1
|
Biggs J, Challenger JD, Hellewell J, Churcher TS, Cook J. A systematic review of sample size estimation accuracy on power in malaria cluster randomised trials measuring epidemiological outcomes. BMC Med Res Methodol 2024; 24:238. [PMID: 39407101 PMCID: PMC11476958 DOI: 10.1186/s12874-024-02361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION Cluster randomised trials (CRTs) are the gold standard for measuring the community-wide impacts of malaria control tools. CRTs rely on well-defined sample size estimations to detect statistically significant effects of trialled interventions, however these are often predicted poorly by triallists. Here, we review the accuracy of predicted parameters used in sample size calculations for malaria CRTs with epidemiological outcomes. METHODS We searched for published malaria CRTs using four online databases in March 2022. Eligible trials included those with malaria-specific epidemiological outcomes which randomised at least six geographical clusters to study arms. Predicted and observed sample size parameters were extracted by reviewers for each trial. Pair-wise Spearman's correlation coefficients (rs) were calculated to assess the correlation between predicted and observed control-arm outcome measures and effect sizes (relative percentage reductions) between arms. Among trials which retrospectively calculated an estimate of heterogeneity in cluster outcomes, we recalculated study power according to observed trial estimates. RESULTS Of the 1889 records identified and screened, 108 articles were eligible and comprised of 71 malaria CRTs. Among 91.5% (65/71) of trials that included sample size calculations, most estimated cluster heterogeneity using the coefficient of variation (k) (80%, 52/65) which were often predicted without using prior data (67.7%, 44/65). Predicted control-arm prevalence moderately correlated with observed control-arm prevalence (rs: 0.44, [95%CI: 0.12,0.68], p-value < 0.05], with 61.2% (19/31) of prevalence estimates overestimated. Among the minority of trials that retrospectively calculated cluster heterogeneity (20%, 13/65), empirical values contrasted with those used in sample size estimations and often compromised study power. Observed effect sizes were often smaller than had been predicted at the sample size stage (72.9%, 51/70) and were typically higher in the first, compared to the second, year of trials. Overall, effect sizes achieved by malaria interventions tested in trials decreased between 1995 and 2021. CONCLUSIONS Study findings reveal sample size parameters in malaria CRTs were often inaccurate and resulted in underpowered studies. Future trials must strive to obtain more representative epidemiological sample size inputs to ensure interventions against malaria are adequately evaluated. REGISTRATION This review is registered with PROSPERO (CRD42022315741).
Collapse
Affiliation(s)
- Joseph Biggs
- Medical Research Council (MRC) International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology and International Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Joseph D Challenger
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - Joel Hellewell
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - Thomas S Churcher
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, UK
| | - Jackie Cook
- Medical Research Council (MRC) International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology and International Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Rocklöv J, Semenza JC, Dasgupta S, Robinson EJ, Abd El Wahed A, Alcayna T, Arnés-Sanz C, Bailey M, Bärnighausen T, Bartumeus F, Borrell C, Bouwer LM, Bretonnière PA, Bunker A, Chavardes C, van Daalen KR, Encarnação J, González-Reviriego N, Guo J, Johnson K, Koopmans MP, Máñez Costa M, Michaelakis A, Montalvo T, Omazic A, Palmer JR, Preet R, Romanello M, Shafiul Alam M, Sikkema RS, Terrado M, Treskova M, Urquiza D, Lowe R. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. THE LANCET REGIONAL HEALTH. EUROPE 2023; 32:100701. [PMID: 37583927 PMCID: PMC10424206 DOI: 10.1016/j.lanepe.2023.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023]
Abstract
Climate change is one of several drivers of recurrent outbreaks and geographical range expansion of infectious diseases in Europe. We propose a framework for the co-production of policy-relevant indicators and decision-support tools that track past, present, and future climate-induced disease risks across hazard, exposure, and vulnerability domains at the animal, human, and environmental interface. This entails the co-development of early warning and response systems and tools to assess the costs and benefits of climate change adaptation and mitigation measures across sectors, to increase health system resilience at regional and local levels and reveal novel policy entry points and opportunities. Our approach involves multi-level engagement, innovative methodologies, and novel data streams. We take advantage of intelligence generated locally and empirically to quantify effects in areas experiencing rapid urban transformation and heterogeneous climate-induced disease threats. Our goal is to reduce the knowledge-to-action gap by developing an integrated One Health-Climate Risk framework.
Collapse
Affiliation(s)
- Joacim Rocklöv
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jan C. Semenza
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Shouro Dasgupta
- Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy
- Graham Research Institute on Climate Change and the Environment, London School of Economics and Political Science (LSE), London, United Kingdom
| | - Elizabeth J.Z. Robinson
- Graham Research Institute on Climate Change and the Environment, London School of Economics and Political Science (LSE), London, United Kingdom
| | - Ahmed Abd El Wahed
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Tilly Alcayna
- Red Cross Red Crescent Centre on Climate Change and Disaster Preparedness, The Hague, the Netherlands
- Centre on Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Health in Humanitarian Crises Centre, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Cristina Arnés-Sanz
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Meghan Bailey
- Red Cross Red Crescent Centre on Climate Change and Disaster Preparedness, The Hague, the Netherlands
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frederic Bartumeus
- Theoretical and Computational Ecology Group, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, Spain
| | - Carme Borrell
- Pest Surveillance and Control, Agència de Salut Pública de Barcelona (ASPB), Barcelona, Spain
- Biomedical Research Center Network for Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Laurens M. Bouwer
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany
| | | | - Aditi Bunker
- Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Center for Climate, Health and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Kim R. van Daalen
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Junwen Guo
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katie Johnson
- Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Venice, Italy
| | - Marion P.G. Koopmans
- Department of Viroscience, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - María Máñez Costa
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany
| | - Antonios Michaelakis
- Laboratory of Insects & Parasites of Medical Importance, Benaki Phytopathological Institute (BPI), Attica, Greece
| | - Tomás Montalvo
- Agència de Salut Pública de Barcelona (ASPB), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Anna Omazic
- Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), Uppsala, Sweden
| | - John R.B. Palmer
- Department of Political and Social Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raman Preet
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Marina Romanello
- Institute for Global Health, University College London (UCL), London, United Kingdom
| | - Mohammad Shafiul Alam
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Marta Terrado
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Marina Treskova
- Heidelberg Institute of Global Health (HIGH) & Interdisciplinary Centre for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Diana Urquiza
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Rachel Lowe
- Centre on Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| |
Collapse
|
3
|
Assessment of Climate-Driven Variations in Malaria Transmission in Senegal Using the VECTRI Model. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several vector-borne diseases, such as malaria, are sensitive to climate and weather conditions. When unusual conditions prevail, for example, during periods of heavy rainfall, mosquito populations can multiply and trigger epidemics. This study, which consists of better understanding the link between malaria transmission and climate factors at a national level, aims to validate the VECTRI model (VECtor borne disease community model of ICTP, TRIeste) in Senegal. The VECTRI model is a grid-distributed dynamical model that couples a biological model for the vector and parasite life cycles to a simple compartmental Susceptible-Exposed-Infectious-Recovered (SEIR) representation of the disease progression in the human host. In this study, a VECTRI model driven by reanalysis data (ERA-5) was used to simulate malaria parameters, such as the entomological inoculation rate (EIR) in Senegal. Observed malaria data from the National Malaria Control Program in Senegal (PNLP/Programme National de Lutte contre le Paludisme au Senegal) and outputs from the climate data used in this study were compared. The findings highlight the unimodal shape of temporal malaria occurrence, and the seasonal malaria transmission contrast is closely linked to the latitudinal variation of the rainfall, showing a south–north gradient over Senegal. This study showed that the peak of malaria takes place from September to October, with a lag of about one month from the peak of rainfall in Senegal. There is an agreement between observations and simulations about decreasing malaria cases on time. These results indicate that the southern area of Senegal is at the highest risk of malaria spread outbreaks. The findings in the paper are expected to guide community-based early-warning systems and adaptation strategies in Senegal, which will feed into the national malaria prevention, response, and care strategies adapted to the needs of local communities.
Collapse
|
4
|
Colón-González FJ, Soares Bastos L, Hofmann B, Hopkin A, Harpham Q, Crocker T, Amato R, Ferrario I, Moschini F, James S, Malde S, Ainscoe E, Sinh Nam V, Quang Tan D, Duc Khoa N, Harrison M, Tsarouchi G, Lumbroso D, Brady OJ, Lowe R. Probabilistic seasonal dengue forecasting in Vietnam: A modelling study using superensembles. PLoS Med 2021; 18:e1003542. [PMID: 33661904 PMCID: PMC7971894 DOI: 10.1371/journal.pmed.1003542] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/18/2021] [Accepted: 01/22/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND With enough advanced notice, dengue outbreaks can be mitigated. As a climate-sensitive disease, environmental conditions and past patterns of dengue can be used to make predictions about future outbreak risk. These predictions improve public health planning and decision-making to ultimately reduce the burden of disease. Past approaches to dengue forecasting have used seasonal climate forecasts, but the predictive ability of a system using different lead times in a year-round prediction system has been seldom explored. Moreover, the transition from theoretical to operational systems integrated with disease control activities is rare. METHODS AND FINDINGS We introduce an operational seasonal dengue forecasting system for Vietnam where Earth observations, seasonal climate forecasts, and lagged dengue cases are used to drive a superensemble of probabilistic dengue models to predict dengue risk up to 6 months ahead. Bayesian spatiotemporal models were fit to 19 years (2002-2020) of dengue data at the province level across Vietnam. A superensemble of these models then makes probabilistic predictions of dengue incidence at various future time points aligned with key Vietnamese decision and planning deadlines. We demonstrate that the superensemble generates more accurate predictions of dengue incidence than the individual models it incorporates across a suite of time horizons and transmission settings. Using historical data, the superensemble made slightly more accurate predictions (continuous rank probability score [CRPS] = 66.8, 95% CI 60.6-148.0) than a baseline model which forecasts the same incidence rate every month (CRPS = 79.4, 95% CI 78.5-80.5) at lead times of 1 to 3 months, albeit with larger uncertainty. The outbreak detection capability of the superensemble was considerably larger (69%) than that of the baseline model (54.5%). Predictions were most accurate in southern Vietnam, an area that experiences semi-regular seasonal dengue transmission. The system also demonstrated added value across multiple areas compared to previous practice of not using a forecast. We use the system to make a prospective prediction for dengue incidence in Vietnam for the period May to October 2020. Prospective predictions made with the superensemble were slightly more accurate (CRPS = 110, 95% CI 102-575) than those made with the baseline model (CRPS = 125, 95% CI 120-168) but had larger uncertainty. Finally, we propose a framework for the evaluation of probabilistic predictions. Despite the demonstrated value of our forecasting system, the approach is limited by the consistency of the dengue case data, as well as the lack of publicly available, continuous, and long-term data sets on mosquito control efforts and serotype-specific case data. CONCLUSIONS This study shows that by combining detailed Earth observation data, seasonal climate forecasts, and state-of-the-art models, dengue outbreaks can be predicted across a broad range of settings, with enough lead time to meaningfully inform dengue control. While our system omits some important variables not currently available at a subnational scale, the majority of past outbreaks could be predicted up to 3 months ahead. Over the next 2 years, the system will be prospectively evaluated and, if successful, potentially extended to other areas and other climate-sensitive disease systems.
Collapse
Affiliation(s)
- Felipe J. Colón-González
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| | - Leonardo Soares Bastos
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Scientific Computing Programme, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro
| | | | - Alison Hopkin
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | | | | | | | | | | | - Samuel James
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | - Sajni Malde
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | | | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Dang Quang Tan
- General Department of Preventive Medicine, Hanoi, Vietnam
| | | | | | - Gina Tsarouchi
- HR Wallingford, Wallingford, Oxfordshire, United Kingdom
| | | | - Oliver J. Brady
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rachel Lowe
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
5
|
Nkiruka O, Prasad R, Clement O. Prediction of malaria incidence using climate variability and machine learning. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2020.100508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Chaturvedi S, Dwivedi S. Estimating the malaria transmission over the Indian subcontinent in a warming environment using a dynamical malaria model. JOURNAL OF WATER AND HEALTH 2020; 18:358-374. [PMID: 32589621 DOI: 10.2166/wh.2020.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Malaria is a major public health problem in India. The malaria transmission is sensitive to climatic parameters. The regional population-related factors also influence malaria transmission. To take into account temperature and rainfall variability and associated population-related effects (in a changing climate) on the malaria transmission over India, a regional dynamical malaria model, namely VECTRI (vector-borne disease community model) is used. The daily temperature and rainfall data derived from the historical (years 1961-2005) and representative concentration pathway (years 2006-2050) runs of the Coupled Model Intercomparison Project Phase 5 models have been used for the analysis. The model results of the historical run are compared with the observational data. The spatio-temporal changes (region-specific as well as seasonal changes) in the malaria transmission as a result of climate change are quantified over the India. The parameters related to the breeding cycle of malaria as well as those which estimate the malaria cases are analyzed in the global warming scenario.
Collapse
Affiliation(s)
- Shweta Chaturvedi
- K Banerjee Centre of Atmospheric and Ocean Studies and M N Saha Centre of Space Studies, University of Allahabad, Allahabad, Uttar Pradesh 211002, India E-mail:
| | - Suneet Dwivedi
- K Banerjee Centre of Atmospheric and Ocean Studies and M N Saha Centre of Space Studies, University of Allahabad, Allahabad, Uttar Pradesh 211002, India E-mail:
| |
Collapse
|
7
|
Runge M, Molteni F, Mandike R, Snow RW, Lengeler C, Mohamed A, Pothin E. Applied mathematical modelling to inform national malaria policies, strategies and operations in Tanzania. Malar J 2020; 19:101. [PMID: 32122342 PMCID: PMC7053121 DOI: 10.1186/s12936-020-03173-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND More than ever, it is crucial to make the best use of existing country data, and analytical tools for developing malaria control strategies as the heterogeneity in malaria risk within countries is increasing, and the available malaria control tools are expanding while large funding gaps exist. Global and local policymakers, as well as funders, increasingly recognize the value of mathematical modelling as a strategic tool to support decision making. This case study article describes the long-term use of modelling in close collaboration with the National Malaria Control Programme (NMCP) in Tanzania, the challenges encountered and lessons learned. CASE DESCRIPTION In Tanzania, a recent rebound in prevalence led to the revision of the national malaria strategic plan with interventions targeted to the malaria risk at the sub-regional level. As part of the revision, a mathematical malaria modelling framework for setting specific predictions was developed and used between 2016 and 2019 to (1) reproduce setting specific historical malaria trends, and (2) to simulate in silico the impact of future interventions. Throughout the project, multiple stakeholder workshops were attended and the use of mathematical modelling interactively discussed. EVALUATION In Tanzania, the model application created an interdisciplinary and multisectoral dialogue platform between modellers, NMCP and partners and contributed to the revision of the national malaria strategic plan by simulating strategies suggested by the NMCP. The uptake of the modelling outputs and sustained interest by the NMCP were critically associated with following factors: (1) effective sensitization to the NMCP, (2) regular and intense communication, (3) invitation for the modellers to participate in the strategic plan process, and (4) model application tailored to the local context. CONCLUSION Empirical data analysis and its use for strategic thinking remain the cornerstone for evidence-based decision-making. Mathematical impact modelling can support the process both by unifying all stakeholders in one strategic process and by adding new key evidence required for optimized decision-making. However, without a long-standing partnership, it will be much more challenging to sensibilize programmes to the usefulness and sustained use of modelling and local resources within the programme or collaborating research institutions need to be mobilized.
Collapse
Affiliation(s)
- Manuela Runge
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- National Malaria Control Programme, Ministry of Health Community Development Gender Elderly and Children, Dodoma, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Ministry of Health Community Development Gender Elderly and Children, Dodoma, Tanzania
| | - Robert W Snow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7LJ, UK
- Population Health Unit, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ally Mohamed
- National Malaria Control Programme, Ministry of Health Community Development Gender Elderly and Children, Dodoma, Tanzania
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
- CHAI, Clinton Health Access Initative, Boston, USA.
| |
Collapse
|