1
|
Kayaba S, Kajino M. Potential Impacts of Energy and Vehicle Transformation Through 2050 on Oxidative Stress-Inducing PM 2.5 Metals Concentration in Japan. GEOHEALTH 2023; 7:e2023GH000789. [PMID: 37842137 PMCID: PMC10574721 DOI: 10.1029/2023gh000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023]
Abstract
The impacts of renewable energy shifting, passenger car electrification, and lightweighting through 2050 on the atmospheric concentrations of PM2.5 total mass and oxidative stress-inducing metals (PM2.5-Fe, Cu, and Zn) in Japan were evaluated using a regional meteorology-chemistry model. The surface concentrations of PM2.5 total mass, Fe, Cu, and Zn in the urban area decreased by 8%, 13%, 18%, and 5%, respectively. Battery electric vehicles (BEVs) have been considered to have no advantage in terms of non-exhaust PM emissions by previous studies. This is because the disadvantages (heavier weight increases tire wear, road wear, and resuspention) offset the advantages (regenerative braking system (RBS) reduces brake wear). However, the future lightweighting of drive battery and body frame were estimated to reduce all non-exhaust PM. Passenger car electrification only reduced PM2.5 concentration by 2%. However, Fe and Cu concentrations were more reduced (-8% and -13%, respectively) because they have high brake wear-derived and significantly reflects the benefits of BEV's RBS. The water-soluble fraction concentration of metals (induces oxidative stress in the body) was estimated based on aerosol acidity. The reduction of SOx, NOx, and NH3 emissions from on-road and thermal power plants slightly changed the aerosol acidity (pH ± 0.2). However, it had a negligible effect on water-soluble metal concentrations (maximum +2% for Fe and +0.5% for Cu and Zn). Therefore, the metal emissions reduction was more important than gaseous pollutants in decreasing the water-soluble metals that induces respiratory oxidative stress and passenger car electrification and lightweighting were effective means of achieving this.
Collapse
Affiliation(s)
- Satoko Kayaba
- Graduate School of Science and TechnologyUniversity of TsukubaTsukubaJapan
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
| | - Mizuo Kajino
- Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
| |
Collapse
|
2
|
Ito A, Miyakawa T. Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4091-4100. [PMID: 36853188 PMCID: PMC10018757 DOI: 10.1021/acs.est.2c06472] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Atmospheric iron (Fe) from anthropogenic, lithogenic, and pyrogenic sources contributes to ocean fertilization, climate change, and human health risk. However, significant uncertainties remain in the source apportionment due to a lack of source-specific evaluation of Fe-laden aerosols. Here, the large uncertainties in the model estimates are investigated using different Fe emissions from metal production. The best agreement in the anthropogenic factor of aerosol Fe concentrations with the field data in the downstream region of East Asian outflow (median: 0.026 μg m-3) is obtained with the low case (0.023 μg m-3), whereas the best agreement of aerosol Fe bioaccessibility with field data (4.5%) over oceans south of 45°S is obtained with the high case (4.9%). Our simulation with the low case confirms that anthropogenic aerosols play dominant roles in bioaccessible Fe deposition in the northwestern Pacific, compared to lithogenic sources. Our simulations with higher cases suggest that Fe-containing particles co-emitted with sulfur dioxide from metal production substantially contribute to atmospheric bioaccessible Fe fluxes to the Southern Ocean. These findings highlight that accurate representation of aerosol Fe from metal production is a key to reduce large uncertainties in bioaccessible Fe deposition fluxes to the Southern Ocean (0.7-4.4 Gg Fe year-1).
Collapse
|
3
|
Bai X, Tian H, Zhu C, Luo L, Hao Y, Liu S, Guo Z, Lv Y, Chen D, Chu B, Wang S, Hao J. Present Knowledge and Future Perspectives of Atmospheric Emission Inventories of Toxic Trace Elements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1551-1567. [PMID: 36661479 DOI: 10.1021/acs.est.2c07147] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Toxic trace elements (TEs) can pose serious risks to ecosystems and human health. However, a comprehensive understanding of atmospheric emission inventories for several concerning TEs has not yet been developed. In this study, we systematically reviewed the status and progress of existing research in developing atmospheric emission inventories of TEs focusing on global, regional, and sectoral scales. Multiple studies have strengthened our understanding of the global emission of TEs, despite attention being mainly focused on Hg and source classification in different studies showing large discrepancies. In contrast to those of developed countries and regions, the officially published emission inventory is still lacking in developing countries, despite the fact that studies on evaluating the emissions of TEs on a national scale or one specific source category have been numerous in recent years. Additionally, emissions of TEs emitted from waste incineration and traffic-related sources have produced growing concern with worldwide rapid urbanization. Although several studies attempt to estimate the emissions of TEs based on PM emissions and its source-specific chemical profiles, the emission factor approach is still the universal method. We call for more extensive and in-depth studies to establish a precise localization national emission inventory of TEs based on adequate field measurements and comprehensive investigation to reduce uncertainty.
Collapse
Affiliation(s)
- Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Chuanyong Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lining Luo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Zhihui Guo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yunqian Lv
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Dongxue Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100875, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100875, China
| |
Collapse
|
4
|
Itahashi S, Hattori S, Ito A, Sadanaga Y, Yoshida N, Matsuki A. Role of Dust and Iron Solubility in Sulfate Formation during the Long-Range Transport in East Asia Evidenced by 17O-Excess Signatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13634-13643. [PMID: 36107476 PMCID: PMC9535864 DOI: 10.1021/acs.est.2c03574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Numerical models have been developed to elucidate air pollution caused by sulfate aerosols (SO42-). However, typical models generally underestimate SO42-, and oxidation processes have not been validated. This study improves the modeling of SO42- formation processes using the mass-independent oxygen isotopic composition [17O-excess; Δ17O(SO42-)], which reflects pathways from sulfur dioxide (SO2) to SO42-, at the background site in Japan throughout 2015. The standard setting in the Community Multiscale Air Quality (CMAQ) model captured SO42- concentration, whereas Δ17O(SO42-) was underestimated, suggesting that oxidation processes were not correctly represented. The dust inline calculation improved Δ17O(SO42-) because dust-derived increases in cloud-water pH promoted acidity-driven SO42- production, but Δ17O(SO42-) was still overestimated during winter as a result. Increasing solubilities of the transition-metal ions, such as iron, which are a highly uncertain modeling parameter, decreased the overestimated Δ17O(SO42-) in winter. Thus, dust and high metal solubility are essential factors for SO42- formation in the region downstream of China. It was estimated that the remaining mismatch of Δ17O(SO42-) between the observation and model can be explained by the proposed SO42- formation mechanisms in Chinese pollution. These accurately modeled SO42- formation mechanisms validated by Δ17O(SO42-) will contribute to emission regulation strategies required for better air quality and precise climate change predictions over East Asia.
Collapse
Affiliation(s)
- Syuichi Itahashi
- Sustainable
System Research Laboratory (SSRL), Central
Research Institute of Electric Power Industry (CRIEPI), Abiko, Chiba 270-1194, Japan
| | - Shohei Hattori
- International
Center for Isotope Effects Research (ICIER), Nanjing University, Nanjing 210023, Jiangsu, China
- School
of Earth Sciences and Engineering, Nanjing
University, Nanjing 210023, Jiangsu, China
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Kanagawa, Japan
- Institute
of Nature and Environment Technology, Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| | - Akinori Ito
- Yokohama
Institute for Earth Sciences, Japan Agency
for Marine-Earth Science and Technology (JAMSTEC), Kanazawa-ku, Yokohama 236-0001, Kanagawa, Japan
| | - Yasuhiro Sadanaga
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Naohiro Yoshida
- Department
of Chemical Science and Engineering, School of Materials and Chemical
Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8502, Kanagawa, Japan
- Earth-Life
Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
- National
Institute of Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
| | - Atsushi Matsuki
- Institute
of Nature and Environment Technology, Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan
| |
Collapse
|
5
|
Judy JD, Sarchapone J, Gravesen C, Hettiarachchi G, Buchanan C, LaMontagne D, Pachon J. Correlating soil nutrient test lead with bioaccessible lead in highly-contaminated soils receiving lead-immobilizing amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150658. [PMID: 34619196 DOI: 10.1016/j.scitotenv.2021.150658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is one of the most common metals exceeding human health risk guidelines for soil concentrations worldwide. Pb bioaccessibility is known to vary depending on soil physiochemical characteristics and, as a result, in vitro and in vivo tests exist that are used to estimate bioaccessible Pb in contaminated soils. Although in vitro tests such as the relative bioaccessibility leaching procedure (RBALP) present simpler and more cost-effective risk assessments than in vivo methods, soil tests such as Mehlich-3, Modified Morgan, and ammonium bicarbonate-diethylenetriamine pentaacetate (AB-DTPA) extractions are extremely routine and even more cost-effective. Currently, there are few comparisons examining the viability of common soil nutrient tests for assessing Pb bioaccessibility in soils from contaminated sites with extremely high total Pb concentrations or for sites that have received amendments, such as those containing compost, iron, and/or phosphorus, intended to immobilize Pb. Here, we examine the correlation between RBALP Pb and Pb as determined using three commonly utilized soil tests, Mehlich-3, Modified Morgan, and AB-DTPA, in archived samples from one Pb-contaminated site receiving compost amendment (Seattle, WA, USA) and one extremely Pb-contaminated site receiving mixtures of compost, P, and Fe (Joplin, MO, USA). At both the Seattle and Joplin sites separately, RBALP Pb was significantly correlated with all three soil nutrient test values, regardless of soil amendment. However, RBALP was only significantly correlated with Modified Morgan and total Pb when examining the Joplin and Seattle data together, likely resulting from different factors controlling Pb solubility at the two sites. These findings suggest that a diverse suite of relatively inexpensive and accessible soil nutrient test methods correlate with bioaccessible Pb at a specific site, regardless of whether Pb-immobilizing amendments have been used.
Collapse
Affiliation(s)
- Jonathan D Judy
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA.
| | - Jennifer Sarchapone
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| | - Caleb Gravesen
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| | - Ganga Hettiarachchi
- Kansas State University, Department of Agronomy, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, USA
| | - Caroline Buchanan
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| | - Derek LaMontagne
- University of Florida, Department of Chemistry, Gainesville, FL 32611, USA
| | - Julio Pachon
- University of Florida, Soil and Water Sciences Department, 1692 McCarty Dr, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Kajino M, Hagino H, Fujitani Y, Morikawa T, Fukui T, Onishi K, Okuda T, Igarashi Y. Simulation of the transition metal-based cumulative oxidative potential in East Asia and its emission sources in Japan. Sci Rep 2021; 11:6550. [PMID: 33753804 PMCID: PMC7985388 DOI: 10.1038/s41598-021-85894-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 01/14/2023] Open
Abstract
The aerosol oxidative potential (OP) is considered to better represent the acute health hazards of aerosols than the mass concentration of fine particulate matter (PM2.5). The proposed major contributors to OP are water soluble transition metals and organic compounds, but the relative magnitudes of these compounds to the total OP are not yet fully understood. In this study, as the first step toward the numerical prediction of OP, the cumulative OP (OPtm*) based on the top five key transition metals, namely, Cu, Mn, Fe, V, and Ni, was defined. The solubilities of metals were assumed constant over time and space based on measurements. Then, the feasibility of its prediction was verified by comparing OPtm* values based on simulated metals to that based on observed metals in East Asia. PM2.5 typically consists of primary and secondary species, while OPtm* only represents primary species. This disparity caused differences in the domestic contributions of PM2.5 and OPtm*, especially in large cities in western Japan. The annual mean domestic contributions of PM2.5 were 40%, while those of OPtm* ranged from 50 to 55%. Sector contributions to the OPtm* emissions in Japan were also assessed. The main important sectors were the road brake and iron-steel industry sectors, followed by power plants, road exhaust, and railways.
Collapse
Affiliation(s)
- Mizuo Kajino
- Meteorological Research Institute (MRI), Japan Meteorological Agency (JMA), Nagamine 1-1, Tsukuba, Ibaraki, 305-0052, Japan. .,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Hiroyuki Hagino
- Japan Automobile Research Institute (JARI), Tsukuba, Ibaraki, 305-0822, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies (NIES), Tsukuba, Ibaraki, 305-8506, Japan
| | - Tazuko Morikawa
- Japan Automobile Research Institute (JARI), Tsukuba, Ibaraki, 305-0822, Japan
| | - Tetsuo Fukui
- Institute of Behavioral Sciences, Shinjuku, Tokyo, 162-0845, Japan
| | - Kazunari Onishi
- St. Luke's International University, Chuo, Tokyo, 104-0044, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yasuhito Igarashi
- Institute for Integrated Radiation and Nuclear Science (KURNS), Kyoto University, Kumatori, Osaka, 590-0494, Japan.,College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan
| |
Collapse
|