1
|
Royle SH, Salter TL, Watson JS, Sephton MA. Mineral Matrix Effects on Pyrolysis Products of Kerogens Infer Difficulties in Determining Biological Provenance of Macromolecular Organic Matter at Mars. ASTROBIOLOGY 2022; 22:520-540. [PMID: 35171040 DOI: 10.1089/ast.2021.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ancient martian organic matter is likely to take the form of kerogen-like recalcitrant macromolecular organic matter (MOM), existing in close association with reactive mineral surfaces, especially iron oxides. Detecting and identifying a biological origin for martian MOM will therefore be of utmost importance for life-detection efforts at Mars. We show that Type I and Type IV kerogens provide effective analogues for putative martian MOM of biological and abiological (meteoric) provenances, respectively. We analyze the pyrolytic breakdown products when these kerogens are mixed with mineral matrices highly relevant for the search for life on Mars. We demonstrate that, using traditional thermal techniques as generally used by the Sample Analysis at Mars and Mars Organic Molecule Analyser instruments, even the breakdown products of highly recalcitrant MOM are transformed during analysis in the presence of reactive mineral surfaces, particularly iron. Analytical transformation reduces the diagnostic ability of this technique, as detected transformation products of both biological and abiological MOM may be identical (low molecular weight gas phases and benzene) and indistinguishable. The severity of transformational effects increased through calcite < kaolinite < hematite < nontronite < magnetite < goethite. Due to their representation of various habitable aqueous environments and the preservation potential of organic matter by iron, it is not advisable to completely avoid iron-rich strata. We conclude that hematite-rich localities, with evidence of extensive aqueous alteration of originally reducing phases, such as the Vera Rubin Ridge, may be relatively promising targets for identifying martian biologically sourced MOM.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Tara L Salter
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|
2
|
Royle SH, Watson JS, Sephton MA. Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. ASTROBIOLOGY 2021; 21:1363-1386. [PMID: 34402652 DOI: 10.1089/ast.2020.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Answering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith. We examined the products of flash pyrolysis-gas chromatography-mass spectrometry (a technique analogous to the thermal techniques employed by past, current, and future landed Mars missions) which form when the cyanobacteria Arthrospira platensis are heated in the presence of a variety of Mars-relevant iron-bearing minerals. We found that iron oxides/(oxy)hydroxides have transformative effects on the pyrolytic products of cyanobacterial biomolecules. Both the abundance and variety of molecular species detected were decreased as iron substrates transformed biomolecules, by both oxidative and reductive processes, into lower fidelity alkanes, aromatic and aryl-bonded hydrocarbons. Despite the loss of fidelity, a suite that contains mid-length alkanes and polyaromatic hydrocarbons and/or aryl-bonded molecules in iron-rich samples subjected to pyrolysis may allude to the transformation of cyanobacterially derived mid-long chain length fatty acids (particularly unsaturated fatty acids) originally present in the sample. Hematite was found to be the iron oxide with the lowest transformation potential, and because this iron oxide has a high affinity for codeposition of organic matter and preservation over geological timescales, sampling at Mars should target sediments/strata that have undergone a diagenetic history encouraging the dehydration, dihydroxylation, and oxidation of more reactive iron-bearing phases to hematite by looking for (mineralogical) evidence of the activity of oxidizing, acidic/neutral, and either hot or long-lived fluids.
Collapse
Affiliation(s)
- Samuel H Royle
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Royle SH, Tan JSW, Watson JS, Sephton MA. Pyrolysis of Carboxylic Acids in the Presence of Iron Oxides: Implications for Life Detection on Missions to Mars. ASTROBIOLOGY 2021; 21:673-691. [PMID: 33635150 DOI: 10.1089/ast.2020.2226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for, and characterization of, organic matter on Mars is central to efforts in identifying habitable environments and detecting evidence of life in the martian surface and near surface. Iron oxides are ubiquitous in the martian regolith and are known to be associated with the deposition and preservation of organic matter in certain terrestrial environments, thus iron oxide-rich sediments are potential targets for life-detection missions. The most frequently used protocol for martian organic matter characterization (also planned for use on ExoMars) has been thermal extraction for the transfer of organic matter to gas chromatography-mass spectrometry (GC-MS) detectors. For the effective use of thermal extraction for martian samples, it is necessary to explore how potential biomarker organic molecules evolve during this process in the presence of iron oxides. We have thermally decomposed iron oxides simultaneously with (z)-octadec-9-enoic and n-octadecanoic acids and analyzed the products through pyrolysis-GC-MS. We found that the thermally driven dehydration, reduction, and recrystallization of iron oxides transformed fatty acids. Overall detectability of products greatly reduced, molecular diversity decreased, unsaturated products decreased, and aromatization increased. The severity of this effect increased as reduction potential of the iron oxide and inferred free radical formation increased. Of the iron oxides tested hematite showed the least transformative effects, followed by magnetite, goethite, then ferrihydrite. It was possible to identify the saturation state of the parent carboxylic acid at high (0.5 wt %) concentrations by the distribution of n-alkylbenzenes in the pyrolysis products. When selecting life-detection targets on Mars, localities where hematite is the dominant iron oxide could be targeted preferentially, otherwise thermal analysis of carboxylic acids, or similar biomarker molecules, will lead to enhanced polymerization, aromatization, and breakdown, which will in turn reduce the fidelity of the original biomarker, similar to changes normally observed during thermal maturation.
Collapse
Affiliation(s)
- Samuel H Royle
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S W Tan
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Department of Earth Science and Engineering, Impacts and Astromaterials Research Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Pickett MT, Roberson LB, Calabria JL, Bullard TJ, Turner G, Yeh DH. Regenerative water purification for space applications: Needs, challenges, and technologies towards 'closing the loop'. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:64-82. [PMID: 31987481 DOI: 10.1016/j.lssr.2019.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Human missions to establish surface habitats on the Moon and Mars are planned in the coming decades. Extraplanetary surface habitat life support systems (LSS) will require new capabilities to withstand anticipated unique, harsh conditions. In order to provide safe, habitable environments for the crew, water purification systems that are robust and reliable must be in place. These water purification systems will be required to treat all sources of water in order to achieve the necessary levels of recovery needed to sustain life over the long-duration missions. Current water recovery and purification systems aboard the International Space Station (ISS) are only partially closed, requiring external inputs and resupply. Furthermore, organic wastes, such as fecal and food wastes, are currently discarded and not recycled. For long-duration missions and habitats, this is not a viable approach. The inability to recycle organic wastes represents a lost opportunity to recover critical elements (e.g., C, H, O, N, P) for subsequent food production, water purification, and atmospheric regeneration. On Earth, a variety of technologies are available to meet terrestrial wastewater treatment needs; however, these systems are rarely completely closed-loop, due to lack of economic drivers, legacy infrastructure, and the (perceived) abundance of resources on Earth. Extraplanetary LSS provides a game-changing opportunity to incentivize the development of completely closed-loop systems. Candidate technologies may be biological, physical, or chemical, with associated advantages and disadvantages. This paper presents a survey of potential technologies, along with their inputs, outputs and requirements, which may be suitable for next-generation regenerative water purification in space. With this information, particular technologies can be down-selected for subsystem integration testing and optimization. In order for future space colonies to have closed-loop systems which minimize consumable inputs and maximize recovery, strategic implementation of a variety of complementary subsystems is needed.
Collapse
Affiliation(s)
- Melanie T Pickett
- University of South Florida, Tampa, FL, United States; NASA, Kennedy Space Center, Cape Canaveral, FL, United States
| | - Luke B Roberson
- NASA, Kennedy Space Center, Cape Canaveral, FL, United States
| | | | | | - Gary Turner
- University of Texas-Dallas, Dallas, TX, United States
| | - Daniel H Yeh
- University of South Florida, Tampa, FL, United States.
| |
Collapse
|
5
|
Hughes SS, Haberle CW, Kobs Nawotniak SE, Sehlke A, Garry WB, Elphic RC, Payler SJ, Stevens AH, Cockell CS, Brady AL, Heldmann JL, Lim DS. Basaltic Terrains in Idaho and Hawai'i as Planetary Analogs for Mars Geology and Astrobiology. ASTROBIOLOGY 2019; 19:260-283. [PMID: 30339033 PMCID: PMC6442300 DOI: 10.1089/ast.2018.1847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/30/2018] [Indexed: 05/26/2023]
Abstract
Field research target regions within two basaltic geologic provinces are described as Earth analogs to Mars. Regions within the eastern Snake River Plain of Idaho and the Big Island of Hawai'i, the United States, provinces that represent analogs of present-day and early Mars, respectively, were evaluated on the basis of geologic settings, rock lithology and geochemistry, rock alteration, and climate. Each of these factors provides rationale for the selection of specific targets for field research in five analog target regions: (1) Big Craters and (2) Highway lava flows at Craters of the Moon National Monument and Preserve, Idaho, and (3) Mauna Ulu low shield, (4) Kīlauea Iki lava lake, and (5) Kīlauea caldera in the Kīlauea Volcano summit region and the East Rift Zone of Hawai'i. Our evaluation of compositional and textural attributes, as well as the effects of syn- and posteruptive rock alteration, shows that basaltic terrains in Idaho and Hawai'i provide a way to characterize the geology and major geologic substrates that host biological activity of relevance to Mars exploration. This work provides the foundation to better understand the scientific questions related to the habitability of basaltic terrains, the rationale behind selecting analog field targets, and their applicability as analogs to Mars.
Collapse
Affiliation(s)
- Scott S. Hughes
- Department of Geosciences, Idaho State University, Pocatello, Idaho
| | - Christopher W. Haberle
- Mars Space Flight Facility, School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | | | | | | | | | - Samuel J. Payler
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam H. Stevens
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Charles S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Allyson L. Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jennifer L. Heldmann
- NASA Ames Research Center, Moffett Field, California
- NASA Headquarters, Washington, District of Columbia
| | - Darlene S.S. Lim
- NASA Ames Research Center, Moffett Field, California
- BAER Institute, Moffett Field, California
| |
Collapse
|
6
|
Golden DC, Morris RV, Ming DW, Lauer HV, Yang SR. Mineralogy of three slightly palagonitized basaltic tephra samples from the summit of Mauna Kea, Hawaii. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/92je02590] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Chemtob SM, Jolliff BL, Rossman GR, Eiler JM, Arvidson RE. Silica coatings in the Ka'u Desert, Hawaii, a Mars analog terrain: A micromorphological, spectral, chemical, and isotopic study. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003473] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Hamilton VE, Morris RV, Gruener JE, Mertzman SA. Visible, near-infrared, and middle infrared spectroscopy of altered basaltic tephras: Spectral signatures of phyllosilicates, sulfates, and other aqueous alteration products with application to the mineralogy of the Columbia Hills of Gusev Crater, Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003049] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Lichtenberg KA, Arvidson RE, Poulet F, Morris RV, Knudson A, Bell JF, Bellucci G, Bibring JP, Farrand WH, Johnson JR, Ming DW, Pinet PC, Rogers AD, Squyres SW. Coordinated analyses of orbital and Spirit Rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002850] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Sutter B, Dalton JB, Ewing SA, Amundson R, McKay CP. Terrestrial analogs for interpretation of infrared spectra from the Martian surface and subsurface: Sulfate, nitrate, carbonate, and phyllosilicate-bearing Atacama Desert soils. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000313] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- B. Sutter
- SETI Institute; NASA Ames Research Center; Moffett Field California USA
| | - J. B. Dalton
- SETI Institute; NASA Ames Research Center; Moffett Field California USA
| | - S. A. Ewing
- Division of Ecosystem Sciences; University of California; Berkeley California USA
| | - R. Amundson
- Division of Ecosystem Sciences; University of California; Berkeley California USA
| | - C. P. McKay
- NASA Ames Research Center; Moffett Field California USA
| |
Collapse
|
11
|
Guinness EA, Arvidson RE, Jolliff BL, Seelos KD, Seelos FP, Ming DW, Morris RV, Graff TG. Hyperspectral reflectance mapping of cinder cones at the summit of Mauna Kea and implications for equivalent observations on Mars. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002822] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edward A. Guinness
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - Bradley L. Jolliff
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - Kim D. Seelos
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - Frank P. Seelos
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | | | | | - Trevor G. Graff
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| |
Collapse
|
12
|
Poulet F, Gomez C, Bibring JP, Langevin Y, Gondet B, Pinet P, Belluci G, Mustard J. Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002840] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- F. Poulet
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - C. Gomez
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - J.-P. Bibring
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - Y. Langevin
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - B. Gondet
- Institut d'Astrophysique Spatiale; CNRS/Université Paris-Sud; Orsay France
| | - P. Pinet
- Laboratoire Dynamique Terrestre et Planétaire/UMR5562; Centre National de la Recherche Scientifique; Toulouse France
| | - G. Belluci
- Istituto Nazionale Di Astrofiscia dello Spazio Interplanetario; Rome Italy
| | - J. Mustard
- Geological Sciences; Brown University; Providence Rhode Island USA
| |
Collapse
|
13
|
Ruff SW, Christensen PR, Blaney DL, Farrand WH, Johnson JR, Michalski JR, Moersch JE, Wright SP, Squyres SW. The rocks of Gusev Crater as viewed by the Mini-TES instrument. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002747] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. W. Ruff
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - P. R. Christensen
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - D. L. Blaney
- Jet Propulsion Laboratory; Pasadena California USA
| | | | | | - J. R. Michalski
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - J. E. Moersch
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - S. P. Wright
- School of Earth and Space Exploration; Arizona State University; Tempe Arizona USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
14
|
Johnson JR, Grundy WM, Lemmon MT, Bell JF, Johnson MJ, Deen R, Arvidson RE, Farrand WH, Guinness E, Hayes AG, Herkenhoff KE, Seelos F, Soderblom J, Squyres S. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002762] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Mark T. Lemmon
- Department of Atmospheric Sciences; Texas A&M University; College Station Texas USA
| | - James F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - Miles J. Johnson
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - Robert Deen
- Jet Propulsion Laboratory; Pasadena California USA
| | - R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | | | - E. Guinness
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - Alexander G. Hayes
- Lincoln Laboratory; Massachusetts Institute of Technology; Boston Massachusetts USA
| | - K. E. Herkenhoff
- Astrogeology Team; U.S. Geological Survey; Flagstaff Arizona USA
| | - F. Seelos
- Applied Physics Laboratory; Johns Hopkins University; Laurel Maryland USA
| | - J. Soderblom
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - S. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
15
|
Arvidson RE, Poulet F, Morris RV, Bibring JP, Bell JF, Squyres SW, Christensen PR, Bellucci G, Gondet B, Ehlmann BL, Farrand WH, Fergason RL, Golombek M, Griffes JL, Grotzinger J, Guinness EA, Herkenhoff KE, Johnson JR, Klingelhöfer G, Langevin Y, Ming D, Seelos K, Sullivan RJ, Ward JG, Wiseman SM, Wolff M. Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006je002728] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R. E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - F. Poulet
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | | | - J.-P. Bibring
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - J. F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - P. R. Christensen
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - G. Bellucci
- Istituto di Fisica dello Spazio Interplanetario; Istituto Nazionale di Astrofisica; Rome Italy
| | - B. Gondet
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - B. L. Ehlmann
- School of Geography and Environment; University of Oxford; Oxford UK
| | | | - R. L. Fergason
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - M. Golombek
- Jet Propulsion Laboratory; Pasadena California USA
| | - J. L. Griffes
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - J. Grotzinger
- Geological and Planetary Sciences; California Institute of Technology; Pasadena California USA
| | - E. A. Guinness
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | | | | | - G. Klingelhöfer
- Institut für Anorganische und Analytische Chemie; Johannes Gutenberg-Universität; Mainz Germany
| | - Y. Langevin
- Institut d'Astrophysique Spatiale; Université Paris-Sud; Orsay France
| | - D. Ming
- NASA Johnson Space Center; Houston Texas USA
| | - K. Seelos
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - R. J. Sullivan
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - J. G. Ward
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - S. M. Wiseman
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - M. Wolff
- Space Science Institute; Boulder Colorado USA
| |
Collapse
|
16
|
Johnson JR, Grundy WM, Lemmon MT, Bell JF, Johnson MJ, Deen RG, Arvidson RE, Farrand WH, Guinness EA, Hayes AG, Herkenhoff KE, Seelos F, Soderblom J, Squyres S. Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002494] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Mark T. Lemmon
- Department of Atmospheric Sciences; Texas A&M University; College Station Texas USA
| | - James F. Bell
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - Miles J. Johnson
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - Robert G. Deen
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - Raymond E. Arvidson
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | | | - Edward A. Guinness
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | | | | | - Frank Seelos
- Department of Earth and Planetary Sciences; Washington University; St. Louis Missouri USA
| | - Jason Soderblom
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - Steve Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| |
Collapse
|
17
|
Noe Dobrea EZ, Bell JF, McConnochie TH, Malin M. Analysis of a spectrally unique deposit in the dissected Noachian terrain of Mars. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Hamilton VE, McSween HY, Hapke B. Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002501] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Klingelhöfer G, Morris RV, Bernhardt B, Rodionov D, de Souza PA, Squyres SW, Foh J, Kankeleit E, Bonnes U, Gellert R, Schröder C, Linkin S, Evlanov E, Zubkov B, Prilutski O. Athena MIMOS II Mössbauer spectrometer investigation. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002138] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- G. Klingelhöfer
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | | | - B. Bernhardt
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - D. Rodionov
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
- Space Research Institute IKI; Moscow Russia
| | - P. A. de Souza
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
- Pelletizing Department; Companhia Vale do Rio Doce; Vitoria Brazil
| | - S. W. Squyres
- Department of Astronomy; Cornell University; Ithaca New York USA
| | - J. Foh
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - E. Kankeleit
- Nuclear Physics Institute; Darmstadt University of Technology; Darmstadt Germany
| | - U. Bonnes
- Nuclear Physics Institute; Darmstadt University of Technology; Darmstadt Germany
| | - R. Gellert
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - C. Schröder
- Institute for Inorganic and Analytical Chemistry; Johannes Gutenberg University; Mainz Germany
| | - S. Linkin
- Space Research Institute IKI; Moscow Russia
| | - E. Evlanov
- Space Research Institute IKI; Moscow Russia
| | - B. Zubkov
- Space Research Institute IKI; Moscow Russia
| | | |
Collapse
|
20
|
Madsen MB, Bertelsen P, Goetz W, Binau CS, Olsen M, Folkmann F, Gunnlaugsson HP, Kinch KM, Knudsen JM, Merrison J, Nørnberg P, Squyres SW, Yen AS, Rademacher JD, Gorevan S, Myrick T, Bartlett P. Magnetic Properties Experiments on the Mars Exploration Rover mission. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je002029] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. B. Madsen
- Center for Planetary Science, Niels Bohr Institute for Astronomy, Physics and Geophysics; University of Copenhagen; Copenhagen Denmark
| | - P. Bertelsen
- Center for Planetary Science, Niels Bohr Institute for Astronomy, Physics and Geophysics; University of Copenhagen; Copenhagen Denmark
| | - W. Goetz
- Center for Planetary Science, Niels Bohr Institute for Astronomy, Physics and Geophysics; University of Copenhagen; Copenhagen Denmark
| | - C. S. Binau
- Center for Planetary Science, Niels Bohr Institute for Astronomy, Physics and Geophysics; University of Copenhagen; Copenhagen Denmark
| | - M. Olsen
- Center for Planetary Science, Niels Bohr Institute for Astronomy, Physics and Geophysics; University of Copenhagen; Copenhagen Denmark
| | - F. Folkmann
- Department of Physics and Astronomy; University of Århus; Århus Denmark
| | | | - K. M. Kinch
- Department of Physics and Astronomy; University of Århus; Århus Denmark
| | - J. M. Knudsen
- Department of Physics and Astronomy; University of Århus; Århus Denmark
| | - J. Merrison
- Department of Physics and Astronomy; University of Århus; Århus Denmark
| | - P. Nørnberg
- Department of Earth Sciences; University of Århus; Århus Denmark
| | - S. W. Squyres
- Center for Radiophysics and Space Research, Astronomy Department; Cornell University; Ithaca USA
| | - A. S. Yen
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | - J. D. Rademacher
- Jet Propulsion Laboratory; California Institute of Technology; Pasadena California USA
| | | | | | | |
Collapse
|
21
|
Foley CN, Economou T, Clayton RN. Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je002019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- C. Nicole Foley
- Laboratory for Astrophysics and Space Research; University of Chicago; Chicago Illinois USA
- Enrico Fermi Institute; University of Chicago; Chicago Illinois USA
- Department of the Geophysical Sciences; University of Chicago; Chicago Illinois USA
| | - Thanasis Economou
- Laboratory for Astrophysics and Space Research; University of Chicago; Chicago Illinois USA
- Enrico Fermi Institute; University of Chicago; Chicago Illinois USA
| | - Robert N. Clayton
- Enrico Fermi Institute; University of Chicago; Chicago Illinois USA
- Department of the Geophysical Sciences; University of Chicago; Chicago Illinois USA
- Department of Chemistry; University of Chicago; Chicago Illinois USA
| |
Collapse
|
22
|
Ruff SW, Christensen PR. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2001je001580] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steven W. Ruff
- Mars Space Flight Facility, Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Philip R. Christensen
- Mars Space Flight Facility, Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
23
|
Malin MC, Bell JF, Calvin W, Clancy RT, Haberle RM, James PB, Lee SW, Thomas PC, Caplinger MA. Mars Color Imager (MARCI) on the Mars Climate Orbiter. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/1999je001145] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Morris RV, Golden DC, Ming DW, Shelfer TD, Jørgensen LC, Bell JF, Graff TG, Mertzman SA. Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001328] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Esposito F, Colangeli L, Palomba E. Infrared reflectance spectroscopy of Martian analogues. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001223] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Christensen PR, Bandfield JL, Clark RN, Edgett KS, Hamilton VE, Hoefen T, Kieffer HH, Kuzmin RO, Lane MD, Malin MC, Morris RV, Pearl JC, Pearson R, Roush TL, Ruff SW, Smith MD. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001093] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Cloutis EA, Bell JF. Diaspores and related hydroxides: Spectral-compositional properties and implications for Mars. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001188] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Bell JF, McSween HY, Crisp JA, Morris RV, Murchie SL, Bridges NT, Johnson JR, Britt DT, Golombek MP, Moore HJ, Ghosh A, Bishop JL, Anderson RC, Brückner J, Economou T, Greenwood JP, Gunnlaugsson HP, Hargraves RM, Hviid S, Knudsen JM, Madsen MB, Reid R, Rieder R, Soderblom L. Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001060] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Morris RV, Golden DC, Bell JF, Shelfer TD, Scheinost AC, Hinman NW, Furniss G, Mertzman SA, Bishop JL, Ming DW, Allen CC, Britt DT. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001059] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
McSween HY, Murchie SL, Crisp JA, Bridges NT, Anderson RC, Bell JF, Britt DT, Brückner J, Dreibus G, Economou T, Ghosh A, Golombek MP, Greenwood JP, Johnson JR, Moore HJ, Morris RV, Parker TJ, Rieder R, Singer R, Wänke H. Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/98je02551] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Madsen MB, Hviid SF, Gunnlaugsson HP, Knudsen JM, Goetz W, Pedersen CT, Dinesen AR, Mogensen CT, Olsen M, Hargraves RB. The magnetic properties experiments on Mars Pathfinder. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je900006] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Johnson JR, Kirk R, Soderblom LA, Gaddis L, Reid RJ, Britt DT, Smith P, Lemmon M, Thomas N, Bell JF, Bridges NT, Anderson R, Herkenhoff KE, Maki J, Murchie S, Dummel A, Jaumann R, Trauthan F, Arnold G. Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/98je02247] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Bishop JL, Froschl H, Mancinelli RL. Alteration processes in volcanic soils and identification of exobiologically important weathering products on Mars using remote sensing. JOURNAL OF GEOPHYSICAL RESEARCH 1998; 103:31457-76. [PMID: 11542259 DOI: 10.1029/1998je900008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the mineralogy of the Martian surface material provides information about the past and present environments on Mars which are an integral aspect of whether or not Mars was suitable for the origin of life. Mineral identification on Mars will most likely be achieved through visible-infrared remote sensing in combination with other analyses on landed missions. Therefore, understanding the visible and infrared spectral properties of terrestrial samples formed via processes similar to those thought to have occurred on Mars is essential to this effort and will facilitate site selection for future exobiology missions to Mars. Visible to infrared reflectance spectra are presented here for the fine-grained fractions of altered tephra/lava from the Haleakala summit basin on Maui, the Tarawera volcanic complex on the northern island of New Zealand, and the Greek Santorini island group. These samples exhibit a range of chemical and mineralogical compositions, where the primary minerals typically include plagioclase, pyroxene, hematite, and magnetite. The kind and abundance of weathering products varied substantially for these three sites due, in part, to the climate and weathering environment. The moist environments at Santorini and Tarawera are more consistent with postulated past environments on Mars, while the dry climate at the top of Haleakala is more consistent with the current Martian environment. Weathering of these tephra is evaluated by assessing changes in the leachable and immobile elements, and through detection of phyllosilicates and iron oxide/oxyhydroxide minerals. Identifying regions on Mars where phyllosilicates and many kinds of iron oxides/oxyhydroxides are present would imply the presence of water during alteration of the surface material. Tephra samples altered in the vicinity of cinder cones and steam vents contain higher abundances of phyllosilicates, iron oxides, and sulfates and may be interesting sites for exobiology.
Collapse
Affiliation(s)
- J L Bishop
- NRC/NASA Ames Research Center, Moffett Field, California, USA
| | | | | |
Collapse
|
34
|
Yen AS, Murray BC, Rossman GR. Water content of the Martian soil: Laboratory simulations of reflectance spectra. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98je00739] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Edgett KS, Butler BJ, Zimbelman JR, Hamilton VE. Geologic context of the Mars radar “Stealth” region in southwestern Tharsis. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97je01685] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
|
37
|
Morris RV, Golden DC, Bell JF. Low-temperature reflectivity spectra of red hematite and the color of Mars. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/96je03993] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Roush TL, Orenberg JB. Estimated detectability limits of iron-substituted montmorillonite clay on Mars from thermal emission spectra of clay-palagonite physical mixtures. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je02863] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Clancy RT, Lee SW, Gladstone GR, McMillan WW, Rousch T. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos. ACTA ACUST UNITED AC 1995. [DOI: 10.1029/94je01885] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Roush TL, Bell JF. Thermal emission measurements 2000–400 cm−1(5–25 μm) of Hawaiian palagonitic soils and their implications for Mars. ACTA ACUST UNITED AC 1995. [DOI: 10.1029/94je02448] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Bell JF, Roush TL, Morris RV. Mid-infrared transmission spectra of crystalline and nanophase iron oxides/oxyhydroxides and implications for remote sensing of Mars. ACTA ACUST UNITED AC 1995. [DOI: 10.1029/94je01389] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Morris RV, Golden DC, Bell JF, Lauer HV. Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, Canada. ACTA ACUST UNITED AC 1995. [DOI: 10.1029/94je01500] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Morris RV, Golden DC, Lauer HV, Adams JB. Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. GEOCHIMICA ET COSMOCHIMICA ACTA 1993; 57:4597-609. [PMID: 11539577 DOI: 10.1016/0016-7037(93)90185-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have examined a Hawaiian palagonitic tephra sample (PN-9) that has spectroscopic similarities to Martian bright regions using a number of analytical techniques, including Mossbauer and reflectance spectroscopy, X-ray diffraction, instrumental neutron activation analysis, electron probe microanalysis, transmission electron microscopy, and dithionite-citrate-bicarbonate extraction. Chemically, PN-9 has a Hawaiitic composition with alkali (and presumably silica) loss resulting from leaching by meteoric water during palagonitization; no Ce anomaly is present in the REE pattern. Mineralogically, our results show that nanophase ferric oxide (np-Ox) particles (either nanophase hematite (np-Hm) or a mixture of ferrihydrite and np-Hm) are responsible for the distinctive ferric doublet and visible-wavelength ferric absorption edge observed in Mossbauer and reflectivity spectra, respectively, for this and other spectrally similar palagonitic samples. The np-Ox particles appear to be imbedded in a hydrated aluminosilicate matrix material; no evidence was found for phyllosilicates. Other iron-bearing phases observed are titanomagnetite, which accounts for the magnetic nature of the sample; olivine; pyroxene; and glass. By analogy, np-Ox is likely the primary pigmenting agent of the bright soils and dust of Mars.
Collapse
Affiliation(s)
- R V Morris
- Planetary Science Branch, NASA Johnson Space Center, Houston, TX 77058, USA
| | | | | | | |
Collapse
|
44
|
Banin A, Ben-Shlomo T, Margulies L, Blake DF, Mancinelli RL, Gehring AU. The nanophase iron mineral(s) in Mars soil. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93je02500] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Bouška V, Bell JF. Assumptions about the presence of natural glasses on Mars. ACTA ACUST UNITED AC 1993. [DOI: 10.1029/93je01959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|