1
|
Variation of Aerosol Optical Depth Measured by Sun Photometer at a Rural Site near Beijing during the 2017–2019 Period. REMOTE SENSING 2022. [DOI: 10.3390/rs14122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, the Beijing–Tianjin–Hebei region has become one of the worst areas for haze pollution in China. Sun photometers are widely used for aerosol optical property monitoring due to the advantages of fully automatic acquisition, simple maintenance, standardization of data processing, and low uncertainty. Research sites are mostly concentrated in cities, while the long-term analysis of aerosol optical depth (AOD) for the pollution transmission channel in rural Beijing is still lacking. Here, we obtained an AOD monitoring dataset from August 2017 to March 2019 using the ground-based CE-318 sun photometer at the Gucheng meteorological observation site in southwest Beijing. These sun photometer AOD data were used for the ground-based validation of MODIS (Moderate Resolution Imaging Spectroradiometer) and AHI (Advanced Himawari Imager) AOD data. It was found that MODIS and AHI can reflect AOD variation trends by sun photometer on daily, monthly, and seasonal scales. The original AOD measurements of the sun photometer show good correlations with satellite observations by MODIS (R = 0.97), and AHI (R = 0.89), respectively, corresponding to their different optimal spatial and temporal windows for matching with collocated satellite ground pixels. However, MODIS is less stable for aerosols of different concentrations and particle sizes. Most of the linear regression intercepts between the satellite and the photometer are less than 0.1, indicating that the errors due to surface reflectance in the inversion are small, and the slope is least biased (AHI: slope = 0.91, MODIS: slope = 0.18) in the noon period (11 a.m.–2 p.m.) and most biased in summer (AHI: slope = 0.77, MODIS: slope = 1.31), probably due to errors in the aerosol model. The daily and seasonal variation trends between CE-318 AOD measurements in the Gucheng site and fine particulate observations from the national air quality site nearby were also compared and investigated. In addition, a typical haze–dust complex pollution event in North China was analyzed and the changes in AOD during the pollution event were quantified. In processing, we use sun photometer and satellite AOD data in combination with meteorological and PM data. Overall, this paper has implications for the study of AOD evolution patterns at different time scales, the association between PM2.5 concentrations and AOD changes, and pollution monitoring.
Collapse
|
2
|
Long-Term (2017–2020) Aerosol Optical Depth Observations in Hohhot City in Mongolian Plateau and the Impacts from Different Types of Aerosol. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aerosol optical depth (AOD) measurements for 2017–2020 in urban Hohhot of the Mongolian plateau, a transition zone between the depopulated zone and East Asian urban agglomeration, were analyzed for the first time. Results show that annual AOD500 and Ångström exponent α440-675 were 0.36 ± 0.09 and 1.11 ± 0.16 (2017), 0.41 ± 0.12 and 0.90 ± 0.28 (2018), 0.38 ± 0.09 and 1.13 ± 0.24 (2019), 0.38 ± 0.12 and 1.17 ± 0.22 (2020), respectively, representing a slightly polluted level with a mixed type of coarse dust aerosol and a fine urban/industrial aerosol. Throughout the year, depopulated-zone continental air flows predominated in Hohhot (i.e., NW-quadrant wind), accounting for 82.12% (spring), 74.54% (summer), 63.61% (autumn), and 100% (winter). The clean and strong NW-quadrant air flows induced by the south movement of a Siberian anticyclone resulted in a low 500-nm AOD of 0.30 ± 0.29, 0.20 ± 0.15, 0.24 ± 0.29, and 0.13 ± 0.08 from spring to winter. Meanwhile, the local emissions from Hohhot city, as well as anthropogenic urban/industrial aerosols transported by southern and western air masses, originating from southern urban agglomeration and western industrial cities (Baotou, Wuhai, etc.), contributed to the highest aerosol loading, with significant transformation rates of the secondary aerosols Sulfate-Nitrate-Ammonium (SNA) of 47.45%, 57.39%, 49.88%, and 45.16–47.36% in PM2.5 for each season. The extinction fraction of fine aerosols under these anthropogenic trajectories can be as high as 80%, and the largest fine aerosol size was around 0.2–0.25 μm. Dust aerosols were suspending in urban Hohhot all year, although at different levels for different seasons, and the extinction fraction of dust aerosol during sandstorms was generally higher than 70%.
Collapse
|
3
|
Dumka UC, Ningombam SS, Kaskaoutis DG, Madhavan BL, Song HJ, Angchuk D, Jorphail S. Long-term (2008-2018) aerosol properties and radiative effect at high-altitude sites over western trans-Himalayas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139354. [PMID: 32470663 DOI: 10.1016/j.scitotenv.2020.139354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Analysis of the climatology of aerosol properties is performed over Hanle (4500 m) and Merak (4310 m), two remote-background sites in the western trans-Himalayas, based on eleven years (2008-2018) of sun/sky radiometer (POM-01, Prede) measurements. The two sites present very similar atmospheric conditions and aerosol properties allowing us to examine them as continuous single-data series. The annual average aerosol optical depth at 500 nm (AOD500) is 0.04 ± 0.03, associated with an Ångström exponent (AE440-870) of 0.58 ± 0.35 and a single scattering albedo (SSA500) of 0.95 ± 0.05. AOD500 exhibits higher values in May (~0.07) and lower in winter (~0.03), while AE400-870 minimizes in spring, indicating influence by coarse-mode dust aerosols, either emitted regionally or long-range transported. The de-convolution of AOD500 into fine and coarse modes justifies the aerosol seasonality and sources, while the marginal diurnal variation in all aerosol properties reveals a weak influence from local sources, except for some few aerosol episodes. The aerosol-volume size distribution presents a mode value at ~10 μm with secondary peaks at accumulation (~ 2 μm) and fine modes (~0.03 μm) and low variability between the seasons. A classification of the aerosol types based on the fine-mode fraction (FMF) vs. SSA500 relationship reveals the dominance of aerosols in the FMF range of 0.4-0.6, characterized as mixed (39%), followed by fine aerosols with high scattering efficiency (26%), while particles related to dust contribute ~21%, with low fractions of fine-absorbing aerosols (~13%). The aerosol radiative forcing (ARF) estimates reveal a small cooling effect at the top of the atmosphere (-1.3 Wm-2), while at the surface, the ARF ranges from -2 Wm-2 to -6 Wm-2 on monthly basis. The monthly-mean atmospheric radiative forcing (~1 to 4 Wm-2) leads to heating rates of 0.04 to 0.13 K day-1. These ARF values are higher than the global averages and may cause climate implications over the trans-Himalayan region.
Collapse
Affiliation(s)
- U C Dumka
- Aryabhatta Research Institute of observational Sciences, Nainital 263001, India.
| | | | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, 15236 Athens, Greece.
| | - B L Madhavan
- National Atmospheric Research Laboratory (NARL), Department of Space, Gadanki 517112, India
| | - H-J Song
- National Institute of Meteorological Sciences, Seogwipo, Jeju, South Korea
| | - Dorje Angchuk
- Indian Astronomical Observatory, Indian Institute of Astrophysics, Skara, Leh-Ladakh, 194101, India
| | - Sonam Jorphail
- Indian Astronomical Observatory, Indian Institute of Astrophysics, Skara, Leh-Ladakh, 194101, India
| |
Collapse
|
4
|
Khan K, Tareen AK, Aslam M, Sagar RUR, Zhang B, Huang W, Mahmood A, Mahmood N, Khan K, Zhang H, Guo Z. Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. NANO-MICRO LETTERS 2020; 12:167. [PMID: 34138161 PMCID: PMC7770787 DOI: 10.1007/s40820-020-00504-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 05/03/2023]
Abstract
The successful photo-catalyst library gives significant information on feature that affects photo-catalytic performance and proposes new materials. Competency is considerably significant to form multi-functional photo-catalysts with flexible characteristics. Since recently, two-dimensional materials (2DMs) gained much attention from researchers, due to their unique thickness-dependent uses, mainly for photo-catalytic, outstanding chemical and physical properties. Photo-catalytic water splitting and hydrogen (H2) evolution by plentiful compounds as electron (e-) donors is estimated to participate in constructing clean method for solar H2-formation. Heterogeneous photo-catalysis received much research attention caused by their applications to tackle numerous energy and environmental issues. This broad review explains progress regarding 2DMs, significance in structure, and catalytic results. We will discuss in detail current progresses of approaches for adjusting 2DMs-based photo-catalysts to assess their photo-activity including doping, hetero-structure scheme, and functional formation assembly. Suggested plans, e.g., doping and sensitization of semiconducting 2DMs, increasing electrical conductance, improving catalytic active sites, strengthening interface coupling in semiconductors (SCs) 2DMs, forming nano-structures, building multi-junction nano-composites, increasing photo-stability of SCs, and using combined results of adapted approaches, are summed up. Hence, to further improve 2DMs photo-catalyst properties, hetero-structure design-based 2DMs' photo-catalyst basic mechanism is also reviewed.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Muhammad Aslam
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- Government Degree College Paharpur, Gomel University, Dera Ismail Khan, K.P.K, Islamic Republic of Pakistan
| | - Rizwan Ur Rehman Sagar
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Jiangxi, 341000, People's Republic of China
| | - Bin Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Weichun Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Asif Mahmood
- School of Chemical and Bio-Molecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nasir Mahmood
- School of Engineering, The Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Kishwar Khan
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Liu Q, Liu T, Chen Y, Xu J, Gao W, Zhang H, Yao Y. Effects of aerosols on the surface ozone generation via a study of the interaction of ozone and its precursors during the summer in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:235-246. [PMID: 31030131 DOI: 10.1016/j.scitotenv.2019.04.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have shown that heavy aerosol pollution can inhibit the surface ozone generation. More recent studies, however, have revealed that aerosol loading is positively correlated with ozone concentrations in large cities, such as Shanghai, particularly during the summer. Whether the correlation between aerosol pollution and ozone concentrations is positive or negative, it is an issue that needs to be considered by atmospheric scientists. Although the presence of ozone precursors, such as nitrogen oxide (NOx) and volatile organic compounds (VOCs), affect ozone concentrations, the roles of aerosols in the formation of ozone have rarely been investigated. Therefore, an analysis of the effect of aerosols on photochemical ozone generation via a study of the interaction of ozone and its precursors is important. In our research, we found that both aerosol and ozone concentrations were higher in Shanghai under polluted conditions than they were under clean conditions during the summer, but the ozone formation was controlled by VOCs, not by aerosol loading. The decrease in the AOD (SSA) increased (decreased) the surface UV radiation and promoted (inhibited) photochemical ozone production. We also found that the lower the concentration of photochemically active VOCs, the weaker the effect of the AOD on the ozone concentrations. The other results were shown as follows: (1) Aerosol pollution decreased the amount of UV radiation reaching the Earth's surface, but the surface UV radiation increased with increasing aerosol particle scattering; (2) Aerosol pollution inhibited the photolysis of nitrogen dioxide (NO2), while the scattering property of aerosols facilitated this phenomenon; (3) When both the concentration of ozone precursors and the SSA were constant, the ozone concentration decreased, but the attenuation rate increased significantly with an increase in AOD.
Collapse
Affiliation(s)
- Qiong Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Tongqiang Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yonghang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jianming Xu
- Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; Shanghai Meteorological Service, Shanghai 200030, China
| | - Wei Gao
- Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China; Shanghai Meteorological Service, Shanghai 200030, China
| | - Hua Zhang
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yifeng Yao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Multi-Year Analyses of Columnar Aerosol Optical and Microphysical Properties in Xi’an, a Megacity in Northwestern China. REMOTE SENSING 2018. [DOI: 10.3390/rs10081169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A thorough understanding of aerosol optical properties and their spatio-temporal variability are required to accurately evaluate aerosol effects in the climate system. In this study, a multi-year study of aerosol optical and microphysical properties was firstly performed in Xi’an based on three years of sun photometer remote sensing measurements from 2012 to 2015. The multi-year average of aerosol optical depth (AOD) at 440 nm was about 0.88 ± 0.24 (mean ± SD), while the averaged Ångström Exponent (AE) between 440 and 870 nm was 1.02 ± 0.15. The mean value of single scattering albedo (SSA) was around 0.89 ± 0.03. Aerosol optical depth and AE showed different seasonal variation patterns. Aerosol optical depth was slightly higher in winter (0.99 ± 0.36) than in other seasons (~0.85 ± 0.20), while AE showed its minimum in spring (0.85 ± 0.05) due to the impact of dust episodes. The seasonal variations of volume particle size distribution, spectral refractive index, SSA, and asymmetry factor were also analyzed to characterize aerosols over this region. Based on the aerosol products derived from sun photometer measurements, the classification of aerosol types was also conducted using two different methods in this region. Results show that the dominant aerosol types are absorbers in all seasons, especially in winter, demonstrating the strong absorptivity of aerosols in Xi’an.
Collapse
|
7
|
Liu Q, He Q, Fang S, Guang Y, Ma C, Chen Y, Kang Y, Pan H, Zhang H, Yao Y. Vertical distribution of ambient aerosol extinctive properties during haze and haze-free periods based on the Micro-Pulse Lidar observation in Shanghai. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:1502-1511. [PMID: 27575426 DOI: 10.1016/j.scitotenv.2016.08.152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/09/2016] [Accepted: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Ambient aerosols make a significant contribution to the environment and climate through their optical properties. In this study, the aerosol extinction coefficient and Aerosol optical depth (AOD) retrieved using the Fernald Method from the ground-based Micro-Pulse Lidar (MPL) were used to investigate the characteristics of aerosols during haze and haze-free periods in Shanghai. There were 216 haze days including 145 dry haze days, 39 damp haze days and 32days of both dry and damp haze in Shanghai from March 2009 to February 2010. During the haze periods, aerosols were concentrated mainly below 600m resulting in the most severe pollution layer in Shanghai. In contrast to the aerosol optical properties during haze-free periods, aerosol extinction coefficients and AOD were larger in the lower altitude (below 1km) during haze periods. The lowest 1km contributed 53-72% of the Aerosol optical depth (AOD) below 6km for the haze periods and <41% of that for the haze-free periods except summer. According to the analysis of influencing factors, although atmospheric convection was strong in summer which led to reduce the extinction, the highest occurrence of haze with relatively low aerosol extinction most of time was in summer, which resulted from the factors such as higher relative humidity, temperature and more solar radiation causing hygroscopic growth of particles and formation of secondary aerosols; in spring and autumn, there was less haze occurrences because the boundary layer was relatively higher, which allowed pollutants to diffuse more easily, but spring was the second most frequency season of haze due to frequent dust transport from the north; in winter high concentrations of particles and low boundary layer height were not beneficial to the diffusion of pollutants near the surface and caused haze occurrence rather high with high aerosol extinction.
Collapse
Affiliation(s)
- Qiong Liu
- Environmental Science and Engineering College, Donghua University, Shanghai, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Qianshan He
- Environmental Science and Engineering College, Donghua University, Shanghai, China; Shanghai Meteorological Bureau, Shanghai, China.
| | - Sihua Fang
- Baruch College, City University of New York, New York, USA
| | - Ying Guang
- Environmental Science and Engineering College, Donghua University, Shanghai, China
| | - Chengyu Ma
- Environmental Science and Engineering College, Donghua University, Shanghai, China
| | - Yonghang Chen
- Environmental Science and Engineering College, Donghua University, Shanghai, China.
| | - Yanming Kang
- Environmental Science and Engineering College, Donghua University, Shanghai, China
| | - Hu Pan
- Environmental Science and Engineering College, Donghua University, Shanghai, China
| | - Hua Zhang
- National Climate Center of China Meteorological Administration, Beijing, China
| | - Yifeng Yao
- Environmental Science and Engineering College, Donghua University, Shanghai, China
| |
Collapse
|
8
|
Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014. REMOTE SENSING 2016. [DOI: 10.3390/rs8020110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Emetere ME, Akinyemi ML, Akin-Ojo O. Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:381-390. [PMID: 26452005 DOI: 10.1016/j.envpol.2015.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The size characteristics of atmospheric aerosol over the tropical region of Lagos, Southern Nigeria were investigated using two years of continuous spectral aerosol optical depth measurements via the AERONET station for four major bands i.e. blue, green, red and infrared. Lagos lies within the latitude of 6.465°N and longitude of 3.406°E. Few systems of dispersion model was derived upon specified conditions to solve challenges on aerosols size distribution within the Stokes regime. The dispersion model was adopted to derive an aerosol size distribution (ASD) model which is in perfect agreement with existing model. The parametric nature of the formulated ASD model shows the independence of each band to determine the ASD over an area. The turbulence flow of particulates over the area was analyzed using the unified number (Un). A comparative study via the aid of the Davis automatic weather station was carried out on the Reynolds number, Knudsen number and the Unified number. The Reynolds and Unified number were more accurate to describe the atmospheric fields of the location. The aerosols loading trend in January to March (JFM) and August to October (ASO) shows a yearly 15% retention of aerosols in the atmosphere. The effect of the yearly aerosol retention can be seen to partly influence the aerosol loadings between October and February.
Collapse
Affiliation(s)
- Moses Eterigho Emetere
- Department of Physics, Covenant University Canaan Land, P.M.B 1023, Ota, 122333, Nigeria.
| | - Marvel Lola Akinyemi
- Department of Physics, Covenant University Canaan Land, P.M.B 1023, Ota, 122333, Nigeria
| | | |
Collapse
|