1
|
Cobden L, Zhuang J, Lei W, Wentzcovitch R, Trampert J, Tromp J. Full-waveform tomography reveals iron spin crossover in Earth's lower mantle. Nat Commun 2024; 15:1961. [PMID: 38438365 PMCID: PMC10912123 DOI: 10.1038/s41467-024-46040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Three-dimensional models of Earth's seismic structure can be used to identify temperature-dependent phenomena, including mineralogical phase and spin transformations, that are obscured in 1-D spherical averages. Full-waveform tomography maps seismic wave-speeds inside the Earth in three dimensions, at a higher resolution than classical methods. By providing absolute wave speeds (rather than perturbations) and simultaneously constraining bulk and shear wave speeds over the same frequency range, it becomes feasible to distinguish variations in temperature from changes in composition or spin state. We present a quantitative joint interpretation of bulk and shear wave speeds in the lower mantle, using a recently published full-waveform tomography model. At all depths the diversity of wave speeds cannot be explained by an isochemical mantle. Between 1000 and 2500 km depth, hypothetical mantle models containing an electronic spin crossover in ferropericlase provide a significantly better fit to the wave-speed distributions, as well as more realistic temperatures and silica contents, than models without a spin crossover. Below 2500 km, wave speed distributions are explained by an enrichment in silica towards the core-mantle boundary. This silica enrichment may represent the fractionated remains of an ancient basal magma ocean.
Collapse
Affiliation(s)
- Laura Cobden
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Utrecht, The Netherlands.
| | - Jingyi Zhuang
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA
| | - Wenjie Lei
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
- Google Inc., Mountain View, CA, USA
| | - Renata Wentzcovitch
- Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10027, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA.
- Lamont Doherty Earth Observatory, Palisades, NY, 10964, USA.
- Data Science Institute, Columbia University, New York, NY, 10027, USA.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, 10010, USA.
| | - Jeannot Trampert
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Utrecht, The Netherlands
| | - Jeroen Tromp
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
2
|
Mosca I, Cobden L, Deuss A, Ritsema J, Trampert J. Seismic and mineralogical structures of the lower mantle from probabilistic tomography. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jb008851] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Simmons NA, Forte AM, Boschi L, Grand SP. GyPSuM: A joint tomographic model of mantle density and seismic wave speeds. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jb007631] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Kustowski B, Ekström G, Dziewoński AM. Anisotropic shear-wave velocity structure of the Earth's mantle: A global model. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jb005169] [Citation(s) in RCA: 397] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Li B, Liebermann RC. Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures. Proc Natl Acad Sci U S A 2007; 104:9145-50. [PMID: 17485673 PMCID: PMC1890461 DOI: 10.1073/pnas.0608609104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adiabatic bulk (K(S)) and shear (G) moduli of mantle materials at high pressure and temperature can be obtained directly by measuring compressional and shear wave velocities in the laboratory with experimental techniques based on physical acoustics. We present the application of the current state-of-the-art experimental techniques by using ultrasonic interferometry in conjunction with synchrotron x radiation to study the elasticity of olivine and pyroxenes and their high-pressure phases. By using these updated thermoelasticity data for these phases, velocity and density profiles for a pyrolite model are constructed and compared with radial seismic models. We conclude that pyrolite provides an adequate explanation of the major seismic discontinuities at 410- and 660-km depths, the gradient in the transition zone, as well as the velocities in the lower mantle, if the uncertainties in the modeling and the variations in different seismic models are considered. The characteristics of the seismic scaling factors in response to thermal anomalies suggest that anticorrelations between bulk sound and shear wave velocities, as well as the large positive density anomalies observed in the lower mantle, cannot be explained fully without invoking chemical variations.
Collapse
Affiliation(s)
- Baosheng Li
- Mineral Physics Institute and Department of Geosciences, Stony Brook University, Stony Brook, NY 11790, USA.
| | | |
Collapse
|
6
|
Lyubetskaya T, Korenaga J. Chemical composition of Earth's primitive mantle and its variance: 2. Implications for global geodynamics. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2005jb004224] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Lay T, Garnero EJ. Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure. GEOPHYSICAL MONOGRAPH SERIES 2007. [DOI: 10.1029/174gm11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Saltzer RL, Stutzmann E, van der Hilst RD. Poisson's ratio in the lower mantle beneath Alaska: Evidence for compositional heterogeneity. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jb002712] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rebecca L. Saltzer
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | | | - Robert D. van der Hilst
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| |
Collapse
|
9
|
Moore MM, Garnero EJ, Lay T, Williams Q. Shear wave splitting and waveform complexity for lowermost mantle structures with low-velocity lamellae and transverse isotropy. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jb002546] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa M. Moore
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Edward J. Garnero
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| | - Thorne Lay
- Earth Sciences Department; University of California; Santa Cruz California USA
| | - Quentin Williams
- Earth Sciences Department; University of California; Santa Cruz California USA
| |
Collapse
|
10
|
|
11
|
Grand SP. Mantle shear-wave tomography and the fate of subducted slabs. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2002; 360:2475-2491. [PMID: 12460476 DOI: 10.1098/rsta.2002.1077] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new seismic model of the three-dimensional variation in shear velocity throughout the Earth's mantle is presented. The model is derived entirely from shear bodywave travel times. Multibounce shear waves, core-reflected waves and SKS and SKKS waves that travel through the core are used in the analysis. A unique aspect of the dataset used in this study is the use of bodywaves that turn at shallow depths in the mantle, some of which are triplicated. The new model is compared with other global shear models. Although competing models show significant variations, several large-scale structures are common to most of the models. The high-velocity anomalies are mostly associated with subduction zones. In some regions the anomalies only extend into the shallow lower mantle, whereas in other regions tabular high-velocity structures seem to extend to the deepest mantle. The base of the mantle shows long-wavelength high-velocity zones also associated with subduction zones. The heterogeneity seen in global tomography models is difficult to interpret in terms of mantle flow due to variations in structure from one subduction zone to another. The simplest interpretation of the seismic images is that slabs in general penetrate to the deepest mantle, although the flow is likely to be sporadic. The interruption in slab sinking is likely to be associated with the 660 km discontinuity.
Collapse
Affiliation(s)
- Steven P Grand
- Department of Geological Sciences, University of Texas at Austin, 78712-1101, USA
| |
Collapse
|
12
|
Karato SI, Karki BB. Origin of lateral variation of seismic wave velocities and density in the deep mantle. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2001jb000214] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Bolton H, Masters G. Travel times ofPandSfrom the global digital seismic networks: Implications for the relative variation ofPandSvelocity in the mantle. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jb900378] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Romanowicz B, Bréger L. Anomalous splitting of free oscillations: A reevaluation of possible interpretations. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/2000jb900144] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Valenzuela RW, Wysession ME, Neustadt MO, Butler JL. Lateral variations at the base of the mantle from profiles of digitalSdiffdata. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999jb900290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Masters G, Laske G, Bolton H, Dziewonski A. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. EARTH'S DEEP INTERIOR: MINERAL PHYSICS AND TOMOGRAPHY FROM THE ATOMIC TO THE GLOBAL SCALE 2000. [DOI: 10.1029/gm117p0063] [Citation(s) in RCA: 361] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Koper KD, Wiens DA, Dorman L, Hildebrand J, Webb S. Constraints on the origin of slab and mantle wedge anomalies in Tonga from the ratio ofStoPvelocities. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999jb900130] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Resovsky JS, Ritzwoller MH. A degree 8 mantle shear velocity model from normal mode observations below 3 mHz. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998jb900025] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Affiliation(s)
- Jeroen Tromp
- The authors [] are in the Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adam M. Dziewonski
- The authors [] are in the Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Kennett BLN, Widiyantoro S, van der Hilst RD. Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/98jb00150] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Vasco DW, Johnson LR. Whole Earth structure estimated from seismic arrival times. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/97jb02623] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Deep subduction and aspherical variations in P-wavespeed at the base of Earth's mantle. ACTA ACUST UNITED AC 1998. [DOI: 10.1029/gd028p0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Wysession ME, Lay T, Revenaugh J, Williams Q, Garnero EJ, Jeanloz R, Kellogg LH. The D″ discontinuity and its implications. THE CORE‐MANTLE BOUNDARY REGION 1998. [DOI: 10.1029/gd028p0273] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|