1
|
Tuna Tuygun G, Elbir T. Comparative analysis of CAMS aerosol optical depth data and AERONET observations in the Eastern Mediterranean over 19 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27069-27084. [PMID: 38503950 PMCID: PMC11052789 DOI: 10.1007/s11356-024-32950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Aerosol optical depth (AOD) is an essential metric for evaluating the atmospheric aerosol load and its impacts on climate, air quality, and public health. In this study, the AOD data from the Copernicus Atmosphere Monitoring Service (CAMS) were validated against ground-based measurements from the Aerosol Robotic Network (AERONET) throughout the Eastern Mediterranean, a region characterized by diverse aerosol types and sources. A comparative analysis was performed on 3-hourly CAMS AOD values at 550 nm against observations from 20 AERONET stations across Cyprus, Greece, Israel, Egypt, and Turkey from 2003 to 2021. The CAMS AOD data exhibited a good overall agreement with AERONET AOD data, demonstrated by a Pearson correlation coefficient of 0.77, a mean absolute error (MAE) of 0.08, and a root mean square error (RMSE) of 0.11. Nonetheless, spatial and temporal variations were observed in the CAMS AOD data performance, with site-specific correlation coefficients ranging from 0.57 to 0.85, the lowest correlations occurring in Egypt and the highest in Greece. An underestimation of CAMS AOD was noted at inland sites with high AOD levels, while a better agreement was observed at coastal sites with lower AOD levels. The diurnal variation analysis indicated improved CAMS reanalysis performance during the afternoon and evening hours. Seasonally, CAMS reanalysis showed better agreement with AERONET AODs in spring and autumn, with lower correlation coefficients noted in summer and winter. This study marks the first comprehensive validation of CAMS AOD performance in the Eastern Mediterranean, offering significant enhancements for regional air quality and climate modeling, and underscores the essential role of consistent validation in refining aerosol estimations within this complex and dynamic geographic setting.
Collapse
Affiliation(s)
- Gizem Tuna Tuygun
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Buca-Izmir, Turkey
| | - Tolga Elbir
- Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Buca-Izmir, Turkey.
| |
Collapse
|
2
|
Liang Y, Che H, Zhang X, Li L, Gui K, Zheng Y, Zhang X, Zhao H, Zhang P, Zhang X. Columnar optical-radiative properties and components of aerosols in the Arctic summer from long-term AERONET measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169052. [PMID: 38061640 DOI: 10.1016/j.scitotenv.2023.169052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Aerosols as an external factor have an important role in the amplification of Arctic warming, yet the geography of this harsh region has led to a paucity of observations, which has limited our understanding of the Arctic climate. We synthesized the latest decade (2010-2021) of data on the microphysical-optical-radiative properties of aerosols and their multi-component evolution during the Arctic summer, taking into consideration the important role of wildfire burning. Our results are based on continuous observations from eight AERONET sites across the Arctic region, together with a meteorological reanalysis dataset and satellite observations of fires, and utilize a back-trajectory model to track the source of the aerosols. The summer climatological characteristics within the Arctic Circle showed that the aerosols are mainly fine-mode aerosols (fraction >0.95) with a radius of 0.15-0.20 μm, a slight extinction ability (aerosol optical depth ∼ 0.11) with strong scattering (single scattering albedo ∼0.95) and dominant forward scattering (asymmetry factor ∼ 0.68). These optical properties result in significant cooling at the Earth's surface (∼-13 W m-2) and a weak cooling effect at the top of the atmosphere (∼-5 W m-2). Further, we found that Arctic region is severely impacted by wildfire burning events in July and August, which primarily occur in central and eastern Siberia and followed in subpolar North America. The plumes from wildfire transport aerosols to the Arctic atmosphere with the westerly circulation, leading to an increase in fine-mode aerosols containing large amounts of organic carbon, with fraction as high as 97-98 %. Absorptive carbonaceous aerosols also increase synergistically, which could convert the instantaneous direct aerosol radiative effect into a heating effect on the Earth-atmosphere system. This study provides insights into the complex sources of aerosol loading in the Arctic atmosphere in summer and emphasizes the important impacts of the increasingly frequent occurrence of wildfire burning events in recent years.
Collapse
Affiliation(s)
- Yuanxin Liang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Xindan Zhang
- Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ke Gui
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yu Zheng
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xutao Zhang
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hengheng Zhao
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Peng Zhang
- Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites (LRCVES), FengYun Meteorological Satellite Innovation Center (FY-MSIC), National Satellite Meteorological Center, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather, Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Yusuf N, Sa'id RS. Spatial distribution of aerosols burden and evaluation of changes in aerosol optical depth using multi-approach observations in tropical region. Heliyon 2023; 9:e18815. [PMID: 37588611 PMCID: PMC10425909 DOI: 10.1016/j.heliyon.2023.e18815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Understanding of Aerosol optical depth (AOD) parameter is important for air quality assessment. This study aims to evaluate and validate AOD measurements from combine datasets to improve air quality for a period 2005-2020 using Aerosol Robotic Network (AERONET) at Ilorin site (8.320° N, 4.340° E) in Nigeria. AOD outputs from Community Atmosphere Model Version 6 with chemistry (CAM6-chem) at 1° horizontal resolution and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) are investigated in addition to validation of two satellites AOD retrievals: Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR). Result of spatial distribution of AOD shows high values > 1 in the North and Western Sahara compared to Central Africa. Desert dust shows largest contribution in the North and Western Africa that is up to 2 magnitude larger than other aerosol types. Primary organic matter (POM) and secondary organic aerosols (SOAs) both presents high burdens with later been dominant at around 10° band, and black carbon (BC) largest burden (2.6 × 10 - 5 kgm - 2) is seen in the model from oil and gas exploration site in Nigeria. Inter-comparison of MERRA/MISR/MODIS and AERONET AOD using linear correlation of the seasonal dependence demonstrated high correlation (r = 0.864 - 0.973) subjected to Root Mean Square Error (RMSE = 0.069 - 0.211), suggesting good agreement between the datasets. When compared to seasonal mean maximum AERONET AOD value of 0.978 MERRA is ∼5%, MISR ∼28% and MODIS ∼29% lower with stronger correlations observed in the wet and pre-harmattan seasons. Similarly, MODEL AOD at 550 nm and dust burden were found to be ∼34% and ∼67% lower in context to AERONET AOD annual mean value of 0.627. Positive relationships that indicate an upward slope exist between all the computed datasets with moderate value of AERONET/CAM-chem spearman partial correlation, and MERRA/MODIS and MODIS/MISR showing strong and significant relationship with p-value less than 0.05. Low variance is observed with all measurements except in MERRA.
Collapse
Affiliation(s)
- Najib Yusuf
- NASRDA’S Centre for Atmospheric Research (CAR), Anyigba, Kogi State, Nigeria
- National Centre for Atmospheric Research (NCAR), Boulder, CO, USA
- Department of Physics, Bayero University Kano, Nigeria
| | | |
Collapse
|
4
|
Liaqut A, Tariq S, Younes I. A study on optical properties, classification, and transport of aerosols during the smog period over South Asia using remote sensing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69096-69121. [PMID: 37129820 DOI: 10.1007/s11356-023-27047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Over the past few years, South Asian region has experienced frequent and thick smog events because of rapid population growth and enhanced anthropogenic activities, particularly in the Indo-Gangetic Plain (IGP). Therefore, the present study investigates aerosol properties such as aerosol optical depth (AOD) (500 nm), Angstrom exponent (AE) (440-870 nm), single scattering albedo (SSA), fine-mode fraction (FMF), absorption aerosol optical depth (AAOD), and absorption aerosol exponent (AAE) over selected AERONET sites namely Bhola (2012-2021), Dhaka (2012-2021), Jaipur (2011-2021), Kanpur (2011-2021), Karachi (2011-2021), Lahore (2011-2021), and Pokhara (2011-2021) in the IGP during the smog period (October, November, and December). Additionally, different aerosol types were categorized using AERONET direct sun (AOD, AE) and inversion products (VSD, SSA, RI, FMF, and ASY). The monthly mean AOD, AE, and FMF varied from ⁓0.33 to 1.07, ⁓0.3 to 1.4, and 0.6-0.9 µm over all selected AERONET sites during the smog period. Moreover, the outcomes revealed the dominance of biomass-burning and urban/ industrial aerosols over Lahore, Karachi, Dhaka, and Bhola during the smog period. Contrary to this, dust and mixed aerosols were abundant over Jaipur and Karachi, respectively. Furthermore, HYSPLIT cluster analysis is used to trace the transmission paths and potential sources of aerosols over selected sites.
Collapse
Affiliation(s)
- Anum Liaqut
- Department of Geography, University of the Punjab, Lahore, Pakistan.
| | - Salman Tariq
- Remote Sensing, GIS and Climatic Research Lab (National Center of GIS and Space Application), University of the Punjab, Lahore, Pakistan
- Department of Space Science, University of the Punjab, Lahore, Pakistan
| | - Isma Younes
- Department of Geography, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
5
|
Khamala GW, Makokha JW, Boiyo R, Kumar KR. Spatiotemporal analysis of absorbing aerosols and radiative forcing over environmentally distinct stations in East Africa during 2001-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161041. [PMID: 36563754 DOI: 10.1016/j.scitotenv.2022.161041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
East Africa (EA) suffers from the inadequate characterization of atmospheric aerosols, with far-reaching consequences of its inability to quantify precisely the impacts of these particles on regional climate. The current study aimed at characterizing absorption and radiative properties of aerosols using the long-term (2001-2018) AErosol RObotic NETwork (AERONET) and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data over three environmentally specific sites in EA. The annual mean absorption aerosol optical depth (AAOD440 nm), absorption Angstrom Exponent (AAE440-870 nm), total effective radius (REff), and total volume concentration (μm3/μm2) revealed significant spatial heterogeneity over the domain. The study domain exhibited a significant contribution of fine-mode aerosols compared to the coarse-mode particles. The monthly variation in SSA440 nm over EA explains the strength in absorption aerosols that range from moderate to strong absorbing aerosols. The aerosols exhibited significant variability over the study domain, with the dominance of absorbing fine-mode aerosols over Mbita accounting for ∼40 to ∼50 %, while weakly absorbing coarse-mode particles accounted for ∼8.2 % over Malindi. The study conclusively determined that Mbita was dominated by AAOD mainly from biomass burning in most of the months, whereas Malindi was coated with black carbon. The direct aerosol radiative forcing (DARF) retrieved from both the AERONET and MERRA-2 models showed strong cooling at the top of the atmosphere (TOA; -6 to -27 Wm-2) and the bottom of the atmosphere (BOA, -7 to -66 Wm-2). However, significant warming was noticed within the atmosphere (ATM; +14 to +76 Wm-2), an indication of the role of aerosols in regional climate change. The study contributed to understanding aerosol absorption and radiative characteristics over EA and can form the basis of other related studies over the domain and beyond.
Collapse
Affiliation(s)
- Geoffrey W Khamala
- Department of Science Technology and Engineering, Kibabii University, P.O. Box 1699-50200, Bungoma, Kenya.
| | - John W Makokha
- Department of Science Technology and Engineering, Kibabii University, P.O. Box 1699-50200, Bungoma, Kenya
| | - Richard Boiyo
- Department of Physical Sciences, Meru University of Science and Technology, P.O. Box 972-60200, Meru, Kenya; Department of Environment, Water, Energy and Natural Resources, County Government of Vihiga, Maragoli, Kenya
| | - Kanike Raghavendra Kumar
- Department of Engineering Physics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, 522 302 Guntur, Andhra Pradesh, India
| |
Collapse
|
6
|
Ansari K, Ramachandran S. Radiative effects of absorbing aerosol types over South Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159969. [PMID: 36347289 DOI: 10.1016/j.scitotenv.2022.159969] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive study on classifying the aerosol types and absorbing aerosol types, and quantifying the effect of absorbing aerosols on aerosol optical and radiative properties using four years (2015-2016, 2018-2019) of high-quality Aerosol Robotic Network (AERONET) datasets over Kanpur (urban) and Gandhi College (rural) in the Indo-Gangetic Plain (IGP) region is conducted on a seasonal scale, for the first time. Biomass burning (BB), urban-industrial, and mixed aerosol types are always present, whereas dust aerosol and mostly dust absorbing aerosol types are only present in pre-monsoon and monsoon seasons. During winter and post-monsoon seasons, BB aerosols and mostly black carbon (MBC) absorbing aerosols dominate, and the contribution of aerosol optical depth (AOD) and single scattering albedo (SSA) corresponding to MBC to total AOD and SSA are higher. SSA for MBC varies over a broader range due to mixing of BC with water-soluble aerosols. During pre-monsoon and monsoon seasons, mixing of dust with anthropogenic aerosols increases the amount of mixed aerosol type. Surface cooling and atmospheric heating efficiency for mixed aerosols are higher than MBC and dust aerosols due to enhancement in aerosol absorption over both locations. Seasonal analysis of aerosol radiative properties showed that during winter and post-monsoon, MBC absorbing aerosols are the major contributor in controlling/influencing the total aerosol radiative forcing (ARF) and heating rate (HR). During the other seasons, each absorbing aerosol type significantly influences ARF depending on their AOD and SSA values. In addition to Kanpur and Gandhi College, data from seven other AERONET sites located at Karachi, Lahore, Jaipur, Lumbini, Pokhara, Bhola, and Dhaka in South Asia are analysed to conduct a regional-scale examination of aerosol optical parameters and radiative effects due to different absorbing aerosol types. As the aerosol characteristics and trends are similar over these sites, the findings from such a regional-scale analysis can be an appropriate representative for the South Asian region. The regional analysis revealed that the annual mean atmospheric ARF (ARFATM) and ARF efficiency (ARFEATM), and HR are higher for MBC, followed by mixed and MD aerosols over South Asia due to higher AOD, and higher absorbing efficiency of MBC aerosols. In comparison, mixed aerosols exhibit higher ARFATM over East Asia. This quantification of absorbing aerosol types over a global aerosol hotspot will be useful for an accurate quantification of climate impacts of aerosols.
Collapse
Affiliation(s)
- Kamran Ansari
- Physical Research Laboratory, Ahmedabad, 380009, India; Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382055, India.
| | | |
Collapse
|
7
|
Singh R, Singh V, Gautam AS, Gautam S, Sharma M, Soni PS, Singh K, Gautam A. Temporal and Spatial Variations of Satellite-Based Aerosol Optical Depths, Angstrom Exponent, Single Scattering Albedo, and Ultraviolet-Aerosol Index over Five Polluted and Less-Polluted Cities of Northern India: Impact of Urbanization and Climate Change. AEROSOL SCIENCE AND ENGINEERING 2023; 7:131-149. [PMCID: PMC9648442 DOI: 10.1007/s41810-022-00168-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 05/31/2023]
Abstract
It is widely acknowledged that factors such as population growth, urbanization's quick speed, economic growth, and industrialization all have a role in the atmosphere's rising aerosol concentration. In the current work, we assessed and discussed the findings of a thorough analysis of the temporal and spatial variations of satellite-based aerosol optical parameters such as Aerosol Optical Depth (AOD), Angstrom Exponent (AE), Single Scattering Albedo (SSA), and Ultraviolet-Aerosol Index (UV-AI), and their concentration have been investigated in this study over five polluted and less-polluted cities of northern India during the last decade 2011–2020. The temporal variation of aerosol optical parameters for AOD ranging from 0.2 to 1.8 with decadal mean 0.86 ± 0.36 for Patna region shows high value with a decadal increasing trend over the study area due to rise in aerosols combustion of fossil fuels, huge vehicles traffic, and biomass over the past ten years. The temporal variation of AE ranging from 0.3 to 1.8 with decadal mean 1.72 ± 0.11 for Agra region shows high value as compared to other study areas, which indicates a comparatively higher level of fine-mode aerosols at Agra. The temporal variation of SSA ranging from 0.8 to 0.9 with decadal mean 0.92 ± 0.02 for SSA shows no discernible decadal pattern at any of the locations. The temporal variation of UV-AI ranging from -1.01 to 2.36 with decadal mean 0.59 ± 0.06 for UV-AI demonstrates a rising tendency, with a noticeable rise in Ludhiana, which suggests relative dominance of absorbing dust aerosols over Ludhiana. Further, to understand the impact of emerging activities, analyses were done in seasonality. For this aerosol climatology was derived for different seasons, i.e., Winter, Pre-Monsoon, Monsoon, and Post-Monsoon. High aerosol was observed in Winter for the study areas Patna, Delhi, and Agra which indicated the particles major dominance of burning aerosol from biomass; and the worst in Monsoon and Post-Monsoon for the Tehri Garhwal and Ludhiana study areas which indicated most of the aerosol concentration is removed by rainfall. After that, we analyzed the correlation among all the parameters to better understand the temporal and spatial distribution characteristics of aerosols over the selected region. The value of r for AOD (550 nm) for regions 2 and 1(0.80) shows a strong positive correlation and moderately positive for the regions 3 and 1 (0.64), mostly as a result of mineral dust carried from arid western regions. The value of r for AE (412/470 nm) for region 3 and (0.40) shows a moderately positive correlation, which is the resultant of the dominance of fine-mode aerosol and negative for the regions 5 and 1 (− 0.06). The value of r for SSA (500 nm) for regions 2 and 1 (0.63) shows a moderately positive correlation, which explains the rise in big aerosol particles, which scatters sun energy more efficiently, and the value of r for UV-AI for regions 1 and 2 shows a strong positive correlation (0.77) and moderately positive for the regions 3 and 1 (0.46) which indicates the absorbing aerosols present over the study region.
Collapse
Affiliation(s)
- Rolly Singh
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| | - Vikram Singh
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| | - Alok Sagar Gautam
- Department of Physics, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, India
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, Coimbatore, 641117 India
| | - Manish Sharma
- School of Science and Engineering, Himgiri Zee University, Dehra Dun, Uttarakhand India
| | - Pushpendra Singh Soni
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| | - Karan Singh
- Department of Physics, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, Garhwal, India
| | - Alka Gautam
- Department of Physics Agra College, Dr Bhimrao Ambedkar University, Agra, Agra, 282004 Uttar Pradesh India
| |
Collapse
|
8
|
Flesch M, Christiansen AE, Burns AM, Ghate VP, Carlton AG. Ambient Aerosol Is Physically Larger on Cloudy Days in Bondville, Illinois. ACS EARTH & SPACE CHEMISTRY 2022; 6:2910-2918. [PMID: 36561197 PMCID: PMC9761781 DOI: 10.1021/acsearthspacechem.2c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Particle chemical composition affects aerosol optical and physical properties in ways important for the fate, transport, and impact of atmospheric particulate matter. For example, hygroscopic constituents take up water to increase the physical size of a particle, which can alter the extinction properties and atmospheric lifetime. At the collocated AERosol RObotic NETwork (AERONET) and Interagency Monitoring of PROtected Visual Environments (IMPROVE) network monitoring stations in rural Bondville, Illinois, we employ a novel cloudiness determination method to compare measured aerosol physicochemical properties on predominantly cloudy and clear sky days from 2010 to 2019. On cloudy days, aerosol optical depth (AOD) is significantly higher than on clear sky days in all seasons. Measured Ångström exponents are significantly smaller on cloudy days, indicating physically larger average particle size for the sampled populations in all seasons except winter. Mass concentrations of fine particulate matter that include estimates of aerosol liquid water (ALW) are higher on cloudy days in all seasons but winter. More ALW on cloudy days is consistent with larger particle sizes inferred from Ångström exponent measurements. Aerosol chemical composition that affects hygroscopicity plays a determining impact on cloudy versus clear sky differences in AOD, Ångström exponents, and ALW. This work highlights the need for simultaneous collocated, high-time-resolution measurements of both aerosol chemical and physical properties, in particular at cloudy times when quantitative understanding of tropospheric composition is most uncertain.
Collapse
Affiliation(s)
- Madison
M. Flesch
- Department of Chemistry, University
of California, Irvine, California92697, United States
| | | | - Alyssa M. Burns
- Department of Chemistry, University
of California, Irvine, California92697, United States
| | | | - Annmarie G. Carlton
- Department of Chemistry, University
of California, Irvine, California92697, United States
| |
Collapse
|
9
|
Singh A, Singh S, Srivastava AK, Payra S, Pathak V, Shukla AK. Climatology and model prediction of aerosol optical properties over the Indo-Gangetic Basin in north India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:827. [PMID: 36156160 DOI: 10.1007/s10661-022-10440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
The current research focuses on the use of different simulation techniques in the future prediction of the crucial aerosol optical properties over the highly polluted Indo-Gangetic Basin in the northern part of India. The time series model was used to make an accurate forecast of aerosol optical depth (AOD) and angstrom exponent (AE), and the statistical variability of both cases was compared in order to evaluate the effectiveness of the model (training and validation). For this, different models were used to simulate the monthly average AOD and AE over Jaipur, Kanpur and Ballia during the period from 2003 to 2018. Further, the study was aimed to construct a comparative model that will be used for time series statistical analysis of MODIS-derived AOD550 and AE412-470. This will provide a more comprehensive information about the levels of AOD and AE that will exist in the future. To test the validity and applicability of the developed models, root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE), fractional bias (FB), and Pearson coefficient (r) were used to show adequate accuracy in model performance. From the observation, the monthly mean values of AOD and AE were found to be nearly similar at Kanpur and Ballia (0.62 and 1.26) and different at Jaipur (0.25 and 1.14). Jaipur indicates that during the pre-monsoon season, the AOD mean value was found to be highest (0.32 ± 0.15), while Kanpur and Ballia display higher AOD mean values during the winter season (0.72 ± 0.26 and 0.83 ± 0.32, respectively). Among the different methods, the autoregressive integrated moving average (ARIMA) model was found to be the best-suited model for AOD prediction at Ballia based on fitted error (RMSE (0.22), MAE (0.15), MAPE (24.55), FB (0.05)) and Pearson coefficient r (0.83). However, for AE, best prediction was found at Kanpur based on RMSE (0.24), MAE (0.21), MAPE (22.54), FB (-0.09) and Pearson coefficient r (0.82).
Collapse
Affiliation(s)
- Amarendra Singh
- Institute of Engineering and Technology, Lucknow, India.
- Ministry of Earth Sciences, Indian Institute of Tropical Meteorology, New Delhi, India.
| | - Sumit Singh
- Institute of Engineering and Technology, Lucknow, India
| | - A K Srivastava
- Ministry of Earth Sciences, Indian Institute of Tropical Meteorology, New Delhi, India.
| | - Swagata Payra
- Department of Remote Sensing, Birla Institute of Technology, Mesra, Ranchi, India
| | | | - A K Shukla
- Institute of Engineering and Technology, Lucknow, India
| |
Collapse
|
10
|
Kong Z, Yu J, Gong Z, Hua D, Mei L. Visible, near-infrared dual-polarization lidar based on polarization cameras: system design, evaluation and atmospheric measurements. OPTICS EXPRESS 2022; 30:28514-28533. [PMID: 36299045 DOI: 10.1364/oe.463763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/03/2022] [Indexed: 06/16/2023]
Abstract
A visible, near-infrared (VIS-NIR) dual-polarization lidar technique employing laser diodes and polarization cameras has been designed and implemented for all-day unattended field measurements of atmospheric aerosols. The linear volume depolarization ratios (LVDR) and the offset angles can be retrieved from four-directional polarized backscattering signals at wavelengths of 458 nm and 808 nm without additional optical components and sophisticated system adjustments. Evaluations on the polarization crosstalk of the polarization camera and the offset angle have been performed in detail. A rotating linear polarizer (RLP) method based on the Stokes-Mueller formalism has been proposed and demonstrated for measuring extinction ratios of the polarization camera, which can be used to eliminate the polarization crosstalk between different polarization signals. The offset angles can be online measured with a precision of 0.1°, leading to negligible measurement errors on the LVDR. One-month statistical analysis revealed a small temporal variation of the offset angles, namely -0.13°±0.07° at 458 nm and 0.33°±0.09° at 808 nm, indicating good system stability for long-term measurement. Atmospheric measurements have been carried out to verify the system performance and investigate aerosol optical properties. The spectral characteristics of the aerosol extinction coefficient, the color ratio, the linear particle polarization ratio (LPDR) and the ratio of LPDR were retrieved and evaluated based on one-month continuous atmospheric measurements, from which different types of aerosols can be classified. The promising results showed great potential of employing the VIS-NIR dual-polarization lidar in characterizing aerosol optical properties, discriminating aerosol types and analyzing long-range aerosol transportation.
Collapse
|
11
|
Ramachandran S, Rupakheti M. Trends in the types and absorption characteristics of ambient aerosols over the Indo-Gangetic Plain and North China Plain in last two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154867. [PMID: 35353982 DOI: 10.1016/j.scitotenv.2022.154867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The sixth assessment report released by the Intergovernmental Panel on Climate Change (IPCC) in 2021 states that our inadequate understanding of magnitudes and trends of atmospheric aerosols, particularly over Asia, is a major source of uncertainty in climate change. In this study, the climatology and trends in different types of aerosols with focus on absorbing aerosols over Kanpur located in the Indo-Gangetic Plain (IGP) in South Asia and Beijing in the North China Plain (NCP) in East Asia are derived for the first time. We perform a first analysis of high-quality time series of columnar aerosols observations over a period of nearly two-decades, along with satellite observations to provide a broader regional perspective. The satellite retrieved aerosol Ångström exponent (AE) values have increased (10-20%) suggesting an increasing contribution of fine aerosols to aerosol optical depth (AOD) over Asia in last 2-decades. Among the three aerosol types [urban-industrial (UI), biomass burning (BB), and dust (DU)], only UI and BB aerosols are present over Kanpur throughout the year, while DU is present along with UI and BB aerosols only during pre-monsoon and monsoon. Overall, there is a positive trend in BB aerosols over both Kanpur and Beijing, a positive (negative) trend in UI aerosols over Kanpur (Beijing), and positive (negative) trend in dust over Beijing (Kanpur). However, only the positive trend in BB aerosol type over Kanpur is statistically significant. Further, among the three absorbing aerosol types [mostly black carbon (MBC), mostly dust (MDU), and mixed (MIX) containing BC and dust], only MBC and MIX are present in post-monsoon and winter over IGP, and MDU is present along with MBC and MIX only during pre-monsoon and monsoon, which is in agreement with aerosol types found. Trends in MBC, MIX and MDU over Kanpur in IGP and in MIX over Beijing are statistically significant. These trends are attributed mainly to the changes in anthropogenic aerosol emissions, and not to natural and climatic factors as their changes are relatively small. These findings on hitherto unavailable climatology and trends in aerosols and absorbing aerosols over two global aerosol hotspots and identified contrasts will be crucial in model simulations to better decipher the aerosol-climate interactions over Asia.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | | |
Collapse
|
12
|
Optical and Microphysical Properties of the Aerosol Field over Sofia, Bulgaria, Based on AERONET Sun-Photometer Measurements. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An analysis of the optical and microphysical characteristics of aerosol passages over Sofia City, Bulgaria, was performed on the basis of data provided by the AErosol RObotic NETwork (AERONET). The data considered are the result of two nearly complete annual cycles of passive optical remote sensing of the atmosphere above the Sofia Site using a Cimel CE318-TS9 sun/sky/lunar photometer functioning since 5 May 2020. The values of the Aerosol Optical Depth (AOD) and the Ångström Exponent (AE) measured during each annual cycle and the overall two-year cycle exhibited similar statistics. The two-year mean AODs were 0.20 (±0.11) and 0.17 (±0.10) at the wavelengths of 440 nm (AOD440) and 500 nm, respectively. The two-year mean AEs at the wavelength pairs 440/870 nm (AE440/870) and 380/500 nm were 1.45 (±0.35) and 1.32 (±0.29). The AOD values obtained reach maxima in winter-to-spring and summer and were about two times smaller than those obtained 15 years ago using a hand-held Microtops II sun photometer. The AOD440 and AE440/870 frequency distributions outline two AOD and three AE modes, i.e., 3 × 2 groups of aerosol events identifiable using AOD–AE-based aerosol classifications, additional aerosol characteristics, and aerosol migration models. The aerosol load over the city was estimated to consist most frequently of urban (63.4%) aerosols. The relative occurrences of desert dust, biomass-burning aerosols, and mixed aerosols were, respectively, 8.0%, 9.1% and 19.5%.
Collapse
|
13
|
The Effects of Local Pollution and Transport Dust on Aerosol Properties in Typical Arid Regions of Central Asia during DAO-K Measurement. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dust aerosol has an impact on both the regional radiation balance and the global radiative forcing estimation. The Taklimakan Desert is the focus of the present research on the optical and micro-physical characteristics of the dust aerosol characteristics in Central Asia. However, our knowledge is still limited regarding this typical arid region. The DAO-K (Dust Aerosol Observation-Kashgar) campaign in April 2019 presented a great opportunity to understand further the effects of local pollution and transported dust on the optical and physical characteristics of the background aerosol in Kashgar. In the present study, the consistency of the simultaneous observations is tested, based on the optical closure method. Three periods dominated by the regional background dust (RBD), local polluted dust (LPD), and Taklimakan transported dust (TTD), are identified through the backward trajectories, combined with the dust scores from AIRS (Atmospheric Infrared Sounder). The variations of the optical and micro-physical properties of dust aerosols are then studied, while a direct comparison of the total column and near surface is conducted. Generally, the mineral dust is supposed to be primarily composed of silicate minerals, which are mostly very weakly absorbing in the visible spectrum. Although there is very clean air (with PM2.5 of 21 μg/m3), a strong absorption (with an SSA of 0.77, AAE of 1.62) is still observed during the period dominated by the regional background dust aerosol. The near-surface observations show that there is PM2.5 pollution of ~98 μg/m3, with strong absorption in the Kashgar site during the whole observation. Local pollution can obviously enhance the absorption (with an SSA of 0.72, AAE of 1.58) of dust aerosol at the visible spectrum. This is caused by the increase in submicron fine particles (such as soot) with effective radii of 0.14 μm, 0.17 μm, and 0.34 μm. The transported Taklimakan dust aerosol has a relatively stable composition and strong scattering characteristics (with an SSA of 0.86, AAE of ~2.0). In comparison to the total column aerosol, the near-surface aerosol has the smaller size and the stronger absorption. Moreover, there is a very strong scattering of the total column aerosol. Even the local emission with the strong absorption has a fairly minor effect on the total column SSA. The comparison also shows that the peak radii of the total column PVSD is nearly twice as high as that of the near-surface PVSD. This work contributes to building a relationship between the remote sensing (total column) observations and the near-surface aerosol properties, and has the potential to improve the accuracy of the radiative forcing estimation in Kashgar.
Collapse
|
14
|
Ramachandran S, Rupakheti M, Cherian R. Insights into recent aerosol trends over Asia from observations and CMIP6 simulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150756. [PMID: 34619211 DOI: 10.1016/j.scitotenv.2021.150756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Aerosols continue to contribute the largest uncertainty in climate change. Over Asia, a global aerosol hotspot, spatial patterns of aerosol emissions are changing mainly because of changes in anthropogenic emissions, producing a dipole in atmospheric aerosol loading between East (decrease in emissions) and South Asia (increase in emissions). The resultant aerosol radiative effects are expected to be different as compared to the last decades of the 20th century because of this emerging Asian aerosol dipole. The projection and assessments of radiative and climate impacts of aerosols rely on simulating accurately the aerosol properties, thus, making it imperative that current climate models involved in climate assessments including the Intergovernmental Panel on Climate Change Assessment Reports, simulate well the magnitude and trends in changing aerosol properties. For the first time, in this study we analyze trends in aerosol properties over Asia from satellite and ground-based observations, and simulations from climate models in Coupled Model Intercomparison Project Phase 6 (CMIP6) experiment with state-of-the-art treatment of aerosol chemistry, physics and meteorology. The results reveal large inter-model differences in model estimates, and discrepancies between model simulations and observations as most models are not able to capture the recent observed magnitudes and trends in aerosol optical depth (AOD) and single scattering albedo (SSA) over Asia. The absolute and the relative (percent) trends (positive and/or negative) in AOD are significantly higher than the trends in SSA. The aerosol-induced effective radiative forcing within the atmosphere simulated with three CMIP6 models show a positive (increasing) trend over Asia. A positive trend in atmospheric heating due to aerosols in model simulations is consistent with model simulated trends in AOD (positive) and SSA (negative). These results on model-observations comparison need to be taken into account while examining the projected/expected future climate impacts due to aerosols, and potential value of various mitigation measures, in particular on regional and decadal climate change in Asia which is largely uncertain. MAIN FINDING: Our analysis of satellite and ground-based observations, and simulations from climate models in CMIP6 experiment with state-of-the-art treatment of aerosol chemistry, physics and meteorology reveal large difference in model calculations, and most models are not able to capture the recent observed trends in aerosol optical depth and single scattering albedo over Asia during 2000-2018.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | | | - R Cherian
- Leipzig Institute for Meteorology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Yli-Juuti T, Mielonen T, Heikkinen L, Arola A, Ehn M, Isokääntä S, Keskinen HM, Kulmala M, Laakso A, Lipponen A, Luoma K, Mikkonen S, Nieminen T, Paasonen P, Petäjä T, Romakkaniemi S, Tonttila J, Kokkola H, Virtanen A. Significance of the organic aerosol driven climate feedback in the boreal area. Nat Commun 2021; 12:5637. [PMID: 34561456 PMCID: PMC8463617 DOI: 10.1038/s41467-021-25850-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Aerosol particles cool the climate by scattering solar radiation and by acting as cloud condensation nuclei. Higher temperatures resulting from increased greenhouse gas levels have been suggested to lead to increased biogenic secondary organic aerosol and cloud condensation nuclei concentrations creating a negative climate feedback mechanism. Here, we present direct observations on this feedback mechanism utilizing collocated long term aerosol chemical composition measurements and remote sensing observations on aerosol and cloud properties. Summer time organic aerosol loadings showed a clear increase with temperature, with simultaneous increase in cloud condensation nuclei concentration in a boreal forest environment. Remote sensing observations revealed a change in cloud properties with an increase in cloud reflectivity in concert with increasing organic aerosol loadings in the area. The results provide direct observational evidence on the significance of this negative climate feedback mechanism.
Collapse
Affiliation(s)
- Taina Yli-Juuti
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Tero Mielonen
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Liine Heikkinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Antti Arola
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Sini Isokääntä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Helmi-Marja Keskinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, Finland
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Anton Laakso
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Antti Lipponen
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Krista Luoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomo Nieminen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Pauli Paasonen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Sami Romakkaniemi
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Juha Tonttila
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Harri Kokkola
- Atmospheric Research Centre of Eastern Finland, Finnish Meteorological Institute, Kuopio, Finland
| | - Annele Virtanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
16
|
Black Carbon over Wuhan, China: Seasonal Variations in Its Optical Properties, Radiative Forcing and Contribution to Atmospheric Aerosols. REMOTE SENSING 2021. [DOI: 10.3390/rs13183620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As an important fraction of light-absorbing particles, black carbon (BC) has a significant warming effect, despite accounting for a small proportion of total aerosols. A comprehensive investigation was conducted on the characteristics of atmospheric aerosols and BC particles over Wuhan, China. Mass concentration, optical properties, and radiative forcing of total aerosols and BC were estimated using multi-source observation data. Results showed that the BC concentration monthly mean varied from 2.19 to 5.33 μg m−3. The BC aerosol optical depth (AOD) maximum monthly mean (0.026) occurred in winter, whereas the maximum total AOD (1.75) occurred in summer. Under polluted-air conditions, both aerosol radiative forcing (ARF) and BC radiative forcing (BCRF) at the bottom of the atmosphere (BOA) were strongest in summer, with values of −83.01 and −11.22 W m−2, respectively. In summer, ARF at BOA on polluted-air days was more than two-fold that on clean-air days. In addition, compared with clean-air days, BCRF at BOA on polluted-air days was increased by 76% and 73% in summer and winter, respectively. The results indicate an important influence of particulate air pollution on ARF and BCRF. Furthermore, the average contribution of BCRF to ARF was 13.8%, even though the proportion of BC in PM2.5 was only 5.1%.
Collapse
|
17
|
Impact of Aerosol and Cloud on the Solar Energy Potential over the Central Gangetic Himalayan Region. REMOTE SENSING 2021. [DOI: 10.3390/rs13163248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examine the impact of atmospheric aerosols and clouds on the surface solar radiation and solar energy at Nainital, a high-altitude remote location in the central Gangetic Himalayan region (CGHR). For this purpose, we exploited the synergy of remote-sensed data in terms of ground-based AERONET Sun Photometer and satellite observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat Second Generation (MSG), with radiative transfer model (RTM) simulations and 1 day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). Clouds and aerosols are one of the most common sources of solar irradiance attenuation and hence causing performance issues in the photovoltaic (PV) and concentrated solar power (CSP) plant installations. The outputs of RTM results presented with high accuracy under clear, cloudy sky and dust conditions for global horizontal (GHI) and beam horizontal irradiance (BHI). On an annual basis the total aerosol attenuation was found to be up to 105 kWh m−2 for the GHI and 266 kWh m−2 for BHI, respectively, while the cloud effect is much stronger with an attenuation of 245 and 271 kWh m−2 on GHI and BHI. The results of this study will support the Indian solar energy producers and electricity handling entities in order to quantify the energy and financial losses due to cloud and aerosol presence.
Collapse
|
18
|
Aldhaif AM, Lopez DH, Dadashazar H, Painemal D, Peters AJ, Sorooshian A. An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study Over Bermuda. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2021; 126:e2020JD034038. [PMID: 34159044 PMCID: PMC8216143 DOI: 10.1029/2020jd034038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Aerosol characteristics and aerosol-cloud interactions remain uncertain in remote marine regions. We use over a decade of data (2000-2012) from the NASA AErosol RObotic NETwork, aerosol and wet deposition samples, satellite remote sensors, and models to examine aerosol and cloud droplet number characteristics at a representative open ocean site (Bermuda) over the Western North Atlantic Ocean (WNAO). Annual mean values were as follows: aerosol optical depth (AOD) = 0.12, Ångström Exponent (440/870 nm) = 0.95, fine mode fraction = 0.51, asymmetry factor = 0.72 (440 nm) and 0.68 (1020 nm), and Aqua-MODIS cloud droplet number concentrations = 51.3 cm-3. The winter season (December-February) was characterized by high sea salt optical thickness and the highest aerosol extinction in the lowest 2 km. Extensive precipitation over the WNAO in winter helps contribute to the low FMFs in winter (~0.40-0.50) even though air trajectories often originate over North America. Spring and summer had more pronounced influence from sulfate, dust, organic carbon, and black carbon. Volume size distributions were bimodal with a dominant coarse mode (effective radii: 1.85-2.09 μm) and less pronounced fine mode (0.14-0.16 μm), with variability in the coarse mode likely due to different characteristic sizes for transported dust (smaller) versus regional sea salt (larger). Extreme pollution events highlight the sensitivity of this site to long-range transport of urban emissions, dust, and smoke. Differing annual cycles are identified between AOD and cloud droplet number concentrations, motivating a deeper look into aerosol-cloud interactions at this site.
Collapse
Affiliation(s)
- Abdulmonam M Aldhaif
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - David H Lopez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - David Painemal
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | | | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Yan X, Zang Z, Liang C, Luo N, Ren R, Cribb M, Li Z. New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116707. [PMID: 33609902 DOI: 10.1016/j.envpol.2021.116707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The space-borne measured fine-mode aerosol optical depth (fAOD) is a gross index of column-integrated anthropogenic particulate pollutants, especially over the populated land. The fAOD is the product of the AOD and the fine-mode fraction (FMF). While there exist numerous global AOD products derived from many different satellite sensors, there have been much fewer, if any, global FMF products with a quality good enough to understand their spatiotemporal variations. This is key to understanding the global distribution and spatiotemporal variations of air pollutants, as well as their impacts on global environmental and climate changes. Modifying our newly developed retrieval algorithm to the latest global-scale Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product (Collection 6.1), a global 10-year FMF product is generated and analyzed here. We first validate the product through comparisons with the FMF derived from Aerosol Robotic Network (AERONET) measurements. Among our 169,313 samples, the satellite-derived FMFs agreed with the AERONET spectral deconvolution algorithm (SDA)-retrieved FMFs with a root-mean-square error (RMSE) of 0.22. Analyzed using this new product are the global patterns and interannual and seasonal variations of the FMF over land. In general, the FMF is large (>0.80) over Mexico, Myanmar, Laos, southern China, and Africa and less than 0.5 in the Sahelian and Sudanian zones of northern Africa. Seasonally, higher FMF values occur in summer and autumn. The linear trend in the satellite-derived and AERONET FMFs for different countries was explored. The upward trend in the FMFs was particularly strong over Australia since 2008. This study provides a new global view of changes in FMFs using a new satellite product that could help improve our understanding of air pollution around the world.
Collapse
Affiliation(s)
- Xing Yan
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Zhou Zang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Chen Liang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Nana Luo
- Department of Geography, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182-4493, USA
| | - Rongmin Ren
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Maureen Cribb
- Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, MD, 20740, USA
| | - Zhanqing Li
- Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park, MD, 20740, USA.
| |
Collapse
|
20
|
Spectral Derivatives of Optical Depth for Partitioning Aerosol Type and Loading. REMOTE SENSING 2021. [DOI: 10.3390/rs13081544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantifying aerosol compositions (e.g., type, loading) from remotely sensed measurements by spaceborne, suborbital and ground-based platforms is a challenging task. In this study, the first and second-order spectral derivatives of aerosol optical depth (AOD) with respect to wavelength are explored to determine the partitions of the major components of aerosols based on the spectral dependence of their particle optical size and complex refractive index. With theoretical simulations from the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) model, AOD spectral derivatives are characterized for collective models of aerosol types, such as mineral dust (DS) particles, biomass-burning (BB) aerosols and anthropogenic pollutants (AP), as well as stretching out to the mixtures among them. Based on the intrinsic values from normalized spectral derivatives, referenced as the Normalized Derivative Aerosol Index (NDAI), a unique pattern is clearly exhibited for bounding the major aerosol components; in turn, fractions of the total AOD (fAOD) for major aerosol components can be extracted. The subtlety of this NDAI method is examined by using measurements of typical aerosol cases identified carefully by the ground-based Aerosol Robotic Network (AERONET) sun–sky spectroradiometer. The results may be highly practicable for quantifying fAOD among mixed-type aerosols by means of the normalized AOD spectral derivatives.
Collapse
|
21
|
Improving Spatial Coverage of Satellite Aerosol Classification Using a Random Forest Model. REMOTE SENSING 2021. [DOI: 10.3390/rs13071268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spatial coverage of satellite aerosol classification was improved using a random forest (RF) model trained with observational data including target (aerosol type) and input (satellite measurement) variables. The AErosol RObotic NETwork (AERONET) aerosol-type dataset was used for the target variables. Satellite input variables with many missing data or low mean-decrease accuracy were excluded from the final input variable set, and good performance in aerosol-type classification was achieved. The performance of the RF-based model was evaluated on the basis of the wavelength dependence of single-scattering albedo (SSA) and fine-mode-fraction values from AERONET. Typical SSA wavelength dependence for individual aerosol types was consistent with that obtained for aerosol types by the RF-based model. The spatial coverage of the RF-based model was also compared with that of previously developed models in a global-scale case study. The study demonstrates that the RF-based model allows satellite aerosol classification with improved spatial coverage, with a performance similar to that of previously developed models.
Collapse
|
22
|
Dumka UC, Kaskaoutis DG, Mihalopoulos N, Sheoran R. Identification of key aerosol types and mixing states in the central Indian Himalayas during the GVAX campaign: the role of particle size in aerosol classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143188. [PMID: 33143923 DOI: 10.1016/j.scitotenv.2020.143188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Studies in aerosol properties, types and sources in the Himalayas are important for atmospheric and climatic issues due to high aerosol loading in the neighboring plains. This study uses in situ measurements of aerosol optical and microphysical properties obtained during the Ganges Valley Aerosol eXperiment (GVAX) at Nainital, India over the period June 2011-March 2012, aiming to identify key aerosol types and mixing states for two particle sizes (PM1 and PM10). Using a classification matrix based on SAE vs. AAE thresholds (scattering vs. absorption Ångström exponents, respectively), seven aerosol types are identified, which are highly dependent on particle size. An aerosol type named "large/BC mix" dominates in both PM1 (45.4%) and PM10 (46.9%) mass, characterized by aged BC mixed with other aerosols, indicating a wide range of particle sizes and mixing states. Small particles with low spectral dependence of the absorption (AAE < 1) account for 31.6% and BC-dominated aerosols for 14.8% in PM1, while in PM10, a large fraction (39%) corresponds to "large/low-absorbing" aerosols and only 3.9% is characterized as "BC-dominated". The remaining types consist of mixtures of dust and local emissions from biofuel burning and display very small fractions. The main optical properties e.g. spectral scattering, absorption, single scattering albedo, activation ratio, as well as seasonality and dependence on wind speed and direction of identified types are examined, revealing a large influence of air masses originating from the Indo-Gangetic Plains. This indicates that aerosols over the central Himalayas are mostly composed by mixtures of processed and transported polluted plumes from the plains. This is the first study that identifies key aerosol populations in the central Indian Himalayas based on in situ measurements and the results are highly important for aerosol-type inventories, chemical transport models and reducing the uncertainty in aerosol radiative forcing over the third pole.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece.
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003 Crete, Greece
| | - Rahul Sheoran
- Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital 263 001, India
| |
Collapse
|
23
|
Fortunato Dos Santos Oliveira DC, Montilla-Rosero E, da Silva Lopes FJ, Morais FG, Landulfo E, Hoelzemann JJ. Aerosol properties in the atmosphere of Natal/Brazil measured by an AERONET Sun-photometer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9806-9823. [PMID: 33159225 DOI: 10.1007/s11356-020-11373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
We analyzed data measured by a Sun-photometer of the RIMA-AERONET network with the purpose to characterize the aerosol properties in the atmosphere over Natal, state capital of Rio Grande do Norte, at the coast of Northeast Brazil. Aerosol Optical Depth, Ångström Exponent, Volume Size Distribution, Single Scattering Albedo, Complex Refractive Index, Asymmetry Factor, and Precipitable Water were analyzed from August 2017 to March 2018. In addition, MODIS and CALIOP observations, local Lidar measurements, and modeled backward trajectories were analyzed in a case study on February 9, 2018, that consistently confirmed the identification of a persistent aerosol layer below 4 km agl. Aerosols present in the atmosphere of Natal showed monthly mean Aerosol Optical Depth at 500 nm below 0.15 (~ 75%), monthly means of the Ångström Exponent at 440-670 nm between 0.30 and 0.70 (~ 69%), bimodal Volume Size Distribution is dominantly coarse mode, Single Scattering Albedo at 440 nm is 0.80, Refractive Index - Real Part around 1.50, Refractive Index - Imaginary Part ranging from 0.01 to 0.04, and the Asymmetry Factor ranged from 0.73 to 0.80. The aerosol typing during the measurement period showed that atmospheric aerosol over Natal is mostly composed of mixed aerosol (58.10%), marine aerosol (34.80%), mineral dust (6.30%), and biomass burning aerosols (0.80%). Backward trajectories identified that 51% of the analyzed air masses over Natal originated from the African continent.
Collapse
Affiliation(s)
| | - Elena Montilla-Rosero
- Physical Sciences Department, School of Science, EAFIT University, Medellín, Colombia
| | - Fábio Juliano da Silva Lopes
- Environmental Science Department, Institute of Environmental, Chemical and Pharmaceutical Science, Federal University of São Paulo - UNIFESP, Rua São Nicolau, 210, Centro, 09913-030, Diadema, São Paulo, Brazil
- Center for Lasers and Applications, Nuclear and Energy Research Institute-IPEN, Av. Prof. Lineu Prestes, 2242, Cidade Universitária, São Paulo, São Paulo, 05508-000, Brazil
| | - Fernando Gonçalves Morais
- Center for Lasers and Applications, Nuclear and Energy Research Institute-IPEN, Av. Prof. Lineu Prestes, 2242, Cidade Universitária, São Paulo, São Paulo, 05508-000, Brazil
- Physics Institute, University of São Paulo - USP, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil
| | - Eduardo Landulfo
- Center for Lasers and Applications, Nuclear and Energy Research Institute-IPEN, Av. Prof. Lineu Prestes, 2242, Cidade Universitária, São Paulo, São Paulo, 05508-000, Brazil
| | - Judith Johanna Hoelzemann
- Department of Atmospheric and Climate Sciences (UFRN/DCAC), Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
24
|
Xia X, Che H, Shi H, Chen H, Zhang X, Wang P, Goloub P, Holben B. Advances in sunphotometer-measured aerosol optical properties and related topics in China: Impetus and perspectives. ATMOSPHERIC RESEARCH 2021; 249:105286. [PMID: 33012934 PMCID: PMC7518977 DOI: 10.1016/j.atmosres.2020.105286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/02/2023]
Abstract
Aerosol is a critical trace component of the atmosphere. Many processes in the Earth's climate system are intimately related to aerosols via their direct and indirect radiative effects. Aerosol effects are not limited to these climatic aspects, however. They are also closely related to human health, photosynthesis, new energy, etc., which makes aerosol a central focus in many research fields. A fundamental requirement for improving our understanding of the diverse aerosol effects is to accumulate high-quality aerosol data by various measurement techniques. Sunphotometer remote sensing is one of the techniques that has been playing an increasingly important role in characterizing aerosols across the world. Much progress has been made on this aspect in China during the past decade, which is the work reviewed in this paper. Three sunphotometer networks have been established to provide high-quality observations of long-term aerosol optical properties across the country. Using this valuable dataset, our understanding of spatiotemporal variability and long-term trends of aerosol optical properties has been much improved. The radiative effects of aerosols both at the bottom and at the top of the atmosphere are comprehensively assessed. Substantial warming of the atmosphere by aerosol absorption is revealed. The long-range transport of dust from the Taklimakan Desert in Northwest China and anthropogenic aerosols from South Asia to the Tibetan Plateau is characterized based on ground-based and satellite remote sensing as well as model simulations. Effective methods to estimate chemical compositions from sunphotometer aerosol products are developed. Dozens of satellite and model aerosol products are validated, shedding new light on how to improve these products. These advances improve our understanding of the critical role played by aerosols in both the climate and environment. Finally, a perspective on future research is presented.
Collapse
Affiliation(s)
- Xiangao Xia
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Hongrong Shi
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hongbin Chen
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather (LASW) and Key Laboratory of Atmospheric Chemistry (LAC), Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Pucai Wang
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Phillipe Goloub
- Univ. Lille, CNRS, UMR 8518 - LOA - Laboratoire d'Optique Atmosphérique, F-59000 Lille, France
| | - Brent Holben
- Biospheric Sciences Branch, Code 923, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
25
|
Study of the Effect of Aerosol Vertical Profile on Microphysical Properties Using GRASP Code with Sun/Sky Photometer and Multiwavelength Lidar Measurements. REMOTE SENSING 2020. [DOI: 10.3390/rs12244072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we study the effect of the vertical distribution of aerosols on the inversion process to obtain microphysical properties of aerosols. The GRASP code is used to retrieve the aerosol size distribution from two different schemes. Firstly, only sun/sky photometer measurements of aerosol optical depth and sky radiances are used as input to the retrieval code, and then, both this information and the range-corrected signals from an advanced lidar system are provided to the code. Measurements taken at the Madrid EARLINET station, complemented with those from the nearby AERONET station, have been analyzed for the 2016–2019 time range. The effect found of the measured vertical profile on the inversion is a shift to smaller radius of the fine mode with average differences of 0.05 ± 0.02 µm, without noticeable effects for the coarse mode radius. This coarse mode is sometimes split into two modes, related to large AOD or elevated aerosol-rich layers. The first scheme´s retrieved size distributions are also compared with those provided by AERONET, observing the unusual persistence of a large mode centered at 5 µm. These changes in the size distributions affect slightly the radiative forcing calculated also by the GRASP code. A stronger forcing, dependent on the AOD, is observed in the second scheme. The shift in the fine mode and the effect on the radiative forcing indicate the importance of considering the vertical profile of aerosols on the retrieval of microphysical properties by remote sensing.
Collapse
|
26
|
Ramachandran S, Rupakheti M, Lawrence MG. Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Sci Rep 2020; 10:20091. [PMID: 33208825 PMCID: PMC7676243 DOI: 10.1038/s41598-020-76936-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Aerosol emissions from human activities are extensive and changing rapidly over Asia. Model simulations and satellite observations indicate a dipole pattern in aerosol emissions and loading between South Asia and East Asia, two of the most heavily polluted regions of the world. We examine the previously unexplored diverging trends in the existing dipole pattern of aerosols between East and South Asia using the high quality, two-decade long ground-based time series of observations of aerosol properties from the Aerosol Robotic Network (AERONET), from satellites (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)), and from model simulations (Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The data cover the period since 2001 for Kanpur (South Asia) and Beijing (East Asia), two locations taken as being broadly representative of the respective regions. Since 2010 a dipole in aerosol optical depth (AOD) is maintained, but the trend is reversed—the decrease in AOD over Beijing (East Asia) is rapid since 2010, being 17% less in current decade compared to first decade of twenty-first century, while the AOD over South Asia increased by 12% during the same period. Furthermore, we find that the aerosol composition is also changing over time. The single scattering albedo (SSA), a measure of aerosol’s absorption capacity and related to aerosol composition, is slightly higher over Beijing than Kanpur, and has increased from 0.91 in 2002 to 0.93 in 2017 over Beijing and from 0.89 to 0.92 during the same period over Kanpur, confirming that aerosols in this region have on an average become more scattering in nature. These changes have led to a notable decrease in aerosol-induced atmospheric heating rate (HR) over both regions between the two decades, decreasing considerably more over East Asia (− 31%) than over South Asia (− 9%). The annual mean HR is lower now, it is still large (≥ 0.6 K per day), which has significant climate implications. The seasonal trends in AOD, SSA and HR are more pronounced than their respective annual trends over both regions. The seasonal trends are caused mainly by the increase/decrease in anthropogenic aerosol emissions (sulfate, black carbon and organic carbon) while the natural aerosols (dust and sea salt) did not change significantly over South and East Asia during the last two decades. The MERRA-2 model is able to simulate the observed trends in AODs well but not the magnitude, while it also did not simulate the SSA values or trends well. These robust findings based on observations of key aerosol parameters and previously unrecognized diverging trends over South and East Asia need to be accounted for in current state-of-the-art climate models to ensure accurate quantification of the complex and evolving impact of aerosols on the regional climate over Asia.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India. .,Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | | | - Mark G Lawrence
- Institute for Advanced Sustainability Studies, Potsdam, Germany.,Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
| |
Collapse
|
27
|
Cheng Y, Zhang Z, Kong Z, Yang C, Gong Z, Liu K, Mei L. Evaluation of systematic errors for the continuous-wave NO 2 differential absorption lidar employing a multimode laser diode. APPLIED OPTICS 2020; 59:9087-9097. [PMID: 33104620 DOI: 10.1364/ao.403659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The NO2-differential absorption lidar (NO2-DIAL) technique has been of great interest for atmospheric NO2 profiling. Comprehensive studies on measurement errors in the NO2-DIAL technique are vital for the accurate retrieval of the NO2 concentration. This work investigates the systematic errors of the recently developed continuous-wave (CW) NO2-DIAL technique based on the Scheimpflug principle and a high-power CW multimode laser diode. Systematic errors introduced by various factors, e.g., uncertainty of the NO2 differential absorption cross-section, differential absorption due to other gases, spectral drifting of the λon and λoff wavelengths, wavelength-dependent extinction and backscattering effect, have been theoretically and experimentally studied for the CW-DIAL technique. By performing real-time spectral monitoring on the emission spectrum of the laser diode, the effect of spectral drifting on the NO2 differential absorption cross-section is negligible. The temperature-dependent NO2 absorption cross-section in the region of 220-294 K can be interpolated by employing a linear fitting method based on high-precision absorption spectra at 220, 240, and 294 K. The relative error for the retrieval of the NO2 concentration is estimated to be less than 0.34% when employing the interpolated spectrum. The primary interference molecule is found to be the glyoxal (CHOCHO), which should be carefully evaluated according to its relative concentration in respect to NO2. The systematic error introduced by the backscattering effect is subjected to the spatial variation of the aerosol load, while the extinction-induced systematic error is primarily determined by the difference between the aerosol extinction coefficients at λon and λoff wavelengths. A case study has been carried out to demonstrate the evaluation of systematic errors for practical NO2 monitoring. The comprehensive investigation on systematic errors in this work can be of great value for future NO2 monitoring using the DIAL technique.
Collapse
|
28
|
Ramachandran S, Rupakheti M. Inter-annual and seasonal variations in columnar aerosol characteristics and radiative effects over the Pokhara Valley in the Himalayan foothills - Composition, radiative forcing, and atmospheric heating. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114799. [PMID: 32559877 DOI: 10.1016/j.envpol.2020.114799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
This study reports comprehensive analysis of seasonal and inter-annual variations of aerosol properties (optical, physical and chemical) and radiative effects over Pokhara Valley in the foothills of central Himalayas in Nepal utilizing the high-quality multi-year columnar aerosol data observed recently from January 2010 to December 2017. This paper focusses on the seasonal and inter-annual variations of chemical (composition), and absorption properties of aerosols and their radiative effects. The single scattering albedo (SSA) either decreases as a function of wavelength or remains independent of wavelength. The seasonal mean aerosol absorption optical depth (AAOD) exhibits a behavior opposite to that of SSA. Carbonaceous aerosols (CA) dominate (≥60%) aerosol absorption during the whole year. Black carbon (BC) alone contributes >60% to AAODCA while brown carbon (BrC) shares the rest. The absorbing aerosol types are determined to be BC, and mixed (BC and dust) only. Dust as absorbing aerosol type is absent over the Himalayan foothills. The ARFSFC is ≥ -50 Wm-2 except in monsoon almost every year. The ARFATM is ≥ 50 Wm-2 during winter and pre-monsoon in all the years. ARFESFC, ARFETOA and ARFEATM follow a similar pattern as that of ARF. High values of ARFE at SFC, TOA and ATM (except during monsoon when values are slightly lower) suggest that aerosols are efficient in significantly modulating the incoming solar flux throughout the year. The annual average aerosol-induced atmospheric heating rate (HR) over Pokhara is nearly 1 K day-1 every year during 8-year observation, and is highest in 2015 (∼2.5 K day-1). The HR is about 1 K day-1 or more over all the locations in IGP during the year. These quantitative results can be used as inputs in global/regional climate models to assess the climate impact of aerosols, including on regional temperature, hydrological cycle and melting of glaciers and snowfields in the region.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | - M Rupakheti
- Institute for Advanced Sustainability Studies, Potsdam, Germany.
| |
Collapse
|
29
|
Ramachandran S, Rupakheti M, Lawrence MG. Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills. ENVIRONMENT INTERNATIONAL 2020; 142:105814. [PMID: 32505017 DOI: 10.1016/j.envint.2020.105814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
This study, based on new and high quality in situ observations, quantifies for the first time, the individual contributions of light-absorbing aerosols (black carbon (BC), brown carbon (BrC) and dust) to aerosol absorption over the Indo-Gangetic Plain (IGP) and the Himalayan foothill region, a relatively poorly studied region with several sensitive ecosystems of global importance, as well as highly vulnerable populations. The annual and seasonal average single scattering albedo (SSA) over Kathmandu is the lowest of all the locations. The SSA over Kathmandu is < 0.89 during all seasons, which confirms the dominance of light-absorbing carbonaceous aerosols from local and regional sources over Kathmandu. It is observed here that the SSA decreases with increasing elevation, confirming the dominance of light absorbing carbonaceous aerosols at higher elevations. In contrast, the SSA over the IGP does not exhibit a pronounced spatial variation. BC dominates (≥75%) the aerosol absorption over the IGP and the Himalayan foothills throughout the year. Higher BC concentration at elevated locations in the Himalayas leads to lower SSA at elevated locations in the Himalayas. The contribution of dust to aerosol absorption is higher throughout the year over the IGP than over the Himalayan foothills. The aerosol absorption over South Asia is very high, exceeding available observations over East Asia, and also exceeds previous model estimates. This quantification will be valuable as observational constraints to help improve regional simulations of climate change, impacts on the glaciers and the hydrological cycle, and will help to direct the focus towards BC as the main contributor to aerosol-induced warming in the region.
Collapse
Affiliation(s)
- S Ramachandran
- Physical Research Laboratory, Ahmedabad, India; Institute for Advanced Sustainability Studies, Potsdam, Germany.
| | | | - Mark G Lawrence
- Institute for Advanced Sustainability Studies, Potsdam, Germany; Institute for Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
30
|
Investigation of Aerosol Climatology and Long-Range Transport of Aerosols over Pokhara, Nepal. ATMOSPHERE 2020. [DOI: 10.3390/atmos11080874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents the spectral monthly and seasonal variation of aerosol optical depth (τAOD), single scattering albedo (SSA), and aerosol absorption optical depth (AAOD) between 2010 and 2018 obtained from the Aerosol Robotic Network (AERONET) over Pokhara, Nepal. The analysis of these column-integrated aerosol optical data suggests significant monthly and seasonal variability of aerosol physical and optical properties. The pre-monsoon season (March to May) has the highest observed τAOD(0.75 ± 0.15), followed by winter (December to February, 0.47 ± 0.12), post-monsoon (October and November, 0.39 ± 0.08), and monsoon seasons (June to September, 0.27 ± 0.13), indicating seasonal aerosol loading over Pokhara. The variability of Ångström parameters, α, and β, were computed from the linear fit line in the logarithmic scale of spectral τAOD, and used to analyze the aerosol physical characteristics such as particle size and aerosol loading. The curvature of spectral τAOD, α’, computed from the second-order polynomial fit, reveals the domination by fine mode aerosol particles in the post-monsoon and winter seasons, with coarse mode dominating in monsoon, and both modes contributing in the pre-monsoon. Analysis of air mass back trajectories and observation of fire spots along with aerosol optical data and aerosol size spectra suggest the presence of mixed types of transboundary aerosols, such as biomass, urban-industrial, and dust aerosols in the atmospheric column over Pokhara.
Collapse
|
31
|
Retrieval of 500 m Aerosol Optical Depths from MODIS Measurements over Urban Surfaces under Heavy Aerosol Loading Conditions in Winter. REMOTE SENSING 2019. [DOI: 10.3390/rs11192218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products are used worldwide for their reliable accuracy. However, the aerosol optical depth (AOD) usually retrieved by the operational dark target (DT) algorithm of MODIS has been missing for most of the urban regions in Central China. This was due to a high surface reflectance and heavy aerosol loading, especially in winter, when a high cloud cover fraction and the frequent occurrence of haze events reduce the number of effective satellite observations. The retrieval of the AOD from limited satellite data is much needed and important for further aerosol investigations. In this paper, we propose an improved AOD retrieval method for 500 m MODIS data, which is based on an extended surface reflectance estimation scheme and dynamic aerosol models derived from ground-based sun-photometric observations. This improved method was applied to retrieve AOD during heavy aerosol loading and effectively complements the scarcity of AOD in correspondence with urban surface of a higher spatial resolution. The validation results showed that the retrieved AOD was consistent with MODIS DT AOD (R = ~0.87; RMSE = ~0.11) and ground measurements (R = ~0.89; RMSE = ~0.15) from both the Terra and the Aqua satellite. The method can be easily applied to different urban environments affected by air pollution and contributes to the research on aerosol.
Collapse
|
32
|
Dust Properties and Radiative Impacts at a Suburban Site during 2004–2017 in the North China Plain. REMOTE SENSING 2019. [DOI: 10.3390/rs11161842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aerosols and their radiative effects are of primary interest in climate research because of their vital influence on climate change. Dust aerosols are an important aerosol type in the North China Plain (NCP), mainly as a result of long-range transport, showing substantial spatiotemporal variations. By using measurements from the Aerosol Robotic Network (AERONET) between September 2004 and May 2017, and the space-borne Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products, we investigated the properties of dust aerosols and their radiative effects at Xianghe (XH)—a suburban site in the NCP. Dust events occurred most frequently during spring (a total of 105 days) relative to the other three seasons (a total of 41 days) during the periods concerned. The dust aerosol optical depth (AOD) at 675 nm was at a maximum in spring (0.60 ± 0.44), followed (in decreasing order) by those in autumn (0.58 ± 0.39), summer (0.54 ± 0.15), and winter (0.53 ± 0.23). Cooling effects of dust aerosol radiative forcing (RF) at the bottom and top of the atmosphere tended to be strongest in spring (−96.72 ± 45.69 and −41.87 ± 19.66 Wm−2) compared to that in summer (−57.08 ± 18.54 and −25.54 ± 4.45 Wm−2), autumn (−72.01 ± 27.27 and −32.54 ± 15.18 Wm−2), and winter (−79.57 ± 32.96 and −37.05 ± 17.06 Wm−2). The back-trajectory analysis indicated that dust air mass at 500 m that arrived at XH generally originated from the Gobi and other deserts of northern China and Mongolia (59.8%), and followed by northwest China and Kazakhstan (37.2%); few dust cases came from northeast China (3.0%). A single-peaked structure with the maximum occurring at ~2 km was illustrated by all dust events and those sorted by their sources in three directions. Three typical dust events were specifically discussed to better reveal how long-range transport impacted the dust properties and radiative effects over the NCP. The results presented here are expected to improve our understanding of the physical properties of dust aerosols over the NCP and their major transport path and significant impacts on the regional solar radiation budget.
Collapse
|
33
|
Zheng Y, Che H, Xia X, Wang Y, Wang H, Wu Y, Tao J, Zhao H, An L, Li L, Gui K, Sun T, Li X, Sheng Z, Liu C, Yang X, Liang Y, Zhang L, Liu C, Kuang X, Luo S, You Y, Zhang X. Five-year observation of aerosol optical properties and its radiative effects to planetary boundary layer during air pollution episodes in North China: Intercomparison of a plain site and a mountainous site in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:140-158. [PMID: 31004891 DOI: 10.1016/j.scitotenv.2019.03.418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 05/16/2023]
Abstract
The aerosol microphysical, optical and radiative properties of the whole column and upper planetary boundary layer (PBL) were investigated during 2013 to 2018 based on long-term sun-photometer observations at a surface site (~106 m a.s.l.) and a mountainous site (~1225 m a.s.l.) in Beijing. Raman-Mie lidar data combined with radiosonde data were used to explore the aerosol radiative effects to PBL during dust and haze episodes. The results showed size distribution exhibited mostly bimodal pattern for the whole column and the upper PBL throughout the year, except in July for the upper PBL, when a trimodal distribution occurred due to the coagulation and hygroscopic growth of fine particles. The seasonal mean values of aerosol optical depth at 440 nm for the upper PBL were 0.31 ± 0.34, 0.30 ± 0.37, 0.17 ± 0.30 and 0.14 ± 0.09 in spring, summer, autumn and winter, respectively. The single-scattering albedo at 440 nm of the upper PBL varied oppositely to that of the whole column, with the monthly mean value between 0.91 and 0.96, indicating weakly to slightly strong absorptive ability at visible spectrum. The monthly mean direct aerosol radiative forcing at the Earth's surface and the top of the atmosphere varied from -40 ± 7 to -105 ± 25 and from -18 ± 4 to -49 ± 17 W m-2, respectively, and the maximum atmospheric heating was found in summer (~66 ± 12 W m-2). From a radiative point of view, during dust episode, the presence of mineral dust heated the lower atmosphere, thus promoting vertical turbulence, causing more air pollutants being transported to the upper air by the increasing PBLH. In contrast, during haze episode, a large quantity of absorbing aerosols (such as black carbon) had a cooling effect on the surface and a heating effect on the upper atmosphere, which favored the stabilization of PBL and occurrence of inversion layer, contributing to the depression of the PBLH.
Collapse
Affiliation(s)
- Yu Zheng
- Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science &Technology, Nanjing 210044, China; State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Huizheng Che
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China.
| | - Xiangao Xia
- Laboratory for Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; School of Geoscience University of Chinese Academy of Science, Beijing 100049, China
| | - Yaqiang Wang
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Hong Wang
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Yunfei Wu
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia (RCE-TEA), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jun Tao
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Hujia Zhao
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Linchang An
- National Meteorological Center, CMA, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Ke Gui
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Tianze Sun
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Xiaopan Li
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Zhizhong Sheng
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Chao Liu
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China; School of Surveying and Land Information Engineering, Henan Polytechnic University, Henan 454000, China
| | - Xianyi Yang
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Yuanxin Liang
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Lei Zhang
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| | - Chong Liu
- School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China
| | - Xiang Kuang
- Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Shi Luo
- Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Yingchang You
- Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science &Technology, Nanjing 210044, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather (LASW) and Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, CMA, Beijing 100081, China
| |
Collapse
|
34
|
Eck TF, Holben BN, Reid JS, Xian P, Giles DM, Sinyuk A, Smirnov A, Schafer JS, Slutsker I, Kim J, Koo JH, Choi M, Kim KC, Sano I, Arola A, Sayer AM, Levy RC, Munchak LA, O'Neill NT, Lyapustin A, Hsu NC, Randles CA, Da Silva AM, Buchard V, Govindaraju RC, Hyer E, Crawford JH, Wang P, Xia X. Observations of the Interaction and Transport of Fine Mode Aerosols with Cloud and/or Fog in Northeast Asia from Aerosol Robotic Network (AERONET) and Satellite Remote Sensing. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:5560-5587. [PMID: 32661496 PMCID: PMC7356674 DOI: 10.1029/2018jd028313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/26/2018] [Indexed: 06/10/2023]
Abstract
Analysis of sun photometer measured and satellite retrieved aerosol optical depth (AOD) data has shown that major aerosol pollution events with very high fine mode AOD (>1.0 in mid-visible) in the China/Korea/Japan region are often observed to be associated with significant cloud cover. This makes remote sensing of these events difficult even for high temporal resolution sun photometer measurements. Possible physical mechanisms for these events that have high AOD include a combination of aerosol humidification, cloud processing, and meteorological co-variation with atmospheric stability and convergence. The new development of Aerosol Robotic network (AERONET) Version 3 Level 2 AOD with improved cloud screening algorithms now allow for unprecedented ability to monitor these extreme fine mode pollution events. Further, the Spectral Deconvolution Algorithm (SDA) applied to Level 1 data (L1; no cloud screening) provides an even more comprehensive assessment of fine mode AOD than L2 in current and previous data versions. Studying the 2012 winter-summer period, comparisons of AERONET L1 SDA daily average fine mode AOD data showed that Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote sensing of AOD often did not retrieve and/or identify some of the highest fine mode AOD events in this region. Also, compared to models that include data assimilation of satellite retrieved AOD, the L1 SDA fine mode AOD was significantly higher in magnitude, particularly for the highest AOD events that were often associated with significant cloudiness.
Collapse
Affiliation(s)
- T F Eck
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - B N Holben
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J S Reid
- Naval Research Laboratory, Monterey, CA, USA
| | - P Xian
- Naval Research Laboratory, Monterey, CA, USA
| | - D M Giles
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - A Sinyuk
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - A Smirnov
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - J S Schafer
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - I Slutsker
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - J Kim
- Yonsei University, Seoul, South Korea
| | - J-H Koo
- Yonsei University, Seoul, South Korea
| | - M Choi
- Yonsei University, Seoul, South Korea
| | - K C Kim
- Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - I Sano
- Kinki University, Osaka, Japan
| | - A Arola
- Finnish Meteorological Institute, Kuopio, Finland
| | - A M Sayer
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - R C Levy
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - L A Munchak
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - A Lyapustin
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - N C Hsu
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - C A Randles
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - A M Da Silva
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - V Buchard
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - R C Govindaraju
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - E Hyer
- Naval Research Laboratory, Monterey, CA, USA
| | | | - P Wang
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - X Xia
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Gharibzadeh M, Alam K, Abedini Y, Bidokhti AA, Masoumi A, Bibi H. Characterization of aerosol optical properties using multiple clustering techniques over Zanjan, Iran, during 2010-2013. APPLIED OPTICS 2018; 57:2881-2889. [PMID: 29714289 DOI: 10.1364/ao.57.002881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Discrimination of aerosol types is very important, because different aerosols are created from diverse sources having different chemical, physical, and optical properties. In the present study, we have analyzed the seasonal classification of aerosol types by multiple clustering techniques, using AERosol Robotic NETwork (AERONET) data during 2010-2013 over Zanjan, Iran. We found that aerosol optical depth (AOD) showed pronounced seasonal variations of a summer high and winter low. Conversely, the values of the Angstrom exponent (AE) in winter and fall were higher than in spring and summer, which confirmed the presence of fine particles, while the low value of AE in the summer and spring represented the existence of coarse particles. Single Scattering Albedo (SSA) variations revealed the presence of scattering aerosols like dust in spring, summer, and fall while the dominance of absorbing-type aerosols in winter were also observed. The influence of local anthropogenic activities has caused a higher concentration of fine aerosols, and a higher fine mode fraction (FMF) of AOD in winter was recorded. Classification of aerosol types was carried out by analyzing different aerosol properties such as AOD versus AE, extinction Angstrom exponent (EAE) versus SSA, EAE versus absorption Angstrom exponent (AAE), FMF AOD versus EAE, and SSA versus FMF AOD. The analysis revealed the presence of dust and polluted dust in spring, summer, and fall in the atmosphere of Zanjan. Urban/industrial aerosols were available in all seasons, especially in fall and winter. The mixed aerosols existed in all seasons over the study location; however, no biomass burning aerosols were found. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol subtype profiles showed the dominance of dust and polluted dust in spring and summer. However, the presence of polluted dust and industrial smoke during fall and winter were also noted over the study site.
Collapse
|
36
|
Lau WKM, Yuan C, Li Z. Origin, Maintenance and Variability of the Asian Tropopause Aerosol Layer (ATAL): The Roles of Monsoon Dynamics. Sci Rep 2018; 8:3960. [PMID: 29500395 PMCID: PMC5834455 DOI: 10.1038/s41598-018-22267-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/19/2018] [Indexed: 11/24/2022] Open
Abstract
Using NASA MERRA2 daily data, we investigated the origin, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL) in relation to variations of the Asia Monsoon Anticyclone (AMA) during the summer of 2008. During May-June, abundant quantities of carbon monoxide (CO), carbonaceous aerosols (CA) and dusts are found in the mid- and upper troposphere over India and China, arising from enhanced biomass burning emissions, as well as westerly transport from the Middle East deserts. During July-August, large quantities of dusts transported from the deserts are trapped and accumulate over the southern and eastern foothills of the Tibetan Plateau. Despite strong precipitation washout, ambient CO, CA and dust are lofted by orographically forced deep convection to great elevations, 12-16 km above sea level, via two key pathways over heavily polluted regions: a) the Himalayas-Gangetic Plain, and b) the Sichuan Basin. Upon entering the upper-troposphere-lower-stratosphere, the pollutants are capped by a stable layer near the tropopause, advected and dispersed by the anticyclonic circulation of AMA, forming the ATAL resembling a planetary-scale "double-stem chimney cloud". The development and variability of the ATAL are strongly linked to the seasonal march and intraseasonal (20-30 days and higher frequency) oscillations of the Asian monsoon.
Collapse
Affiliation(s)
- William K M Lau
- Earth System Science Interdisciplinary Center, U. of Maryland, College Park, MD, 20740, USA.
- Department of Atmospheric and Oceanic Sciences, U. of Maryland, College Park, MD, 20740, USA.
| | - Cheng Yuan
- Earth System Science Interdisciplinary Center, U. of Maryland, College Park, MD, 20740, USA
- School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Zhanqing Li
- Earth System Science Interdisciplinary Center, U. of Maryland, College Park, MD, 20740, USA
- Department of Atmospheric and Oceanic Sciences, U. of Maryland, College Park, MD, 20740, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| |
Collapse
|
37
|
Wang J, Niu S, Xu D. Light-absorbing aerosol properties retrieved from the sunphotometer observation over the Yangtze River Delta, China. APPLIED OPTICS 2018; 57:992-1004. [PMID: 29469879 DOI: 10.1364/ao.57.000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, aerosol optical depth (AOD) and extinction Ångström exponent (EAE) are derived from ground-based sunphotometer observations between 2007 and 2014 at urban sites of Nanjing over the Yangtze River Delta. In addition, the present study aims to investigate aerosol light-absorbing properties such as single-scattering albedo (SSA), absorption Ångström exponent (AAE), and the aerosol-absorbing optical depth (AAOD). The retrieval of aerosol properties is compared with AERONET inversion products. The results demonstrate that the retrieved AOD has a good agreement with the AERONET Level 1.5 data, with the root mean square error being 0.068, 0.065, and 0.026 for total, fine mode, and coarse mode at 440 nm, respectively. The SSA values indicate similar accuracies in the results, which are about 0.003, -0.009, -0.008, and 0.010 different from AERONET at 440, 670, 870, and 1020 nm, respectively. The occurrence frequency of background level AOD (AOD<0.10) at 440 nm in this region is limited (1%). Monthly mean AOD, SSA, the effective radius (Reff), and the volume concentration at 440 nm were 0.6-1.3, 0.85-0.92, 0.24-0.40 μm, and 0.18-0.28 μm3 μm-2, respectively. The mean value of AAOD at 440 nm (AAOD440) was the highest in both summer (0.095±0.041) and autumn (0.094±0.042), but was the lowest in winter (0.079±0.036). It was also noted that SSA was found to be higher during summer (0.89±0.05). The spectral variation of SSA was observed to be strongly wavelength-dependent during all seasons. The seasonal mean AAE440-870 is the highest in winter (0.86±0.41) and lowest in spring (0.49±0.29). In winter, the cumulative frequency for AAE between 1.0 and 1.2 was about 87%. The peak in the AAE distribution was close to 1.0, indicating that the aerosol column was dominated by urban-industrial aerosols and absorption species other than black carbon. Analysis of the relationship between EAE and SSA showed that the aerosol populations could be classified as "mixed" aerosol, including a mixture of both anthropogenic particles and secondary organic aerosol with highly variable sphericity fraction.
Collapse
|
38
|
Gómez-Amo JL, Estellés V, Marcos C, Segura S, Esteve AR, Pedrós R, Utrillas MP, Martínez-Lozano JA. Impact of dust and smoke mixing on column-integrated aerosol properties from observations during a severe wildfire episode over Valencia (Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:2121-2134. [PMID: 28575928 DOI: 10.1016/j.scitotenv.2017.05.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
The most destructive wildfire experienced in Spain since 2004 occurred close to Valencia in summer 2012. A total of 48.500ha were affected by two wildfires, which were mostly active during 29-30 June. The fresh smoke plume was detected at the Burjassot measurement station simultaneously to a severe dust episode. We propose an empirical method to evaluate the dust and smoke mixing and its impact on the microphysical and optical properties. For this, we combine direct-sun measurements with a Cimel CE-318 sun-photometer with an inversion methodology, and the Mie theory to derive the column-integrated size distribution, single scattering albedo (SSA) and asymmetry parameter (g). The mixing of dust and smoke greatly increased the aerosol load and modified the background aerosol properties. Mineral dust increased the aerosol optical depth (AOD) up to 1, while the smoke plume caused an extreme AOD peak of 8. The size distribution of the mixture was bimodal, with a fine and coarse modes dominated by the smoke particles and mineral dust, respectively. The SSA and g for the dust-smoke mixture show a marked sensitivity on the smoke mixing-ratio, mainly at longer wavelengths. Mineral dust and smoke share a similar SSA at 440nm (~0.90), but with opposite spectral dependency. A small dust contribution to the total AOD substantially affects the SSA of the mixture, and also SSA at 1020nm increases from 0.87 to 0.95. This leads to a different spectral behaviour of SSA that changes from positive (smoke plume) to negative (dust), depending on the dust and smoke mixing-ratio.
Collapse
Affiliation(s)
- J L Gómez-Amo
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain.
| | - V Estellés
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain
| | - C Marcos
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain
| | - S Segura
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain
| | - A R Esteve
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain; Departament de Didàctica de les Ciences Experimentals i Socials, Universitat de València, Valencia, Spain
| | - R Pedrós
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain
| | - M P Utrillas
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain
| | - J A Martínez-Lozano
- Departament de Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Spain
| |
Collapse
|
39
|
Patel PN, Dumka UC, Babu KN, Mathur AK. Aerosol characterization and radiative properties over Kavaratti, a remote island in southern Arabian Sea from the period of observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:165-180. [PMID: 28475910 DOI: 10.1016/j.scitotenv.2017.04.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/18/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
Long-term measurements of spectral aerosol optical depth (AOD) using sun/sky radiometer for a period of five years (2009-2014) from the remote island location at Kavaratti (KVT; 10.56°N, 72.64°E) in the southern Arabian sea have been analysed. Climatologically, AODs decrease from October to reach maximum of ~0.6 (at 500nm) in March, followed by a sudden fall towards May. Significant modulations of intra-seasonal timescales over this general pattern are noticed due to the changes in the relative strength of distinctively different sources. The corresponding changes in aerosol inversion parameters reveal the presence of coarse-mode aerosols during spring and fine-mode absorbing aerosols in autumn and winter months. An overall dominance of a mixed type of aerosols (~41%) with maximum in winter (~53%) was found via the AOD500 vs. Ångström exponent (α440-870) relationship, while biomass-burning aerosols or thick urban/industrial plumes contribute to ~19%. Spectral dependence of Ångström exponent and aerosol absorbing properties were used to identify the aerosol types and its modification processes. Based on air mass back trajectory analysis, we revealed that the advection of aerosols from Indian subcontinent and western regions plays a major role in modifying the optical properties of aerosols over the observational site. The shortwave aerosol direct radiative forcing estimated via SBDART model ranges from -11.00Wm-2 to -7.38Wm-2, -21.51Wm-2 to -14.33Wm-2 and 3.17Wm-2 and 10.0Wm-2 at top of atmosphere, surface and within the atmosphere, respectively. This atmospheric forcing translates into heating rate of 0.62-1.04Kday-1. Furthermore, the vertical profiles of aerosols and heating rate exhibit significant increase in lower (during winter and autumn) and mid troposphere (during spring). This may cause serious climate implications over Kavaratti with further consequences on cloud microphysics and monsoon rainfall.
Collapse
Affiliation(s)
- Piyushkumar N Patel
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India.
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263 001, India.
| | - K N Babu
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| | - A K Mathur
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| |
Collapse
|
40
|
Lee J, Hsu NC, Sayer AM, Bettenhausen C, Yang P. AERONET-based nonspherical dust optical models and effects on the VIIRS Deep Blue/SOAR over-water aerosol product. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:10384-10401. [PMID: 29963346 PMCID: PMC6022739 DOI: 10.1002/2017jd027258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Aerosol Robotic Network (AERONET)-based nonspherical dust optical models are developed and applied to the Satellite Ocean Aerosol Retrieval (SOAR) algorithm as part of the Version 1 Visible Infrared Imaging Radiometer Suite (VIIRS) NASA 'Deep Blue' aerosol data product suite. The optical models are created using Version 2 AERONET inversion data at six distinct sites influenced frequently by dust aerosols from different source regions. The same spheroid shape distribution as used in the AERONET inversion algorithm is assumed to account for the nonspherical characteristics of mineral dust, which ensures the consistency between the bulk scattering properties of the developed optical models with the AERONET-retrieved microphysical and optical properties. For the Version 1 SOAR aerosol product, the dust optical models representative for Capo Verde site are used, considering the strong influence of Saharan dust over the global ocean in terms of amount and spatial coverage. Comparisons of the VIIRS-retrieved aerosol optical properties against AERONET direct-Sun observations at three island/coastal sites suggest that the use of nonspherical dust optical models significantly improves the retrievals of aerosol optical depth (AOD) and Ångström exponent by mitigating the well-known artifact of scattering angle dependence of the variables observed when incorrectly assuming spherical dust. The resulting removal of these artifacts results in a more natural spatial pattern of AOD along the transport path of Saharan dust to the Atlantic Ocean; i.e., AOD decreases with increasing distance transported, whereas the spherical assumption leads to a strong wave pattern due to the spurious scattering angle dependence of AOD.
Collapse
Affiliation(s)
- Jaehwa Lee
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Earth System Science Interdisciplinary Center (ESSIC), University of
Maryland, College Park, Maryland, USA
| | | | - Andrew M. Sayer
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Goddard Earth Science Technology and Research (GESTAR), Universities
Space Research Association, Columbia, Maryland, USA
| | - Corey Bettenhausen
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- ADNET Systems Inc., Bethesda, Maryland, USA
| | - Ping Yang
- Department of Atmospheric Sciences, Texas A&M University,
College Station, Texas, USA
| |
Collapse
|
41
|
Torres B, Dubovik O, Fuertes D, Schuster G, Cachorro VE, Lapyonok T, Goloub P, Blarel L, Barreto A, Mallet M, Toledano C, Tanré D. Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm. ATMOSPHERIC MEASUREMENT TECHNIQUES 2017; 10:3743-3781. [PMID: 33505530 PMCID: PMC7837514 DOI: 10.5194/amt-10-3743-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study evaluates the potential of using aerosol optical depth (τ a) measurements to characterise the microphysical and optical properties of atmospheric aerosols. With this aim, we used the recently developed GRASP (Generalized Retrieval of Aerosol and Surface Properties) code for numerical testing of six different aerosol models with different aerosol loads. The direct numerical simulations (self-consistency tests) indicate that the GRASP-AOD retrieval provides modal aerosol optical depths (fine and coarse) to within 0.01 of the input values. The retrieval of the fine-mode radius, width and volume concentration are stable and precise if the real part of the refractive index is known. The coarse-mode properties are less accurate, but they are significantly improved when additional a priori information is available. The tests with random simulated errors show that the uncertainty in the bimodal log-normal size distribution parameters increases as the aerosol load decreases. Similarly, the reduction in the spectral range diminishes the stability of the retrieved parameters. In addition to these numerical studies, we used optical depth observations at eight AERONET locations to validate our results with the standard AERONET inversion products. We found that bimodal log-normal size distributions serve as useful input assumptions, especially when the measurements have inadequate spectral coverage and/or limited accuracy, such as moon photometry. Comparisons of the mode median radii between GRASP-AOD and AERONET indicate average differences of 0.013 μm for the fine mode and typical values of 0.2-0.3 μm for the coarse mode. The dominant mode (i.e. fine or coarse) indicates a 10 % difference in mode radii between the GRASP-AOD and AERONET inversions, and the average of the difference in volume concentration is around 17 % for both modes. The retrieved values of the fine-mode τ a(500) using GRASP-AOD are generally between those values obtained by the standard AERONET inversion and the values obtained by the AERONET spectral deconvolution algorithm (SDA), with differences typically lower than 0.02 between GRASP-AOD and both algorithms. Finally, we present some examples of application of GRASP-AOD inversion using moon photometry and the airborne PLASMA sun photometer during the ChArMEx summer 2013 campaign in the western Mediterranean.
Collapse
Affiliation(s)
- Benjamin Torres
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
- GRASP-SAS, Remote sensing developments, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Oleg Dubovik
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - David Fuertes
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
- GRASP-SAS, Remote sensing developments, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | | | | | - Tatsiana Lapyonok
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Philippe Goloub
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Luc Blarel
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| | - Africa Barreto
- Group of Atmospheric Optics, Valladolid University, Valladolid, Spain
- Cimel Electronique, Paris, France
- Izaña Atmospheric Research Center, Spanish Meteorological Agency, Tenerife, Spain
| | - Marc Mallet
- CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
| | - Carlos Toledano
- Group of Atmospheric Optics, Valladolid University, Valladolid, Spain
| | - Didier Tanré
- Laboratoire d’Optique Amosphérique, Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
| |
Collapse
|
42
|
Várnai T, Marshak A, Eck TF. Observation-based study on aerosol optical depth and particle size in partly cloudy regions. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2017; 122:10013-10024. [PMID: 32724904 PMCID: PMC7380075 DOI: 10.1002/2017jd027028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study seeks to help better understand aerosol-cloud interactions by examining statistical relationships between aerosol properties and nearby low-altitude cloudiness using satellite data. The analysis of a global dataset of MODIS (Moderate Resolution Imaging Spectroradiometer) observations reveals that the positive correlation between cloudiness and aerosol optical depth (AOD) reported in earlier studies is strong throughout the globe and during both winter and summer. Typically, AOD is 30-50% higher on cloudier-than-average days than on less cloudy days. A combination of satellite observations and MERRA-2 global reanalysis data reveals that the correlation between cloud cover and AOD is strong for all aerosol types considered: sulfate, dust, carbon, and sea salt. The observations also indicate that in the presence of nearby clouds, aerosol size distributions tend to shift toward smaller particles over large regions of the Earth. This is consistent with a greater cloud-related increase in the AOD of fine mode than of coarse mode particles. The greater increase in fine mode AOD implies that the cloudiness-AOD correlation does not come predominantly from cloud detection uncertainties. Additionally, the results show that aerosol particle size increases near clouds even in regions where it decreases with increasing cloudiness. This suggests that the decrease with cloudiness comes mainly from changes in large-scale environment, rather than from clouds increasing the number or the size of fine mode aerosols. Finally, combining different aerosol retrieval algorithms demonstrated that quality assessment flags based on local variability can help identifying when the observed aerosol populations are affected by surrounding clouds.
Collapse
Affiliation(s)
- T Várnai
- Joint Center for Earth System Technology, University of Maryland Baltimore County
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center
| | - A Marshak
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center
| | - T F Eck
- Universities Space Research Association
- Biospheric Sciences Laboratory, NASA Goddard Space Flight Center
| |
Collapse
|
43
|
Lü R, Yu X, Jia H, Xiao S. Aerosol optical properties and direct radiative forcing at Taihu. APPLIED OPTICS 2017; 56:7002-7012. [PMID: 29047997 DOI: 10.1364/ao.56.007002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD440 and low AE440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46 W·m-2 and 1.95 K·day-1, respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the bottom of the atmosphere and an increasing trend at the top of the atmosphere.
Collapse
|
44
|
Lau WKM, Kim KM, Shi JJ, Matsui T, Chin M, Tan Q, Peters-Lidard C, Tao WK. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. CLIMATE DYNAMICS 2017; 49:1945-1960. [PMID: 32801479 PMCID: PMC7427820 DOI: 10.1007/s00382-016-3430-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all-India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol-monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large-scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India/northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into meso-scale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.
Collapse
Affiliation(s)
- William K M Lau
- Earth System Science Interdisciplinary Center (ESSIC), U. of Maryland, College Park, Md 20740
- Department of Atmospheric Sciences, U. of Texas, Station College, TX, 77843
| | - Kyu-Myong Kim
- Climate and Radiation Laboratory, Earth Science Division, Goddard Space Flight Center, Greenbelt, MD, 20771
| | - Jainn-Jong Shi
- Goddard Earth Science Technology, Application Research (GESTAR), Morgan State University, Baltimore, MD, 21251
| | - T Matsui
- Earth System Science Interdisciplinary Center (ESSIC), U. of Maryland, College Park, Md 20740
| | - M Chin
- Atmospheric Chemistry and Dynamics Laboratory, Earth Science Division, Goddard Space Flight Center, Greenbelt, MD, 20771
| | - Qian Tan
- Atmospheric Chemistry and Dynamics Laboratory, Earth Science Division, Goddard Space Flight Center, Greenbelt, MD, 20771
| | - C Peters-Lidard
- Earth Science Division, Goddard Space Flight Center, Greenbelt, MD, 20771
| | - W K Tao
- Mesoscale Atmospheric Processes Laboratory, Earth Science Division, Goddard Space Flight Center, Greenbelt, MD., 20771
| |
Collapse
|
45
|
Characteristics of Aerosol Types in Beijing and the Associations with Air Pollution from 2004 to 2015. REMOTE SENSING 2017. [DOI: 10.3390/rs9090898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Su X, Wang Q, Li Z, Calvello M, Esposito F, Pavese G, Lin M, Cao J, Zhou C, Li D, Xu H. Regional transport of anthropogenic pollution and dust aerosols in spring to Tianjin - A coastal megacity in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:381-392. [PMID: 28153397 DOI: 10.1016/j.scitotenv.2017.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/14/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Simultaneous measurements of columnar aerosol microphysical and optical properties, as well as PM2.5 chemical compositions, were made during two types of spring pollution episodes in Tianjin, a coastal megacity of China. The events were investigated using field observations, satellite data, model simulations, and meteorological fields. The lower Ångström Exponent and the higher aerosol optical depth on 29 March, compared with the earlier event on 26 March, implied a dominance of coarse mode particles - this was consistent with the differences in volume-size distributions. Based on the single scattering spectra, the dominant absorber (at blue wavelength) changed from black carbon during less polluted days to brown carbon on 26 March and dust on 29 March. The concentrations of major PM2.5 species for these two episodes also differed, with the earlier event enriched in pollution-derived substances and the later with mineral dust elements. The formation mechanisms of these two pollution episodes were also examined. The 26 March episode was attributed to the accumulation of both local emissions and anthropogenic pollutants transported from the southwest of Tianjin under the control of high pressure system. While the high aerosol loading on 29 March was caused by the mixing of transported dust from northwest source region with local urban pollution. The mixing of transported anthropogenic pollutants and dust with local emissions demonstrated the complexity of springtime pollution in Tianjin. The synergy of multi-scale observations showed excellent potential for air pollution study.
Collapse
Affiliation(s)
- Xiaoli Su
- Key Lab of Aerosol Chemistry & Physics, Chinese Academy of Sciences (KLACP), Chinese Academy of Sciences, Xi'an 710061, China; SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Qiao Wang
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Satellite Environment Center, Ministry of Environmental Protection of the People's Republic of China, Beijing 100094, China
| | - Zhengqiang Li
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | - Giulia Pavese
- Istituto di Metodologie per l'Analisi Ambientale - CNR, Tito Scalo 85050, Italy
| | - Meijing Lin
- Zhongshan Bureau of Meteorology, Zhongshan 528400, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Chinese Academy of Sciences (KLACP), Chinese Academy of Sciences, Xi'an 710061, China; SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Chunyan Zhou
- State Environmental Protection Key Laboratory of Satellite Remote Sensing, Satellite Environment Center, Ministry of Environmental Protection of the People's Republic of China, Beijing 100094, China
| | - Donghui Li
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Xu
- Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
47
|
Choi Y, Ghim YS. Assessment of the clear-sky bias issue using continuous PM 10 data from two AERONET sites in Korea. J Environ Sci (China) 2017; 53:151-160. [PMID: 28372739 DOI: 10.1016/j.jes.2016.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/12/2015] [Accepted: 02/23/2016] [Indexed: 06/07/2023]
Abstract
A bias in clear-sky conditions that will be involved in estimating particulate matter (PM) concentration from aerosol optical depth (AOD) was examined using PM10 from two Aerosol Robotic Network sites in Korea. The study periods were between 2004 and 2007 at Anmyon and between 2003 and 2011 at Gosan, when both PM10 and AOD were available. Mean PM10 when AOD was available (PMAOD) was higher than that from all PM10 data (PMall) by 5.1 and 9.9μg/m3 at Anmyon and Gosan, which accounted for 11% and 26% of PMall, respectively. Because of a difference between mean PM10 under daytime clear-sky conditions (PMclear) and PMAOD, the variations in ΔPM10, the difference of PMall from PMclear rather than from PMAOD, were investigated. Although monthly variations in ΔPM10 at the two sites were different, they were positively correlated to those in ΔT, similarly defined as ΔPM10 except for temperature, at both sites. ΔPM10 at Anmyon decreased to a negative value in January due to an influence of the Siberian continental high-pressure system while ΔPM10 at Gosan was high in winter due to an effect of photochemical production at higher temperatures than at Anmyon.
Collapse
Affiliation(s)
- Yongjoo Choi
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin 449-791, Korea
| | - Young Sung Ghim
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin 449-791, Korea.
| |
Collapse
|
48
|
Patel PN, Dumka UC, Kaskaoutis DG, Babu KN, Mathur AK. Optical and radiative properties of aerosols over Desalpar, a remote site in western India: Source identification, modification processes and aerosol type discrimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:612-627. [PMID: 27616711 DOI: 10.1016/j.scitotenv.2016.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/01/2016] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Aerosol optical properties are analyzed for the first time over Desalpar (23.74°N, 70.69°E, 30m above mean sea level) a remote site in western India during October 2014 to August 2015. Spectral aerosol optical depth (AOD) measurements were performed using the CIMEL CE-318 automatic Sun/sky radiometer. The annual-averaged AOD500 and Ångström exponent (α440-870) values are found to be 0.43±0.26 and 0.69±0.39, respectively. On the seasonal basis, high AOD500 of 0.45±0.30 and 0.61±0.34 along with low α440-870 of 0.41±0.27 and 0.41±0.35 during spring (March-May) and summer (June-August), respectively, suggest the dominance of coarse-mode aerosols, while significant contribution from anthropogenic sources is observed in autumn (AOD500=0.47±0.26, α440-870=1.02±0.27). The volume size distribution and the spectral single-scattering albedo also confirm the presence of coarse-mode aerosols during March-August. An overall dominance of a mixed type of aerosols (~56%) mostly from October to February is found via the AOD500 vs α440-870 relationship, while marine aerosols contribute to ~18%. Spectral dependence of α and its second derivative (α') are also used for studying the aerosol modification processes. The average direct aerosol radiative forcing (DARF) computed via the SBDART model is estimated to range from -27.08Wm-2 to -10.74Wm-2 at the top of the atmosphere, from -52.21Wm-2 to -21.71Wm-2 at the surface and from 10.97Wm-2 to 26.54Wm-2 within the atmosphere. This atmospheric forcing translates into heating rates of 0.31-0.75Kday-1. The aerosol properties and DARF are also examined for different trajectory clusters in order to identify the sources and to assess the influence of long-range transported aerosols over Desalpar.
Collapse
Affiliation(s)
- Piyushkumar N Patel
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263 001, India.
| | - D G Kaskaoutis
- Atmospheric Research Team, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, GR, 11810 Athens, Greece
| | - K N Babu
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| | - Alok K Mathur
- Calibration & Validation Division, Space Applications Centre, ISRO, Ahmedabad 380 015, India
| |
Collapse
|
49
|
Burgos MA, Mateos D, Cachorro VE, Toledano C, de Frutos AM. Aerosol properties of mineral dust and its mixtures in a regional background of north-central Iberian Peninsula. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:1005-1019. [PMID: 27524724 DOI: 10.1016/j.scitotenv.2016.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
To broaden the knowledge about desert dust (DD) aerosols in western Mediterranean Basin, their fingerprints on optical and microphysical properties are analyzed during DD episodes in the north-central plateau of the Iberian Peninsula between 2003 and 2014. Aerosol columnar properties obtained from the AErosol RObotic NETwork (AERONET), such as aerosol optical depth (AOD), Ångström exponent (AE), volume particle size distribution, volume concentration (VC), sphericity, single scattering albedo, among others, are analyzed in order to provide a general characterization, being some of them compared to particle mass surface concentrations PM10, PM2.5, and their ratio, data obtained from EMEP network. The mean intensity of DD episodes exhibits: AOD440nm=0.27±0.12, PM10=24±18μg/m3, AE=0.94±0.40 and PM2.5/PM10=0.54±0.16. The AOD and PM10 annual cycles show maximum intensity in March and summer and minima in winter. A customized threshold of AE=1 distinguishes two types of dusty days, those with a prevailing desert character and those of mixed type, which is corroborated by sphericity values. Three well established intervals are obtained with the fine mode volume fraction (VCF/VCT). Coarse-mode-dominated cases (VCF/VCT≤0.2) present a mineral dust character: e.g., particle maximum concentration about 2μm, non-sphericity, stronger absorption power at shorter wavelengths, among others. The relevance of the fine mode is noticeable in mixtures with a predominance of particles about 0.2-0.3μm radii. Conditions characterized by 0.2<VCF/VCT<0.45 and VCF/VCT≥0.45 present a larger variability in all investigated aerosol properties. Relationships between AOD and columnar particle volume concentration give volume extinction efficiencies between 1.7 and 3.7μm2/μm3 depending on VCF/VCT. Aerosol scale height is obtained from relationships between surface and columnar concentrations displaying very large values up to 10km. The uncertainty associated with the transformation between AOD and PM10 can be partially reduced when the aerosol microphysical properties are known.
Collapse
Affiliation(s)
- M A Burgos
- Grupo de Óptica Atmosférica, Universidad de Valladolid, Paseo Belén 7, CP 47011 Valladolid, Spain
| | - D Mateos
- Grupo de Óptica Atmosférica, Universidad de Valladolid, Paseo Belén 7, CP 47011 Valladolid, Spain
| | - V E Cachorro
- Grupo de Óptica Atmosférica, Universidad de Valladolid, Paseo Belén 7, CP 47011 Valladolid, Spain.
| | - C Toledano
- Grupo de Óptica Atmosférica, Universidad de Valladolid, Paseo Belén 7, CP 47011 Valladolid, Spain
| | - A M de Frutos
- Grupo de Óptica Atmosférica, Universidad de Valladolid, Paseo Belén 7, CP 47011 Valladolid, Spain
| |
Collapse
|
50
|
Bibi H, Alam K, Blaschke T, Bibi S, Iqbal MJ. Long-term (2007-2013) analysis of aerosol optical properties over four locations in the Indo-Gangetic plains. APPLIED OPTICS 2016; 55:6199-6211. [PMID: 27534460 DOI: 10.1364/ao.55.006199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The emphasis of the present work lies on the examination of the distribution and spectral behavior of the optical properties of atmospheric aerosols in the Indo-Gangetic plains (IGP). Measurements were performed using an AErosol RObotic NETwork (AERONET) Sun photometer at four sites (Karachi, Lahore, Jaipur, and Kanpur) with different aerosol environments during the period 2007-2013. The aerosol optical depth (AOD) and Ångström exponent (α) were measured, and the results revealed a high AOD with a low α value over Karachi and Jaipur in July, while a high AOD with a high α value was reported over Lahore and Kanpur during October and December. The pattern of the aerosol volume size distribution (VSD) was similar across all four sites, with a prominent peak in coarse mode at a radius of 4.0-5.0 μm, and in fine mode at a radius of 0.1-4.0 μm, for all seasons. On the other hand, during the winter months, the fine-mode peaks were comparable to the coarse mode, which was not the case during the other seasons. The single scattering albedo (SSA) was found to be strongly wavelength-dependent during all seasons and for all sites, with the exception of Kanpur, where the SSA decreases with increasing wavelength during winter and post-monsoon. It was found that the phase function of the atmospheric aerosol was high at a small angle and stable around a scattering angle of 90°-180° at all sites and during all seasons. Spectral variation of the asymmetry parameter (ASY) revealed a decreasing trend with increasing wavelength, and this decreasing trend was more pronounced during the summer, winter, and post-monsoon as compared to pre-monsoon. Furthermore, extensive measurements suggest that both real (RRI) and imaginary (IRI) parts of the refractive index (RI) show contrasting spectral behavior during all seasons. Finally, the analysis of the National Oceanic and Atmospheric Administration hybrid single particle Lagrangian integrated trajectory model back trajectory revealed that the seasonal variation in aerosol types was influenced by a contribution of air masses from multiple source locations.
Collapse
|