1
|
Xie S, Cao Z, Liu L, Yang D, Liu M, Li Y, Qi R. The role of plume-lithosphere interaction in Hawaii-Emperor chain formation. Nat Commun 2024; 15:6571. [PMID: 39095372 PMCID: PMC11297248 DOI: 10.1038/s41467-024-51055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Paleolatitudes of volcanic rocks reveal that prominent changes in volcanic trend of the Hawaii-Emperor hotspot chain represent meridional migration of the magma source. However, models assuming latitudinal plume migration fail to explain the observed age distribution, rock composition, and erratic paleolatitude changes of the oldest Emperor seamounts. Here we use data-assimilation models to better reproduce the Hawaii-Emperor hotspot track by systematically considering plate reconstruction, plume-lithosphere interaction, and simplified melt generation and migration. Our results show that plate drag and plume-ridge interaction are both important in explaining the observed seamount ages. These shallow dynamic processes could account for 50% of the observed paleolatitude's secular reduction and erratic variations over time, where the necessary southward migration of the Hawaiian plume root is significantly less than previously thought. We conclude that plume-lithosphere interaction represents a common mechanism in affecting hotspot track, and has important implications in understanding mantle dynamics and plate reference frames.
Collapse
Affiliation(s)
- Shijie Xie
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Zebin Cao
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Lijun Liu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China.
| | - Dinghui Yang
- Department of Mathematical Sciences, Tsinghua University, Beijing, China.
| | - Mengxue Liu
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| | - Yanchong Li
- Department of Earth Science and Environmental Change, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rui Qi
- Department of Mathematical Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Tejada JV, Antoine PO, Münch P, Billet G, Hautier L, Delsuc F, Condamine FL. Bayesian Total-Evidence Dating Revisits Sloth Phylogeny and Biogeography: A Cautionary Tale on Morphological Clock Analyses. Syst Biol 2024; 73:125-139. [PMID: 38041854 PMCID: PMC11129595 DOI: 10.1093/sysbio/syad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Combining morphological and molecular characters through Bayesian total-evidence dating allows inferring the phylogenetic and timescale framework of both extant and fossil taxa, while accounting for the stochasticity and incompleteness of the fossil record. Such an integrative approach is particularly needed when dealing with clades such as sloths (Mammalia: Folivora), for which developmental and biomechanical studies have shown high levels of morphological convergence whereas molecular data can only account for a limited percentage of their total species richness. Here, we propose an alternative hypothesis of sloth evolution that emphasizes the pervasiveness of morphological convergence and the importance of considering the fossil record and an adequate taxon sampling in both phylogenetic and biogeographic inferences. Regardless of different clock models and morphological datasets, the extant sloth Bradypus is consistently recovered as a megatherioid, and Choloepus as a mylodontoid, in agreement with molecular-only analyses. The recently extinct Caribbean sloths (Megalocnoidea) are found to be a monophyletic sister-clade of Megatherioidea, in contrast to previous phylogenetic hypotheses. Our results contradict previous morphological analyses and further support the polyphyly of "Megalonychidae," whose members were found in five different clades. Regardless of taxon sampling and clock models, the Caribbean colonization of sloths is compatible with the exhumation of islands along Aves Ridge and its geological time frame. Overall, our total-evidence analysis illustrates the difficulty of positioning highly incomplete fossils, although a robust phylogenetic framework was recovered by an a posteriori removal of taxa with high percentages of missing characters. Elimination of these taxa improved topological resolution by reducing polytomies and increasing node support. However, it introduced a systematic and geographic bias because most of these incomplete specimens are from northern South America. This is evident in biogeographic reconstructions, which suggest Patagonia as the area of origin of many clades when taxa are underrepresented, but Amazonia and/or Central and Southern Andes when all taxa are included. More generally, our analyses demonstrate the instability of topology and divergence time estimates when using different morphological datasets and clock models and thus caution against making macroevolutionary inferences when node support is weak or when uncertainties in the fossil record are not considered.
Collapse
Affiliation(s)
- Julia V Tejada
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Pierre-Olivier Antoine
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Philippe Münch
- Géosciences Montpellier, UMR 5243, Université de Montpellier, CNRS, Université des Antilles, Place Eugène Bataillon, 34095 Montpellier, France
| | - Guillaume Billet
- Centre de Recherche en Paléontologie—Paris, CR2P—UMR 7207, Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, 8 rue Buffon 75005, Paris
| | - Lionel Hautier
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Fabien L Condamine
- Institut des Sciences de l’Évolution de Montpellier, UMR 5554, Université de Montpellier, CNRS, IRD, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
3
|
Gianni GM, Likerman J, Navarrete CR, Gianni CR, Zlotnik S. Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction. Nat Commun 2023; 14:2083. [PMID: 37045842 PMCID: PMC10097660 DOI: 10.1038/s41467-023-37799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The Southern Atlantic-Southwest Indian ridges (SASWIR) host mid-ocean ridge basalts with a residual subduction-related geochemical fingerprint (i.e., a ghost-arc signature) of unclear origin. Here, we show through an analysis of plate kinematic reconstructions and seismic tomography models that the SASWIR subduction-modified mantle source formed in the Jurassic close to the Georgia Islands slab (GI) and remained near-stationary in the mantle reference frame. In this analysis, the GI lies far inboard the Jurassic Patagonian-Antarctic Peninsula active margin. This was formerly attributed to a large-scale flat subduction event in the Late Triassic-Early Jurassic. We propose that during this flat slab stage, the subduction-modified mantle areas beneath the Mesozoic active margin and surrounding sutures zones may have been bulldozed inland by >2280 km. After the demise of the flat slab, this mantle anomaly remained near-stationary and was sampled by the Karoo mantle plume 183 Million years (Myr) ago and again since 55 Myr ago by the SASWIR. We refer to this process as asthenospheric anomaly telescoping. This study provides a hitherto unrecognized geodynamic effect of flat subduction, the viability of which we support through numerical modeling.
Collapse
Affiliation(s)
- Guido M Gianni
- Instituto Geofísico Sismológico Ing. Fernando Volponi (IGSV), Universidad Nacional de San Juan, San Juan, Argentina
- National Scientific and Technical Research Council (CONICET), Capital Federal, Argentina
| | - Jeremías Likerman
- National Scientific and Technical Research Council (CONICET), Capital Federal, Argentina
- Instituto de Estudios Andinos Don Pablo Groeber, Universidad de Buenos Aires, Capital Federal, Argentina
| | - César R Navarrete
- National Scientific and Technical Research Council (CONICET), Capital Federal, Argentina
- Laboratorio Patagónico de Petro-Tectónica, Universidad Nacional de la Patagonia "San Juan Bosco", Comodoro Rivadavia, Chubut, Argentina
| | - Conrado R Gianni
- Instituto Geofísico Sismológico Ing. Fernando Volponi (IGSV), Universidad Nacional de San Juan, San Juan, Argentina
| | - Sergio Zlotnik
- Laboratori de Cálcul Numéric, Escola Técnica Superior d'Enginyers de Camins, Canals i Ports, Universitat Politécnica de Catalunya, Barcelona, Spain.
- Centre Internacional de Métodes Numérics a l'Enginyeria (CIMNE), Barcelona, Spain.
| |
Collapse
|
4
|
A Comparative Study of Interannual Oscillation Models for Determining Geophysical Polar Motion Excitations. REMOTE SENSING 2021. [DOI: 10.3390/rs14010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Similar to seasonal and intraseasonal variations in polar motion (PM), interannual variations are also largely caused by changes in the angular momentum of the Earth’s geophysical fluid layers composed of the atmosphere, the oceans, and in-land hydrologic flows (AOH). Not only are inland freshwater systems crucial for interannual PM fluctuations, but so are atmospheric surface pressures and winds, oceanic currents, and ocean bottom pressures. However, the relationship between observed geodetic PM excitations and hydro-atmospheric models has not yet been determined. This is due to defects in geophysical models and the partial knowledge of atmosphere–ocean coupling and hydrological processes. Therefore, this study provides an analysis of the fluctuations of PM excitations for equatorial geophysical components χ1 and χ2 at interannual time scales. The geophysical excitations were determined from different sources, including atmospheric, ocean models, Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On data, as well as from the Land Surface Discharge Model. The Multi Singular Spectrum Analysis method was applied to retain interannual variations in χ1 and χ2 components. None of the considered mass and motion terms studied for the different atmospheric and ocean models were found to have a negligible effect on interannual PM. These variables, derived from different Atmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM) models, differ from each other. Adding hydrologic considerations to the coupling of AAM and OAM excitations was found to provide benefits for achieving more consistent interannual geodetic budgets, but none of the AOH combinations fully explained the total observed PM excitations.
Collapse
|
5
|
Atkins S, Coltice N. Constraining the Range and Variation of Lithospheric Net Rotation Using Geodynamic Modeling. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2021; 126:e2021JB022057. [PMID: 35866099 PMCID: PMC9286441 DOI: 10.1029/2021jb022057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/15/2023]
Abstract
Lithospheric net rotation (LNR) is the movement of the lithosphere as a solid body with respect to the mantle. Separating the signal of LNR from plate tectonic motion is therefore an important factor in producing absolute plate motion models. Net rotation is difficult to constrain because of uncertainties in geological data and outstanding questions about the stability of the mantle plumes used as a reference frame. We use mantle convection simulations to investigate the controlling factors for the magnitude of LNR and to find the statistical predictability of LNR in a fully self-consistent convective system. We find that high lateral viscosity variations are required to produce Earth-like values of LNR. When the temperature dependence of viscosity is lower, and therefore slabs are softer, other factors such as the presence of continents and a viscosity gradient at the transition zone are also important for determining the magnitude of net rotation. We find that, as an emergent property of the chaotic mantle convection system, the evolution of LNR is too complicated to predict in our models. However, we find that the range of LNR within the simulations follows a Gaussian distribution, with a correlation time of 5 Myr. The LNR from the models needs to be sampled for around 50 Myr to produce a fully Gaussian distribution. This implies, that within the time frames considered for absolute plate motion reconstructions, LNR can be treated as a Gaussian variable. This provides a new geodynamic constraint for absolute plate motion reconstructions.
Collapse
Affiliation(s)
- Suzanne Atkins
- Laboratoire de GéologieCNRS‐École Normale Supérieure‐PSL UniversityParisFrance
| | - Nicolas Coltice
- Laboratoire de GéologieCNRS‐École Normale Supérieure‐PSL UniversityParisFrance
| |
Collapse
|
6
|
Wei SS, Shearer PM, Lithgow-Bertelloni C, Stixrude L, Tian D. Oceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle. Science 2021; 370:983-987. [PMID: 33214281 DOI: 10.1126/science.abd0312] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/08/2020] [Indexed: 11/02/2022]
Abstract
The Hawaiian-Emperor seamount chain that includes the Hawaiian volcanoes was created by the Hawaiian mantle plume. Although the mantle plume hypothesis predicts an oceanic plateau produced by massive decompression melting during the initiation stage of the Hawaiian hot spot, the fate of this plateau is unclear. We discovered a megameter-scale portion of thickened oceanic crust in the uppermost lower mantle west of the Sea of Okhotsk by stacking seismic waveforms of SS precursors. We propose that this thick crust represents a major part of the oceanic plateau that was created by the Hawaiian plume head ~100 million years ago and subducted 20 million to 30 million years ago. Our discovery provides temporal and spatial clues of the early history of the Hawaiian plume for future plate reconstructions.
Collapse
Affiliation(s)
- Songqiao Shawn Wei
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - Peter M Shearer
- Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Lars Stixrude
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095, USA
| | - Dongdong Tian
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Eocene intra-plate shortening responsible for the rise of a faunal pathway in the northeastern Caribbean realm. PLoS One 2020; 15:e0241000. [PMID: 33079958 PMCID: PMC7575083 DOI: 10.1371/journal.pone.0241000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Intriguing latest Eocene land-faunal dispersals between South America and the Greater Antilles (northern Caribbean) has inspired the hypothesis of the GAARlandia (Greater Antilles Aves Ridge) land bridge. This landbridge, however, should have crossed the Caribbean oceanic plate, and the geological evolution of its rise and demise, or its geodynamic forcing, remain unknown. Here we present the results of a land-sea survey from the northeast Caribbean plate, combined with chronostratigraphic data, revealing a regional episode of mid to late Eocene, trench-normal, E-W shortening and crustal thickening by ∼25%. This shortening led to a regional late Eocene–early Oligocene hiatus in the sedimentary record revealing the location of an emerged land (the Greater Antilles-Northern Lesser Antilles, or GrANoLA, landmass), consistent with the GAARlandia hypothesis. Subsequent submergence is explained by combined trench-parallel extension and thermal relaxation following a shift of arc magmatism, expressed by a regional early Miocene transgression. We tentatively link the NE Caribbean intra-plate shortening to a well-known absolute and relative North American and Caribbean plate motion change, which may provide focus for the search of the remaining connection between ‘GrANoLA’ land and South America, through the Aves Ridge or Lesser Antilles island arc. Our study highlights the how regional geodynamic evolution may have driven paleogeographic change that is still reflected in current biology.
Collapse
|
8
|
Glerum A, Brune S, Stamps DS, Strecker MR. Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift. Nat Commun 2020; 11:2881. [PMID: 32513970 PMCID: PMC7280495 DOI: 10.1038/s41467-020-16176-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
The Victoria microplate between the Eastern and Western Branches of the East African Rift System is one of the largest continental microplates on Earth. In striking contrast to its neighboring plates, Victoria rotates counterclockwise with respect to Nubia. The underlying cause of this distinctive rotation has remained elusive so far. Using 3D numerical models, we investigate the role of pre-existing lithospheric heterogeneities in continental microplate rotation. We find that Victoria’s rotation is primarily controlled by the distribution of rheologically stronger zones that transmit the drag of the major plates to the microplate and of the mechanically weaker mobile belts surrounding Victoria that facilitate rotation. Our models reproduce Victoria’s GPS-derived counterclockwise rotation as well as key complexities of the regional tectonic stress field. These results reconcile competing ideas on the opening of the rift system by highlighting differences in orientation of the far-field divergence, local extension, and the minimum horizontal stress. One of the largest continental microplates on Earth is situated in the center of the East African Rift System, and oddly, the Victoria microplate rotates counterclockwise with respect to the neighboring African tectonic plate. Here, the authors' modelling results suggest that Victoria microplate rotation is caused by edge-driven lithospheric processes related to the specific geometry of rheologically weak and strong regions.
Collapse
Affiliation(s)
- Anne Glerum
- Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam, Germany.
| | - Sascha Brune
- Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam, Germany.,University of Potsdam, Potsdam-Golm, Germany
| | | | | |
Collapse
|
9
|
Seismic evidence for a mantle suture and implications for the origin of the Canadian Cordillera. Nat Commun 2019; 10:2249. [PMID: 31113959 PMCID: PMC6529410 DOI: 10.1038/s41467-019-09804-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
The origin of the North American Cordillera and its affinity with the bounding craton are subjects of contentious debate. The mechanisms of orogenesis are rooted in two competing hypotheses known as the accretionary and collisional models. The former model attributes the Cordillera to an archetypal accretionary orogen comprising a collage of exotic terranes. The latter, less popular view argues that the Cordillera is a collisional product between an allochthonous ribbon microcontinent and cratonic North America. Here we present new seismic evidence of a sharp and structurally complex Cordillera-craton boundary in the uppermost mantle beneath the southern Canadian Cordillera, which can be interpreted as either a reshaped craton margin or a Late Cretaceous collisional boundary based on the respective hypotheses. This boundary dips steeply westward underneath a proposed (cryptic) suture in the foreland, consisent with the predicted location and geometry of the mantle suture, thus favoring a collisional origin.
Collapse
|
10
|
Episodic zircon age spectra mimic fluctuations in subduction. Sci Rep 2018; 8:17471. [PMID: 30504775 PMCID: PMC6269492 DOI: 10.1038/s41598-018-35040-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/28/2018] [Indexed: 11/11/2022] Open
Abstract
Decades of geochronological work have shown the temporal distribution of zircon ages to be episodic on billion-year timescales and seemingly coincident with the lifecycle of supercontinents, but the physical processes behind this episodicity remain contentious. The dominant, end-member models of fluctuating magmatic productivity versus selective preservation of zircon during times of continental assembly have important and very different implications for long-term, global-scale phenomena, including the history of crustal growth, the initiation and evolution of plate tectonics, and the tempo of mantle outgassing over billions of years. Consideration of this episodicity has largely focused on the Precambrian, but here we analyze a large collection of Phanerozoic zircon ages in the context of global, full-plate tectonic models that extend back to the mid-Paleozoic. We scrutinize two long-lived and relatively simple active margins, and show that along both, a relationship between the regional subduction flux and zircon age distribution is evident. In both cases, zircon age peaks correspond to intervals of high subduction flux with a ~10–30 Ma time lag (zircons trailing subduction), illuminating a possibly intrinsic delay in the subduction-related magmatic system. We also show that subduction fluxes provide a stronger correlation to zircon age distributions than subduction lengths do, implying that convergence rates play a significant role in regulating the volume of melting in subduction-related magmatic systems, and thus crustal growth.
Collapse
|
11
|
Jolivet L, Faccenna C, Becker T, Tesauro M, Sternai P, Bouilhol P. Mantle Flow and Deforming Continents: From India-Asia Convergence to Pacific Subduction. TECTONICS 2018; 37:2887-2914. [PMID: 31007341 PMCID: PMC6472563 DOI: 10.1029/2018tc005036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/09/2023]
Abstract
The formation of mountain belts or rift zones is commonly attributed to interactions between plates along their boundaries, but the widely distributed deformation of Asia from Himalaya to the Japan Sea and other back-arc basins is difficult to reconcile with this notion. Through comparison of the tectonic and kinematic records of the last 50 Ma with seismic tomography and anisotropy models, we show that the closure of the former Tethys Ocean and the extensional deformation of East Asia can be best explained if the asthenospheric mantle transporting India northward, forming the Himalaya and the Tibetan Plateau, reaches East Asia where it overrides the westward flowing Pacific mantle and contributes to subduction dynamics, distributing extensional deformation over a 3,000-km wide region. This deep asthenospheric flow partly controls the compressional stresses transmitted through the continent-continent collision, driving crustal thickening below the Himalayas and Tibet and the propagation of strike-slip faults across Asian lithosphere further north and east, as well as with the lithospheric and crustal flow powered by slab retreat east of the collision zone below East and SE Asia. The main shortening direction in the deforming continent between the collision zone and the Pacific subduction zones may in this case be a proxy for the direction of flow in the asthenosphere underneath, which may become a useful tool for studying mantle flow in the distant past. Our model of the India-Asia collision emphasizes the role of asthenospheric flow underneath continents and may offer alternative ways of understanding tectonic processes.
Collapse
Affiliation(s)
- Laurent Jolivet
- Sorbonne Université, CNRS‐INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193ParisFrance
| | | | - Thorsten Becker
- UTIGUniversity of Texas at AustinAustinTXUSA
- DGSUniversity of Texas at AustinAustinTXUSA
- JSGUniversity of Texas at AustinAustinTXUSA
| | - Magdala Tesauro
- Dipartimento di Matematica e GeoscienzeUniversita degli studi di TriesteTriesteItaly
| | - Pietro Sternai
- Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
| | | |
Collapse
|
12
|
Advokaat EL, Marshall NT, Li S, Spakman W, Krijgsman W, van Hinsbergen DJJ. Cenozoic Rotation History of Borneo and Sundaland, SE Asia Revealed by Paleomagnetism, Seismic Tomography, and Kinematic Reconstruction. TECTONICS 2018; 37:2486-2512. [PMID: 30333679 PMCID: PMC6175333 DOI: 10.1029/2018tc005010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
SE Asia comprises a heterogeneous assemblage of fragments derived from Cathaysia (Eurasia) in the north and Gondwana in the south, separated by suture zones representing closed former ocean basins. The western part of the region comprises Sundaland, which was formed by Late Permian-Triassic amalgamation of continental and arc fragments now found in Indochina, the Thai Penisula, Peninsular Malaysia, and Sumatra. On Borneo, the Kuching Zone formed the eastern margin of Sundaland since the Triassic. To the SE of the Kuching Zone, the Gondwana-derived continental fragments of SW Borneo and East Kalimantan accreted in the Cretaceous. South China-derived fragments accreted to north of the Kuching Zone in the Miocene. Deciphering this complex geodynamic history of SE Asia requires restoration of its deformation history, but quantitative constraints are often sparse. Paleomagnetism may provide such constraints. Previous paleomagnetic studies demonstrated that Sundaland and fragments in Borneo underwent vertical axis rotations since the Cretaceous. We provide new paleomagnetic data from Eocene-Miocene sedimentary rocks in the Kutai Basin, east Borneo, and critically reevaluate the published database, omitting sites that do not pass widely used, up-to-date reliability criteria. We use the resulting database to develop an updated kinematic restoration. We test the regional or local nature of paleomagnetic rotations against fits between the restored orientation of the Sunda Trench and seismic tomography images of the associated slabs. Paleomagnetic data and mantle tomography of the Sunda slab indicate that Sundaland did not experience significant vertical axis rotations since the Late Jurassic. Paleomagnetic data show that Borneo underwent a ~35° counterclockwise rotation constrained to the Late Eocene and an additional ~10° counterclockwise rotation since the Early Miocene. How this rotation was accommodated relative to Sundaland is enigmatic but likely involved distributed extension in the West Java Sea between Borneo and Sumatra. This Late Eocene-Early Oligocene rotation is contemporaneous with and may have been driven by a marked change in motion of Australia relative to Eurasia, from eastward to northward, which also has led to the initiation of subduction along the eastern Sunda trench and the proto-South China Sea to the south and north of Borneo, respectively.
Collapse
Affiliation(s)
| | | | - Shihu Li
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
| | - Wim Spakman
- Department of Earth SciencesUtrecht UniversityUtrechtNetherlands
- Centre of Earth Evolution and DynamicsUniversity of OsloOsloNorway
| | - Wout Krijgsman
- Department of Earth SciencesUtrecht UniversityUtrechtNetherlands
| | | |
Collapse
|
13
|
van de Lagemaat SHA, van Hinsbergen DJJ, Boschman LM, Kamp PJJ, Spakman W. Southwest Pacific Absolute Plate Kinematic Reconstruction Reveals Major Cenozoic Tonga-Kermadec Slab Dragging. TECTONICS 2018; 37:2647-2674. [PMID: 30344365 PMCID: PMC6175462 DOI: 10.1029/2017tc004901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Tectonic plates subducting at trenches having strikes oblique to the absolute subducting plate motion undergo trench-parallel slab motion through the mantle, recently defined as a form of "slab dragging." We investigate here long-term slab-dragging components of the Tonga-Kermadec subduction system driven by absolute Pacific plate motion. To this end we develop a kinematic restoration of Tonga-Kermadec Trench motion placed in a mantle reference frame and compare it to tomographically imaged slabs in the mantle. Estimating Tonga-Kermadec subduction initiation is challenging because another (New Caledonia) subduction zone existed during the Paleogene between the Australia and Pacific plates. We test partitioning of plate convergence across the Paleogene New Caledonia and Tonga-Kermadec subduction zones against resulting mantle structure and show that most, if not all, Tonga-Kermadec subduction occurred after ca. 30 Ma. Since then, Tonga-Kermadec subduction has accommodated 1,700 to 3,500 km of subduction along the southern and northern ends of the trench, respectively. When placed in a mantle reference frame, the predominantly westward directed subduction evolved while the Tonga-Kermadec Trench underwent ~1,200 km of northward absolute motion. We infer that the entire Tonga-Kermadec slab was laterally transported through the mantle over 1,200 km. Such slab dragging by the Pacific plate may explain observed deep-slab deformation and may also have significant effects on surface tectonics, both resulting from the resistance to slab dragging by the viscous mantle.
Collapse
Affiliation(s)
| | | | | | | | - Wim Spakman
- Department of Earth SciencesUtrecht UniversityUtrechtNetherlands
- Center for Earth Evolution and Dynamics (CEED)University of OsloOsloNorway
| |
Collapse
|
14
|
On the relative motions of long-lived Pacific mantle plumes. Nat Commun 2018; 9:854. [PMID: 29487287 PMCID: PMC5829163 DOI: 10.1038/s41467-018-03277-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40Ar/39Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle. Using mantle plumes to reconstruct past plate motion is complicated, because plumes may not be fixed. Here, the authors demonstrate using 40Ar/39Ar ages that the Rurutu plume is relatively stable compared to the rapidly moving Hawaiian plume, yet it has a similar deep mantle origin.
Collapse
|
15
|
Domeier M, Shephard GE, Jakob J, Gaina C, Doubrovine PV, Torsvik TH. Intraoceanic subduction spanned the Pacific in the Late Cretaceous-Paleocene. SCIENCE ADVANCES 2017; 3:eaao2303. [PMID: 29134200 PMCID: PMC5677347 DOI: 10.1126/sciadv.aao2303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
The notorious ~60° bend separating the Hawaiian and Emperor chains marked a prominent change in the motion of the Pacific plate at ~47 Ma (million years ago), but the origin of that change remains an outstanding controversy that bears on the nature of major plate reorganizations. Lesser known but equally significant is a conundrum posed by the pre-bend (~80 to 47 Ma) motion of the Pacific plate, which, according to conventional plate models, was directed toward a fast-spreading ridge, in contradiction to tectonic forcing expectations. Using constraints provided by seismic tomography, paleomagnetism, and continental margin geology, we demonstrate that two intraoceanic subduction zones spanned the width of the North Pacific Ocean in Late Cretaceous through Paleocene time, and we present a simple plate tectonic model that explains how those intraoceanic subduction zones shaped the ~80 to 47 Ma kinematic history of the Pacific realm and drove a major plate reorganization.
Collapse
Affiliation(s)
- Mathew Domeier
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Grace E. Shephard
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Johannes Jakob
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Carmen Gaina
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | | | - Trond H. Torsvik
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
- Helmholtz Centre Potsdam, GFZ, Potsdam, Germany
- Geodynamics Team, Geological Survey of Norway, Trondheim, Norway
- School of Geosciences, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Torsvik TH, Doubrovine PV, Steinberger B, Gaina C, Spakman W, Domeier M. Pacific plate motion change caused the Hawaiian-Emperor Bend. Nat Commun 2017; 8:15660. [PMID: 28580950 PMCID: PMC5465363 DOI: 10.1038/ncomms15660] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
A conspicuous 60° bend of the Hawaiian-Emperor Chain in the north-western Pacific Ocean has variously been interpreted as the result of an abrupt Pacific plate motion change in the Eocene (∼47 Ma), a rapid southward drift of the Hawaiian hotspot before the formation of the bend, or a combination of these two causes. Palaeomagnetic data from the Emperor Seamounts prove ambiguous for constraining the Hawaiian hotspot drift, but mantle flow modelling suggests that the hotspot drifted 4-9° south between 80 and 47 Ma. Here we demonstrate that southward hotspot drift cannot be a sole or dominant mechanism for formation of the Hawaiian-Emperor Bend (HEB). While southward hotspot drift has resulted in more northerly positions of the Emperor Seamounts as they are observed today, formation of the HEB cannot be explained without invoking a prominent change in the direction of Pacific plate motion around 47 Ma.
Collapse
Affiliation(s)
- Trond H Torsvik
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway
- Helmholtz Centre Potsdam, GFZ, Telegrafenberg, 14473 Potsdam, Germany
- NGU Geodynamics, Trondheim, Norway
- School of Geosciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Pavel V Doubrovine
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway
| | - Bernhard Steinberger
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway
- Helmholtz Centre Potsdam, GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - Carmen Gaina
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway
| | - Wim Spakman
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway
- Department of Earth Sciences, University of Utrecht, 3584 Utrecht, The Netherlands
| | - Mathew Domeier
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
17
|
South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nat Commun 2017; 8:15249. [PMID: 28508893 PMCID: PMC5440808 DOI: 10.1038/ncomms15249] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/13/2017] [Indexed: 11/26/2022] Open
Abstract
At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200–300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle reference frame that the Nazca slab has retreated at ∼2 cm per year since ∼50 Ma. In the flat slab portions, no rollback has occurred since their formation at ∼12 Ma, generating ‘horse-shoe' slab geometries. We propose that, in concert with other drivers, an overpressured sub-slab mantle supporting the weight of the slab in an advancing upper plate-motion setting can locally impede rollback and maintain flat slabs until slab tearing releases the overpressure. Tear subduction re-establishes a continuous slab and allows the process to recur, providing a mechanism for the transient character of flat slabs. How flat slabs at subduction zones are created remains unclear. Here, the authors show that the Nazca slab has retreated at ∼2 cm per year since 50 Ma but no rollback has occurred in the last ∼12 Myr in the flat slab, implying that an overpressured sub-slab mantle can impede rollback and maintain a flat slab.
Collapse
|
18
|
Domeier M, Doubrovine PV, Torsvik TH, Spakman W, Bull AL. Global correlation of lower mantle structure and past subduction. GEOPHYSICAL RESEARCH LETTERS 2016; 43:4945-4953. [PMID: 31413424 PMCID: PMC6686211 DOI: 10.1002/2016gl068827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 06/07/2023]
Abstract
Advances in global seismic tomography have increasingly motivated identification of subducted lithosphere in Earth's deep mantle, creating novel opportunities to link plate tectonics and mantle evolution. Chief among those is the quest for a robust subduction reference frame, wherein the mantle assemblage of subducted lithosphere is used to reconstruct past surface tectonics in an absolute framework anchored in the deep Earth. However, the associations heretofore drawn between lower mantle structure and past subduction have been qualitative and conflicting, so the very assumption of a correlation has yet to be quantitatively corroborated. Here we show that a significant, time-depth progressive correlation can be drawn between reconstructed subduction zones of the last 130 Myr and positive S wave velocity anomalies at 600-2300 km depth, but that further correlation between greater times and depths is not presently demonstrable. This correlation suggests that lower mantle slab sinking rates average between 1.1 and 1.9 cm yr-1.
Collapse
Affiliation(s)
- Mathew Domeier
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
| | | | - Trond H Torsvik
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
- Geodynamics Geological Survey of Norway Trondheim Norway
- School of Geosciences University of Witswatersrand Johannesburg South Africa
| | - Wim Spakman
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
- Department of Earth Sciences University of Utrecht Utrecht Netherlands
| | - Abigail L Bull
- Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway
| |
Collapse
|
19
|
van Hinsbergen DJJ, de Groot LV, van Schaik SJ, Spakman W, Bijl PK, Sluijs A, Langereis CG, Brinkhuis H. A Paleolatitude Calculator for Paleoclimate Studies. PLoS One 2015; 10:e0126946. [PMID: 26061262 PMCID: PMC4462584 DOI: 10.1371/journal.pone.0126946] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.
Collapse
Affiliation(s)
| | | | | | - Wim Spakman
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
- Center of Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
| | - Peter K. Bijl
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Appy Sluijs
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cor G. Langereis
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Henk Brinkhuis
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
- Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands
| |
Collapse
|
20
|
Gaina C, Medvedev S, Torsvik TH, Koulakov I, Werner SC. 4D Arctic: A Glimpse into the Structure and Evolution of the Arctic in the Light of New Geophysical Maps, Plate Tectonics and Tomographic Models. SURVEYS IN GEOPHYSICS 2013; 35:1095-1122. [PMID: 26069354 PMCID: PMC4456077 DOI: 10.1007/s10712-013-9254-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/10/2013] [Indexed: 06/04/2023]
Abstract
Knowledge about the Arctic tectonic structure has changed in the last decade as a large number of new datasets have been collected and systematized. Here, we review the most updated, publicly available Circum-Arctic digital compilations of magnetic and gravity data together with new models of the Arctic's crust. Available tomographic models have also been scrutinized and evaluated for their potential to reveal the deeper structure of the Arctic region. Although the age and opening mechanisms of the Amerasia Basin are still difficult to establish in detail, interpreted subducted slabs that reside in the High Arctic's lower mantle point to one or two episodes of subduction that consumed crust of possibly Late Cretaceous-Jurassic age. The origin of major igneous activity during the Cretaceous in the central Arctic (the Alpha-Mendeleev Ridge) and in the proximity of rifted margins (the so-called High Arctic Large Igneous Province-HALIP) is still debated. Models of global plate circuits and the connection with the deep mantle are used here to re-evaluate a possible link between Arctic volcanism and mantle plumes.
Collapse
Affiliation(s)
- Carmen Gaina
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
| | - Sergei Medvedev
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
| | - Trond H. Torsvik
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
- Geodynamics, Geological Survey of Norway, Trondheim, Norway
- School of Geosciences, University of Witwatersrand, WITS, Johannesburg, 2050 South Africa
| | - Ivan Koulakov
- Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS, Novosibirsk, Russia
| | - Stephanie C. Werner
- Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
| |
Collapse
|