Celia L. Faiola
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department
of Ecology and Evolutionary Biology, University
of California Irvine, Irvine, California 92697, United States
| | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Li Y, Zhou Y, Guo W, Zhang X, Huang Y, He E, Li R, Yan B, Wang H, Mei F, Liu M, Zhu Z. Molecular Imaging Reveals Two Distinct Mixing States of PM 2.5 Particles Sampled in a Typical Beijing Winter Pollution Case. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6273-6283. [PMID: 37022139 DOI: 10.1021/acs.est.2c08694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mixing states of aerosol particles are crucial for understanding the role of aerosols in influencing air quality and climate. However, a fundamental understanding of the complex mixing states is still lacking because most traditional analysis techniques only reveal bulk chemical and physical properties with limited surface and 3-D information. In this research, 3-D molecular imaging enabled by ToF-SIMS was used to elucidate the mixing states of PM2.5 samples obtained from a typical Beijing winter haze event. In light pollution cases, a thin organic layer covers separated inorganic particles; while in serious pollution cases, ion exchange and an organic-inorganic mixing surface on large-area particles were observed. The new results provide key 3-D molecular information of mixing states, which is highly potential for reducing uncertainty and bias in representing aerosol-cloud interactions in current Earth System Models and improving the understanding of aerosols on air quality and human health.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Yadong Zhou
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wenxiao Guo
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ye Huang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Erkai He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Runkui Li
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Beizhan Yan
- Division of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fan Mei
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
3
|
Huang S, Wu Z, Wang Y, Poulain L, Höpner F, Merkel M, Herrmann H, Wiedensohler A. Aerosol Hygroscopicity and its Link to Chemical Composition in a Remote Marine Environment Based on Three Transatlantic Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9613-9622. [PMID: 35730737 DOI: 10.1021/acs.est.2c00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hygroscopicity of marine aerosols may largely impact particle optical properties, cloud activation ability, and consequently the global climate system. This study highlights findings from real-time hygroscopicity and chemical composition measurements in three open-ocean cruises over the Atlantic Ocean. Spatial variations in hygroscopicity (κ) for marine boundary layer particles (≤300 nm) were provided for the first time covering nearly 100° of the latitude over the Atlantic Ocean, ranging from 0.14 to 1.06. Externally mixed particles with remarkably low hygroscopicity (0.14-0.16) were observed near the equator influenced by biomass burning emissions transported from Africa. For marine aerosols, a positive linear correlation evidently existed between κ and wind speed within a range of 5-15 m/s even for nanometer particles. A closure study shows that the measured κ of 300 nm particles is well explained by the bulk chemical composition. A good negative correlation between measured κ and the organic mass fraction in PM1 for marine aerosols was found (slope = -2.26, R2 = 0.44), while a different linear relationship appeared for continental aerosols at several sites (slope = -0.47, R2 = 0.77). Accordingly, we provide a parameterization method to estimate bulk aerosol hygroscopicity both in continental and marine environments using particulate organic fractions.
Collapse
Affiliation(s)
- Shan Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu Wang
- ETH Zurich, Institute for Atmospheric and Climate Science, Zurich 8092, Switzerland
| | - Laurent Poulain
- Leibniz Institute for Tropospheric Research, Leipzig 04318, Germany
| | | | - Maik Merkel
- Leibniz Institute for Tropospheric Research, Leipzig 04318, Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, Leipzig 04318, Germany
| | | |
Collapse
|
4
|
Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. Proc Natl Acad Sci U S A 2020; 117:5196-5203. [PMID: 32098848 PMCID: PMC7071900 DOI: 10.1073/pnas.1919723117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absorption by black carbon strongly affects regional and global climate. Yet, large discrepancies between standard model predictions and regionally specific observations—often with observed absorption lower than expected—raise questions about current understanding of black carbon absorption and its atmospheric impacts. Through a combination of measurement and modeling, our analysis resolves the discrepancy by showing that particular laboratory designs or atmospheric conditions engender distinct compositional heterogeneity among particles containing black carbon. Lower-than-expected absorption results largely from increased heterogeneity, although slightly lowered absorption occurs even in a purely homogeneous system. This work provides a framework that explains globally disparate observations and that can be used to improve estimates of black carbon’s global impact. Black carbon (BC) absorbs solar radiation, leading to a strong but uncertain warming effect on climate. A key challenge in modeling and quantifying BC’s radiative effect on climate is predicting enhancements in light absorption that result from internal mixing between BC and other aerosol components. Modeling and laboratory studies show that BC, when mixed with other aerosol components, absorbs more strongly than pure, uncoated BC; however, some ambient observations suggest more variable and weaker absorption enhancement. We show that the lower-than-expected enhancements in ambient measurements result from a combination of two factors. First, the often used spherical, concentric core-shell approximation generally overestimates the absorption by BC. Second, and more importantly, inadequate consideration of heterogeneity in particle-to-particle composition engenders substantial overestimation in absorption by the total particle population, with greater heterogeneity associated with larger model–measurement differences. We show that accounting for these two effects—variability in per-particle composition and deviations from the core-shell approximation—reconciles absorption enhancement predictions with laboratory and field observations and resolves the apparent discrepancy. Furthermore, our consistent model framework provides a path forward for improving predictions of BC’s radiative effect on climate.
Collapse
|
5
|
Bhandari J, China S, Chandrakar KK, Kinney G, Cantrell W, Shaw RA, Mazzoleni LR, Girotto G, Sharma N, Gorkowski K, Gilardoni S, Decesari S, Facchini MC, Zanca N, Pavese G, Esposito F, Dubey MK, Aiken AC, Chakrabarty RK, Moosmüller H, Onasch TB, Zaveri RA, Scarnato BV, Fialho P, Mazzoleni C. Extensive Soot Compaction by Cloud Processing from Laboratory and Field Observations. Sci Rep 2019; 9:11824. [PMID: 31413342 PMCID: PMC6694138 DOI: 10.1038/s41598-019-48143-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 11/09/2022] Open
Abstract
Soot particles form during combustion of carbonaceous materials and impact climate and air quality. When freshly emitted, they are typically fractal-like aggregates. After atmospheric aging, they can act as cloud condensation nuclei, and water condensation or evaporation restructure them to more compact aggregates, affecting their optical, aerodynamic, and surface properties. Here we survey the morphology of ambient soot particles from various locations and different environmental and aging conditions. We used electron microscopy and show extensive soot compaction after cloud processing. We further performed laboratory experiments to simulate atmospheric cloud processing under controlled conditions. We find that soot particles sampled after evaporating the cloud droplets, are significantly more compact than freshly emitted and interstitial soot, confirming that cloud processing, not just exposure to high humidity, compacts soot. Our findings have implications for how the radiative, surface, and aerodynamic properties, and the fate of soot particles are represented in numerical models.
Collapse
Affiliation(s)
- Janarjan Bhandari
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA.
| | - Swarup China
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kamal Kant Chandrakar
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Greg Kinney
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Will Cantrell
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Raymond A Shaw
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Lynn R Mazzoleni
- Atmospheric Sciences Program and Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | - Giulia Girotto
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
| | - Noopur Sharma
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kyle Gorkowski
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA
- Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada
- Earth & Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Stefano Decesari
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy
| | | | - Nicola Zanca
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy
- Department of Chemistry and Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Giulia Pavese
- Institute of Methodologies for Environmental Analysis (CNR-IMAA), Rome, Italy
| | | | - Manvendra K Dubey
- Earth & Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Allison C Aiken
- Earth & Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Rajan K Chakrabarty
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Rahul A Zaveri
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Paulo Fialho
- Instituto de Investigação em Vulcanologia e Avaliação de Riscos - IVAR, University of Azores, Azores, Portugal
| | - Claudio Mazzoleni
- Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
6
|
Recent Advances in Quantifying Wet Scavenging Efficiency of Black Carbon Aerosol. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Black carbon (BC) aerosol is of great importance not only for its strong potential in heating air and impacts on cloud, but also because of its hazards to human health. Wet deposition is regarded as the main sink of BC, constraining its lifetime and thus its impact on the environment and climate. However, substantial controversial and ambiguous issues in the wet scavenging processes of BC are apparent in current studies. Despite of its significance, there are only a small number of field studies that have investigated the incorporation of BC-containing particles into cloud droplets and influencing factors, in particular, the in-cloud scavenging, because it was simplicitly considered in many studies (as part of total wet scavenging). The mass scavenging efficiencies (MSEs) of BC were observed to be varied over the world, and the influencing factors were attributed to physical and chemical properties (e.g., size and chemical compositions) and meteorological conditions (cloud water content, temperature, etc.). In this review, we summarized the MSEs and potential factors that influence the in-cloud and below-cloud scavenging of BC. In general, MSEs of BC are lower at low-altitude regions (urban, suburban, and rural sites) and increase with the rising altitude, which serves as additional evidence that atmospheric aging plays an important role in the chemical modification of BC. Herein, higher altitude sites are more representative of free-tropospheric conditions, where BC is usually more aged. Despite of increasing knowledge of BC–cloud interaction, there are still challenges that need to be addressed to gain a better understanding of the wet scavenging of BC. We recommend that more comprehensive methods should be further estimated to obtain high time-resolved scavenging efficiency (SE) of BC, and to distinguish the impact of in-cloud and below-cloud scavenging on BC mass concentration, which is expected to be useful for constraining the gap between field observation and modeling simulation results.
Collapse
|
7
|
Abstract
Aerosol mixing state significantly affects concentrations of cloud condensation nuclei (CCN), wet removal rates, thermodynamic properties, heterogeneous chemistry, and aerosol optical properties, with implications for human health and climate. Over the last two decades, significant research effort has gone into finding computationally-efficient methods for representing the most important aspects of aerosol mixing state in air pollution, weather prediction, and climate models. In this review, we summarize the interactions between mixing-state and aerosol hygroscopicity, optical properties, equilibrium thermodynamics and heterogeneous chemistry. We focus on the effects of simplified assumptions of aerosol mixing state on CCN concentrations, wet deposition, and aerosol absorption. We also summarize previous approaches for representing aerosol mixing state in atmospheric models, and we make recommendations regarding the representation of aerosol mixing state in future modelling studies.
Collapse
|
8
|
Ching J, Kajino M. Aerosol mixing state matters for particles deposition in human respiratory system. Sci Rep 2018; 8:8864. [PMID: 29891990 PMCID: PMC5995922 DOI: 10.1038/s41598-018-27156-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022] Open
Abstract
Aerosol particles emitted from various human activities deteriorate air quality and are suggested to increase public health risk. Numerous studies have emphasized the relationship between the mass and/or number concentration of aerosols (or commonly known as particulate matter (PM)) in the atmosphere and the incidence of respiratory and cardiovascular diseases, while very few have examined the deposition efficiency of inhaled particles in the respiratory tract. We present the first examination of particles deposition based on, detailed simulation of aerosol physico-chemical properties by a recently developed particle-resolved aerosol model and the mixing state dependent hygrosocpic growth and deposition computed at particle-level by deposition model. Furthermore, we elucidate the impact of mixing state on deposition efficiency by using a recently introduced aerosol mixing state index. We find that without considering mixing-state-dependent hygroscopic growth of particles leads to overestimation of deposition efficiency; whereas considering an average mixing state leads to underestimation of 5% to 20% of soot particle deposition efficiency in human alveoli. We conclude that aerosol mixing state, which evolves during the interaction between atmospheric chemistry and meteorology, is important for the comprehensive evaluation of air quality and its implication to public health requires further investigation.
Collapse
Affiliation(s)
- Joseph Ching
- Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan.
| | - Mizuo Kajino
- Meteorological Research Institute, Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan.
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
9
|
Influence of Common Assumptions Regarding Aerosol Composition and Mixing State on Predicted CCN Concentration. ATMOSPHERE 2018. [DOI: 10.3390/atmos9020054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Quantifying Impacts of Aerosol Mixing State on Nucleation-Scavenging of Black Carbon Aerosol Particles. ATMOSPHERE 2018. [DOI: 10.3390/atmos9010017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Machine Learning to Predict the Global Distribution of Aerosol Mixing State Metrics. ATMOSPHERE 2018. [DOI: 10.3390/atmos9010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Abstract
Secondary organic aerosol (SOA) forms via a variety of processes and plays a key role in climate change and air quality. Recent measurements indicate that most SOA exists as an internal mixture with other aerosols. This study examines the radiative effect of using a mixing state for SOA that depends on the process of formation, based on an explicit mechanism for the chemical production of SOA. The radiative forcing of SOA in the future is estimated using this approach. A surprising result is that the contribution of SOA to radiative forcing increases substantially (becomes more negative) in the future even though the increase of its burden is slight. Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of −0.05 W m−2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is −0.07 W m−2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.
Collapse
|
13
|
Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15. ATMOSPHERE 2017. [DOI: 10.3390/atmos8090173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Contact efflorescence as a pathway for crystallization of atmospherically relevant particles. Proc Natl Acad Sci U S A 2015; 112:15815-20. [PMID: 26668396 DOI: 10.1073/pnas.1522860113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inadequate knowledge of the phase state of atmospheric particles represents a source of uncertainty in global climate and air quality models. Hygroscopic aqueous inorganic particles are often assumed to remain liquid throughout their atmospheric lifetime or only (re)crystallize at low relative humidity (RH) due to the kinetic limitations of efflorescence (salt crystal nucleation and growth from an aqueous solution). Here we present experimental observations of a previously unexplored heterogeneous nucleation pathway that we have termed "contact efflorescence," which describes efflorescence initiated by an externally located solid particle coming into contact with the surface of a metastable aqueous microdroplet. This study demonstrates that upon a single collision, contact efflorescence is a pathway for crystallization of atmospherically relevant aqueous particles at high ambient RH (≤80%). Soluble inorganic crystalline particles were used as contact nuclei to induce efflorescence of aqueous ammonium sulfate [(NH4)2SO4], sodium chloride (NaCl), and ammonium nitrate (NH4NO3), with efflorescence being observed in several cases close to their deliquescence RH values (80%, 75%, and 62%, respectively). To our knowledge, these observations represent the highest reported efflorescence RH values for microdroplets of these salts. These results are particularly important for considering the phase state of NH4NO3, where the contact efflorescence RH (∼20-60%) is in stark contrast to the observation that NH4NO3 microdroplets do not homogeneously effloresce, even when exposed to extremely arid conditions (<1% RH). Considering the occurrence of particle collisions in the atmosphere (i.e., coagulation), these observations of contact efflorescence challenge many assumptions made about the phase state of inorganic aerosol.
Collapse
|
15
|
Farmer DK, Cappa CD, Kreidenweis SM. Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chem Rev 2015; 115:4199-217. [DOI: 10.1021/cr5006292] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Christopher D. Cappa
- Department
of Civil and Environmental Engineering, University of California, Davis, Davis, California 95616, United States
| | | |
Collapse
|
16
|
Liu P, Zhang Y, Martin ST. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13594-13601. [PMID: 24191734 DOI: 10.1021/es403411e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The complex refractive indices of three different types of secondary organic material (SOM) were obtained for 220 to 1200 nm using a variable angle spectroscopic ellipsometer. Aerosol particles were produced in a flow tube reactor by ozonolysis of volatile organic compounds, including the monoterpenes α-pinene and limonene and the aromatic catechol (benzene-1,2-diol). Optically reflective thin films of SOM were grown by electrostatic precipitation of the aerosol particles onto silicon substrates. The ellipsometry analysis showed that both the real and imaginary components of the refractive indices decreased with increasing wavelength. The real part n(λ) could be parametrized by the three-term form of Cauchy's equation, as follows: n(λ) = B + C/λ(2) + D/λ(4) where λ is the wavelength and B, C, and D are fitting parameters. The real refractive indices of the three SOMs ranged from 1.53 to 1.58, 1.49-1.52, and 1.48-1.50 at 310, 550, and 1000 nm, respectively. The catechol-derived SOM absorbed light in the ultraviolet (UV) range. By comparison, the UV absorption of the monoterpene-derived SOMs was negligible. On the basis of the measured refractive indices, optical properties were modeled for a typical atmospheric particle population. The results suggest that the wavelength dependence of the refractive indices can vary the Angstrom exponent by up to 0.1 across the range 310 to 550 nm. The modeled single-scattering albedo can likewise vary from 0.97 to 0.85 at 310 nm (UV-B). Variability in the optical properties of different types of SOMs can imply important differences in the relative effects of atmospheric particles on tropospheric photochemistry, as well as possible inaccuracies in some satellite-retrieved properties such as optical depth and mode diameter.
Collapse
Affiliation(s)
- Pengfei Liu
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
17
|
Ching J, Riemer N, West M. Impacts of black carbon mixing state on black carbon nucleation scavenging: Insights from a particle-resolved model. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd018269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Cappa CD, Onasch TB, Massoli P, Worsnop DR, Bates TS, Cross ES, Davidovits P, Hakala J, Hayden KL, Jobson BT, Kolesar KR, Lack DA, Lerner BM, Li SM, Mellon D, Nuaaman I, Olfert JS, Petaja T, Quinn PK, Song C, Subramanian R, Williams EJ, Zaveri RA. Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black Carbon. Science 2012; 337:1078-81. [DOI: 10.1126/science.1223447] [Citation(s) in RCA: 482] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
Zhu L, Martins JV, Remer LA. Biomass burning aerosol absorption measurements with MODIS using the critical reflectance method. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Kajino M, Kondo Y. EMTACS: Development and regional-scale simulation of a size, chemical, mixing type, and soot shape resolved atmospheric particle model. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|