1
|
Tarnas JD, Stack KM, Parente M, Koeppel AHD, Mustard JF, Moore KR, Horgan BHN, Seelos FP, Cloutis EA, Kelemen PB, Flannery D, Brown AJ, Frizzell KR, Pinet P. Characteristics, Origins, and Biosignature Preservation Potential of Carbonate-Bearing Rocks Within and Outside of Jezero Crater. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2021; 126:e2021JE006898. [PMID: 34824965 PMCID: PMC8597593 DOI: 10.1029/2021je006898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 05/20/2023]
Abstract
Carbonate minerals have been detected in Jezero crater, an ancient lake basin that is the landing site of the Mars 2020 Perseverance rover, and within the regional olivine-bearing (ROB) unit in the Nili Fossae region surrounding this crater. It has been suggested that some carbonates in the margin fractured unit, a rock unit within Jezero crater, formed in a fluviolacustrine environment, which would be conducive to preservation of biosignatures from paleolake-inhabiting lifeforms. Here, we show that carbonate-bearing rocks within and outside of Jezero crater have the same range of visible-to-near-infrared carbonate absorption strengths, carbonate absorption band positions, thermal inertias, and morphologies. Thicknesses of exposed carbonate-bearing rock cross-sections in Jezero crater are ∼75-90 m thicker than typical ROB unit cross-sections in the Nili Fossae region, but have similar thicknesses to ROB unit exposures in Libya Montes. These similarities in carbonate properties within and outside of Jezero crater is consistent with a shared origin for all of the carbonates in the Nili Fossae region. Carbonate absorption minima positions indicate that both Mg- and more Fe-rich carbonates are present in the Nili Fossae region, consistent with the expected products of olivine carbonation. These estimated carbonate chemistries are similar to those in martian meteorites and the Comanche carbonates investigated by the Spirit rover in Columbia Hills. Our results indicate that hydrothermal alteration is the most likely formation mechanism for non-deltaic carbonates within and outside of Jezero crater.
Collapse
Affiliation(s)
- J. D. Tarnas
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. M. Stack
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - M. Parente
- Department of Electrical and Computer EngineeringUniversity of Massachusetts at AmherstAmherstMAUSA
| | - A. H. D. Koeppel
- Department of Astronomy and Planetary ScienceNorthern Arizona UniversityFlagstaffAZUSA
| | - J. F. Mustard
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - K. R. Moore
- NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - B. H. N. Horgan
- Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| | - F. P. Seelos
- Johns Hopkins University Applied Physics LabLaurelMDUSA
| | - E. A. Cloutis
- Department of GeographyUniversity of WinnipegWinnipegMBCanada
| | - P. B. Kelemen
- Lahmont‐Doherty Earth Observatory, Columbia UniversityPalisadesNYUSA
| | - D. Flannery
- School of Earth and Atmospheric SciencesQueensland University of TechnologyBrisbaneQLDAustralia
| | | | - K. R. Frizzell
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - P. Pinet
- Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
| |
Collapse
|
2
|
Treiman AH. Uninhabitable and Potentially Habitable Environments on Mars: Evidence from Meteorite ALH 84001. ASTROBIOLOGY 2021; 21:940-953. [PMID: 33857382 DOI: 10.1089/ast.2020.2306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The martian meteorite ALH 84001 formed before ∼4.0 Ga, so it could have preserved information about habitability on early Mars and habitability since then. ALH 84001 is particularly important as it contains carbonate (and other) minerals that were deposited by liquid water, raising the chance that they may have formed in a habitable environment. Despite vigorous efforts from the scientific community, there is no accepted evidence that ALH 84001 contains traces or markers of ancient martian life-all the purported signs have been shown to be incorrect or ambiguous. However, the meteorite provides evidence for three distinct episodes of potentially habitable environments on early Mars. First is evidence that the meteorite's precursors interacted with clay-rich material, formed approximately at 4.2 Ga. Second is that igneous olivine crystals in ALH 84001 were partially dissolved and removed, presumably by liquid water. Third is, of course, the deposition of the carbonate globules, which occurred at ∼15-25°C and involved near-neutral to alkaline waters. The environments of olivine dissolution and carbonate deposition are not known precisely; hydrothermal and soil environments are current possibilities. By analogies with similar alteration minerals and sequences in the nakhlite martian meteorites and volcanic rocks from Spitzbergen (Norway), a hydrothermal environment is favored. As with the nakhlite alterations, those in ALH 84001 likely formed in a hydrothermal system related to a meteoroid impact event. Following deposition of the carbonates (at 3.95 Ga), ALH 84001 preserves no evidence of habitable environments, that is, interaction with water. The meteorite contains several materials (formed by impact shock at ∼3.9 Ga) that should have reacted readily with water to form hydrous silicates, but there is no evidence any formed.
Collapse
Affiliation(s)
- Allan H Treiman
- Lunar and Planetary Institute / Universities Space Research Association, Houston, Texas, USA
| |
Collapse
|
3
|
Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. Proc Natl Acad Sci U S A 2015; 112:336-41. [PMID: 25535348 DOI: 10.1073/pnas.1315615112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbonate minerals provide critical information for defining atmosphere-hydrosphere interactions. Carbonate minerals in the Martian meteorite ALH 84001 have been dated to ∼ 3.9 Ga, and both C and O-triple isotopes can be used to decipher the planet's climate history. Here we report Δ(17)O, δ(18)O, and δ(13)C data of ALH 84001 of at least two varieties of carbonates, using a stepped acid dissolution technique paired with ion microprobe analyses to specifically target carbonates from distinct formation events and constrain the Martian atmosphere-hydrosphere-geosphere interactions and surficial aqueous alterations. These results indicate the presence of a Ca-rich carbonate phase enriched in (18)O that formed sometime after the primary aqueous event at 3.9 Ga. The phases showed excess (17)O (0.7‰) that captured the atmosphere-regolith chemical reservoir transfer, as well as CO2, O3, and H2O isotopic interactions at the time of formation of each specific carbonate. The carbon isotopes preserved in the Ca-rich carbonate phase indicate that the Noachian atmosphere of Mars was substantially depleted in (13)C compared with the modern atmosphere.
Collapse
|
4
|
Carbonates in the Martian meteorite Allan Hills 84001 formed at 18 +/- 4 degrees C in a near-surface aqueous environment. Proc Natl Acad Sci U S A 2011; 108:16895-9. [PMID: 21969543 DOI: 10.1073/pnas.1109444108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite evidence for liquid water at the surface of Mars during the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether the surface of Mars was ever warmer than today. We address this problem by determining the precipitation temperature of secondary carbonate minerals preserved in the oldest known sample of Mars' crust--the approximately 4.1 billion-year-old meteorite Allan Hills 84001 (ALH84001). The formation environment of these carbonates, which are constrained to be slightly younger than the crystallization age of the rock (i.e., 3.9 to 4.0 billion years), has been poorly understood, hindering insight into the hydrologic and carbon cycles of earliest Mars. Using "clumped" isotope thermometry we find that the carbonates in ALH84001 precipitated at a temperature of approximately 18 °C, with water and carbon dioxide derived from the ancient Martian atmosphere. Furthermore, covarying carbonate carbon and oxygen isotope ratios are constrained to have formed at constant, low temperatures, pointing to deposition from a gradually evaporating, subsurface water body--likely a shallow aquifer (meters to tens of meters below the surface). Despite the mild temperatures, the apparently ephemeral nature of water in this environment leaves open the question of its habitability.
Collapse
|
5
|
Zolotov MY, Mironenko MV. Timing of acid weathering on Mars: A kinetic-thermodynamic assessment. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002882] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Stockstill KR, Moersch JE, Ruff SW, Baldridge A, Farmer J. Thermal Emission Spectrometer hyperspectral analyses of proposed paleolake basins on Mars: No evidence for in-place carbonates. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2004je002353] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Rao MN, Sutton SR, McKay DS, Dreibus G. Clues to Martian brines based on halogens in salts from nakhlites and MER samples. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002470] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
King PL, McSween HY. Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002482] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Burt DM. Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je001862] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Treiman AH. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. ASTROBIOLOGY 2003; 3:369-392. [PMID: 14577885 DOI: 10.1089/153110703769016451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).
Collapse
|
11
|
Mathew KJ, Marti K. Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000je001255] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Shock EL. An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases. METEORITICS & PLANETARY SCIENCE 2000; 35:629-638. [PMID: 11543519 DOI: 10.1111/j.1945-5100.2000.tb01443.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250-300 degrees C during rapid cooling of trapped magmatic or impact-generated gases. Depending on temperature, bulk composition, and oxidation-reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01-0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine-grain magnetite, formation of a CO-rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high-temperature quenching of CO-, H2-rich impact gases could have led to magnetite-catalyzed hydrocarbon synthesis.
Collapse
|
13
|
Abstract
Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate.
Collapse
Affiliation(s)
- R B Frankel
- Department of Physics, California Polytechnic State University, San Luis Obispo, 93407, USA.
| | | |
Collapse
|
14
|
Farquhar J, Savarino J, Jackson TL, Thiemens MH. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites. Nature 2000; 404:50-2. [PMID: 10716436 DOI: 10.1038/35003517] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sulphur is abundant at the martian surface, yet its origin and evolution over time remain poorly constrained. This sulphur is likely to have originated in atmospheric chemical reactions, and so should provide records of the evolution of the martian atmosphere, the cycling of sulphur between the atmosphere and crust, and the mobility of sulphur in the martian regolith. Moreover, the atmospheric deposition of oxidized sulphur species could establish chemical potential gradients in the martian near-surface environment, and so provide a potential energy source for chemolithoautotrophic organisms. Here we present measurements of sulphur isotopes in oxidized and reduced phases from the SNC meteorites--the group of related achondrite meteorites believed to have originated on Mars--together with the results of laboratory photolysis studies of two important martian atmospheric sulphur species (SO2 and H2S). The photolysis experiments can account for the observed sulphur-isotope compositions in the SNC meteorites, and so identify a mechanism for producing large abiogenic 34S fractionations in the surface sulphur reservoirs. We conclude that the sulphur data from the SNC meteorites reflects deposition of oxidized sulphur species produced by atmospheric chemical reactions, followed by incorporation, reaction and mobilization of the sulphur within the regolith.
Collapse
Affiliation(s)
- J Farquhar
- Department of Chemistry, University of California, San Diego, La Jolla 92093, USA.
| | | | | | | |
Collapse
|
15
|
Head JW, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 1999; 286:2134-7. [PMID: 10591640 DOI: 10.1126/science.286.5447.2134] [Citation(s) in RCA: 306] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-resolution altimetric data define the detailed topography of the northern lowlands of Mars, and a range of data is consistent with the hypothesis that a lowland-encircling geologic contact represents the ancient shoreline of a large standing body of water present in middle Mars history. The contact altitude is close to an equipotential line, the topography is smoother at all scales below the contact than above it, the volume enclosed by this contact is within the range of estimates of available water on Mars, and a series of extensive terraces parallel the contact in many places.
Collapse
Affiliation(s)
- J W Head
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
16
|
Warren PH. Reply [to “Comment on “Petrologic evidence for low-temperature, possibly flood-evaporitic origin of carbonates in the ALH84001 meteorite” by Paul H. Warren”]. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je001121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Scott ERD, Krot AN, Yamaguchi A. Comment on “Petrologic evidence for low-temperature, possibly flood-evaporitic origin of carbonates in the ALH84001 meteorite” by Paul H. Warren. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je001005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Borg LE, Connelly JN, Nyquist LE, Shih CY, Wiesmann H, Reese Y. The age of the carbonates in martian meteorite ALH84001. Science 1999; 286:90-4. [PMID: 10506566 DOI: 10.1126/science.286.5437.90] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The age of secondary carbonate mineralization in the martian meteorite ALH84001 was determined to be 3.90 +/- 0.04 billion years by rubidium-strontium (Rb-Sr) dating and 4.04 +/- 0.10 billion years by lead-lead (Pb-Pb) dating. The Rb-Sr and Pb-Pb isochrons are defined by leachates of a mixture of high-graded carbonate (visually estimated as approximately 5 percent), whitlockite (trace), and orthopyroxene (approximately 95 percent). The carbonate formation age is contemporaneous with a period in martian history when the surface is thought to have had flowing water, but also was undergoing heavy bombardment by meteorites. Therefore, this age does not distinguish between aqueous and impact origins for the carbonates.
Collapse
Affiliation(s)
- L E Borg
- SN2/NASA Johnson Space Center Houston, TX 77058, USA.
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Catling DC. A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je001020] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Scott ER. Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001. JOURNAL OF GEOPHYSICAL RESEARCH 1999; 104:3803-13. [PMID: 11542931 DOI: 10.1029/1998je900034] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A review of the mineralogical, isotopic, and chemical properties of the carbonates and associated submicrometer iron oxides and sulfides in Martian meteorite ALH84001 provides minimal evidence for microbial activity. Some magnetites resemble those formed by magnetotactic microorganisms but cubic crystals <50 nm in size and elongated grains <25 nm long are too small to be single-domain magnets and are probably abiogenic. Magnetites with shapes that are clearly unique to magnetotactic bacteria appear to be absent in ALH84001. Magnetosomes have not been reported in plutonic rocks and are unlikely to have been transported in fluids through fractures and uniformly deposited where abiogenic magnetite was forming epitaxially on carbonate. Submicrometer sulfides and magnetites probably formed during shock heating. Carbonates have correlated variations in Ca, Mg, and 18O/16O, magnetite-rich rims, and they appear to be embedded in pyroxene and plagiociase glass. Carbonates with these features have not been identified in carbonaceous chondrites and terrestrial rocks, suggesting that the ALH84001 carbonates have a unique origin. Carbonates and hydrated minerals in ALH84001, like secondary phases in other Martian meteorites, have O and H isotopic ratios favoring formation from fluids that exchanged with the Martian atmosphere. I propose that carbonates originally formed in ALH84001 from aqueous fluids and were subsequently shock heated and vaporized. The original carbonates were probably dolomite-magnesite-siderite assemblages that formed in pores at interstitial sites with minor sulfate, chloride, and phyllosilicates. These phases, like many other volatile-rich phases in Martian meteorites, may have formed as evaporate deposits from intermittent floods.
Collapse
Affiliation(s)
- E R Scott
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, USA.
| |
Collapse
|
22
|
Thomas PC, Malin MC, Carr MH, Danielson GE, Davies ME, Hartmann WK, Ingersoll AP, James PB, McEwen AS, Soderblom LA, Veverka J. Bright dunes on Mars. Nature 1999. [DOI: 10.1038/17557] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|