1
|
Wang L, Zhang X, Wang F, Ming J. Water-soluble inorganic ions (WSIs) in the aerosols from Central Asia via transboundary transport measured in Jimunai in 2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97040-97051. [PMID: 37582892 DOI: 10.1007/s11356-023-29083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023]
Abstract
Air pollution is a global issue that often transcends national borders, leading to disputes over environmental concerns and climate-mitigation responsibilities. Between March and July 2020, we collected aerosol samples in Jimunai, a town in western China neighboring Kazakhstan, to assess transboundary air pollution in the region. Our analysis focused on major water-soluble inorganic ions (WSIs), with Ca2+ and SO42- accounting for almost 60% of the total ion loading. The ratio of cations to anions was greater than one (1.33 ± 0.27), indicating alkaline aerosols during the sampling period. Our results suggest that the pollutants measured were primarily sourced from Kazakhstan, as demonstrated by local meteorological data, air-mass trajectory analysis, and pollutant emission inventories in Kazakhstan. Correlation and primary component analysis indicated that NH4+ played an important role in neutralizing NO3- and SO42-, while Cl- was significantly depleted by the probable reaction HNO3↑ + NaCl = HCl↑ + NaNO3. These findings highlight the need for continued monitoring and regulation of air pollution sources in the region to address transboundary air pollution.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xin Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feiteng Wang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jing Ming
- Beacon Science & Consulting, Malvern, SA, 5061, Australia.
| |
Collapse
|
2
|
Chae E, Choi SS. Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Polymers (Basel) 2022; 14:polym14153122. [PMID: 35956638 PMCID: PMC9370720 DOI: 10.3390/polym14153122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Particulate matters (PMs) such as PM10 and PM2.5 were collected at a bus stop and were analyzed using pyrolysis-gas chromatography/mass spectrometry to identify organic polymeric materials in them. The major pyrolysis products of the PM samples were isoprene, toluene, styrene, dipentene, and 1-alkenes. The pyrolysis products generated from the PM samples were identified using reference polymeric samples such as common rubbers (natural rubber, butadiene rubber, and styrene-butadiene rubber), common plastics (polyethylene, polypropylene, polystyrene, and poly(ethylene terephthalate)), plant-related components (bark, wood, and leaf), and bitumen. The major sources of the principal polymeric materials in the PM samples were found to be the abrasion of the tire tread and asphalt pavement, plant-related components, and lint from polyester fabric. The particles produced by the abrasion of the tire tread and asphalt pavement on the road were non-exhaustive sources, while the plant-related components and lint from polyester fabric were inflowed from the outside.
Collapse
|
3
|
Zhou X, Li Z, Zhang T, Wang F, Tao Y, Zhang X. Multisize particulate matter and volatile organic compounds in arid and semiarid areas of Northwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118875. [PMID: 35074457 DOI: 10.1016/j.envpol.2022.118875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
To investigate the chemical components, sources, and interactions of particulate matter (PM) and volatile organic compounds (VOCs), a field campaign was implemented during the spring of 2018 in nine cities in northwestern (NW) China. PM was mainly contributed by organic matter and water-soluble inorganic ions (41% for PM10 and approximately 60% for PM2.5 and PM1). Two typical haze patterns were observed: anthropogenic pollution type (AP-type), wherein contributions of sulfate, nitrate, and ammonium (SNA) increased, and dust pollution type (DP-type), wherein contributions of Ca2+ increased and SNA decreased. Source appointment suggested that regional sources contributed close to half to PM2.5 pollution (40% for AP-type and 50% for DP-type). Thus, sources from regional transport are also important for haze and dust pollution. The ranking of VOC concentrations was methanol > acetaldehyde > formic acid + ethanol > acetone. Compared with other cities, there are higher oxygenated VOCs (OVOCs) and lower aromatics in NW China. The relationships between VOCs and PM were discussed. The dominating secondary organic aerosols (SOA) formation potential precursors were C10-aromatics, xylene, and styrene under low-nitrogen oxide (NOx) conditions, and benzene, C10-aromatics, and toluene dominated under high-NOx conditions. The quadratic polynomial was the most suitable fitting model for their correlation, and the results suggested that VOC oxidations explained 6.1-10.8% and 9.9-20.7% of SOA formation under high-NOx and low-NOx conditions, respectively.
Collapse
Affiliation(s)
- Xi Zhou
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources; Tianshan Glaciological Station, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhongqin Li
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources; Tianshan Glaciological Station, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Sciences, Shihezi University, Xinjiang, 832000, China; College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730000, China.
| | - Tingjun Zhang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Feiteng Wang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources; Tianshan Glaciological Station, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yan Tao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources; Tianshan Glaciological Station, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
4
|
Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC, Clegg SL, Collett JL, Fahey KM, Hennigan CJ, Herrmann H, Kanakidou M, Kelly JT, Ku IT, McNeill VF, Riemer N, Schaefer T, Shi G, Tilgner A, Walker JT, Wang T, Weber R, Xing J, Zaveri RA, Zuend A. The Acidity of Atmospheric Particles and Clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:4809-4888. [PMID: 33424953 PMCID: PMC7791434 DOI: 10.5194/acp-20-4809-2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Collapse
Affiliation(s)
- Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mary C. Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Simon L. Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Christopher J. Hennigan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Maria Kanakidou
- Department of Chemistry, University of Crete, Voutes, Heraklion Crete, 71003, Greece
| | - James T. Kelly
- Office of Air Quality Planning & Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - I-Ting Ku
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Riemer
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, 61801, USA
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Nankai University, Tianjin, 300071, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - John T. Walker
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rodney Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jia Xing
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rahul A. Zaveri
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
| |
Collapse
|
5
|
Parra Suárez S, Peiffer S, Gebauer G. Origin and fate of nitrate runoff in an agricultural catchment: Haean, South Korea - Comparison of two extremely different monsoon seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:66-79. [PMID: 30114590 DOI: 10.1016/j.scitotenv.2018.08.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The monsoon season in South Korea has great influences on biogeochemical and hydrological processes in the entire country, but is specifically of concern in the Soyang lake watershed, the main drinking water reservoir for the 20-million-people metropolis Seoul. Therefore, water quality and nitrate concentration control in Lake Soyang is of high public priority. The Haean catchment is the most prominent agriculture-dominated sub-catchment of the Soyang lake watershed. It is a complex terrain influenced by extreme rain events and non-point nitrate sources. In this investigation we used input-output calculations and a stable isotope approach to quantify and determinate the origin of nitrate inputs into the rivers that later flow into the lake. During pre-monsoon and monsoon seasons in 2013 and 2014 we measured daily rainfall and river water discharge within the Haean catchment and collected rain, river water and groundwater samples in order to analyze nitrate concentrations and nitrate nitrogen and oxygen isotope abundances. Furthermore, we collected nitrogen fertilizers as applied in the catchment. Heavy monsoon events, as in 2013, were the most pronounced drivers of nitrate leaching being responsible for >80% of the nitrate output in the river runoff. On the other hand, an almost missing summer monsoon in 2014 drove the nitrate runoff in a different manner, being responsible for only 0.4% of the total nitrate nitrogen river discharge in the previous year. Results of nitrate nitrogen and oxygen isotope abundance analyses suggest soil microbial nitrification as the most important contributor to the nitrate in the river runoff. In addition, nitrate from groundwater partially affected by microbial denitrification contributed to the nitrate in the runoff due to river-aquifer exchange fluxes during the monsoon season. Direct leaching of nitrate from mineral fertilizers and atmospheric nitrate deposition were obviously only minor contributors to the nitrate in the runoff.
Collapse
Affiliation(s)
- Silvia Parra Suárez
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research - BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stefan Peiffer
- Department of Hydrology, Bayreuth Center of Ecology and Environmental Research - BayCEER, University of Bayreuth, 95440 Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research - BayCEER, University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
6
|
Tripathee L, Kang S, Rupakheti D, Cong Z, Zhang Q, Huang J. Chemical characteristics of soluble aerosols over the central Himalayas: insights into spatiotemporal variations and sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24454-24472. [PMID: 28895029 DOI: 10.1007/s11356-017-0077-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In order to investigate the spatial and temporal variations of aerosols and its soluble chemical compositions of the data gap zone in the central Himalayan region, aerosol samples were collected at four sites. The sampling location were characterized by four different categories, such as urban (Bode), semi-urban site in the northern Indo-Gangetic Plain (Lumbini), rural (Dhunche), and semiarid rural (Jomsom). A total of 230 aerosol samples were collected from four representative sites for a yearlong period and analyzed for water-soluble inorganic ions (WSIIs). The annual average aerosol mass concentration followed the sequence as Bode (238.24 ± 162.24 μg/m3)> Lumbini (161.14 ± 105.95 μg/m3)> Dhunche (112.40 ± 40.30 μg/m3)> Jomsom (78.85 ± 34.28 μg/m3), suggesting heavier particulate pollution in the urban and semi-urban sites. The total soluble ions contributed to 12.61-28.19% of TSP aerosol mass. The results revealed that SO42- and NO3- were the major anion and Ca2+ and NH4+ were the major cation influencing the aerosol composition over the central Himalayas. Calcium played a major role in neutralizing aerosol acidity followed by NH4+ at all the sites. The major compound of aerosol was (NH4)2SO4 and NH4HSO4 in the central Himalayas. Clear seasonality was observed at three observation sites, with higher concentrations during non-monsoon (dry periods) and lower during monsoon (wet period), suggesting washing out of aerosol particles by heavy precipitation during monsoon. In contrast, semiarid sites did not show the clear seasonal trend due to limited precipitation. Stationary sources were predominant over the mobile sources mostly in the remote sites. Principal component analysis confirmed that the major sources of WSIIs in the region were industrial emissions, fossil fuel and biomass burning, and crustal fugitive dusts. Nevertheless, transboundary aerosol transport over the region from polluted cities from south Asia could not be ignored as indicated by the clusters of air mass backward trajectory analysis.
Collapse
Affiliation(s)
- Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Himalayan Environment Research Institute (HERI), Kathmandu, Nepal.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Dipesh Rupakheti
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese, Academy of Sciences, Beijing, 100101, China
| | - Zhiyuan Cong
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese, Academy of Sciences, Beijing, 100101, China
| | - Qianggong Zhang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese, Academy of Sciences, Beijing, 100101, China
| | - Jie Huang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese, Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
7
|
Grotti M, Soggia F, Ardini F, Magi E, Becagli S, Traversi R, Udisti R. Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica). CHEMOSPHERE 2015; 138:916-923. [PMID: 25550109 DOI: 10.1016/j.chemosphere.2014.10.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities.
Collapse
Affiliation(s)
- Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy.
| | - Francesco Soggia
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Silvia Becagli
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Rita Traversi
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Roberto Udisti
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
8
|
Zhao S, Li Z, Zhou P. Ion chemistry and individual particle analysis of atmospheric aerosols over Mt. Bogda of eastern Tianshan Mountains, Central Asia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 180:409-426. [PMID: 21107902 DOI: 10.1007/s10661-010-1796-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 11/09/2010] [Indexed: 05/30/2023]
Abstract
Aerosol samples were collected during the scientific expedition to Mt. Bogda in July-August, 2009. The major inorganic ions (Na( + ), NH⁺₄, K( + ), Mg(2 + ), Ca(2 + ), Cl( - ), SO²⁻₄, and NO⁻₃) of the aerosols were determined by ion chromatography. SO²⁻₄, NO⁻₃, and Ca(2 + ) were the dominate ions, with the mean concentrations of 0.86, 0.56, and 0.28 μg m⁻³, respectively. These mean ion concentrations were generally comparable with the background conditions in remote site of Xinjiang, while much lower than those in Ürümqi. Morphology and elemental compositions of 1,500 particles were determined by field emission scanning electron microscopy equipped with an energy dispersive X-ray spectrometer. Based on the morphology and elemental compositions, particles were classed into four major groups: soot (15.1%), fly ash (4.7%), mineral particles (78.9%), and little other matters (0.8% Fe-rich particles and 0.5% unrecognized particles). Presence of soot and fly ash particles indicated the influence of anthropogenic pollutions, while abundance mineral particles suggested that natural processes were the primary source of aerosols over this region, coinciding with the ionic analysis. Backward air mass trajectory analysis suggested that Ürümqi may contribute some anthropogenic pollution to this region, while the arid and semi-arid regions of Central Asia were the primary source.
Collapse
Affiliation(s)
- Shuhui Zhao
- State Key Laboratory of Cryospheric Sciences/Tianshan Glaciological Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China.
| | | | | |
Collapse
|
9
|
Ming J, Zhang D, Kang S, Tian W. Aerosol and fresh snow chemistry in the East Rongbuk Glacier on the northern slope of Mt. Qomolangma (Everest). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008618] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Pohjola VA. Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna, Svalbard. ACTA ACUST UNITED AC 2002. [DOI: 10.1029/2000jd000149] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|