1
|
Tino CJ, Stüeken EE, Arp G, Böttcher ME, Bates SM, Lyons TW. Are Large Sulfur Isotope Variations Biosignatures in an Ancient, Impact-Induced Hydrothermal Mars Analog? ASTROBIOLOGY 2023; 23:1027-1044. [PMID: 37498995 DOI: 10.1089/ast.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Discrepancies have emerged concerning the application of sulfur stable isotope ratios as a biosignature in impact crater paleolakes. The first in situ δ34S data from Mars at Gale crater display a ∼75‰ range that has been attributed to an abiotic mechanism. Yet biogeochemical studies of ancient environments on Earth generally interpret δ34S fractionations >21‰ as indicative of a biological origin, and studies of δ34S at analog impact crater lakes on Earth have followed the same approach. We performed analyses (including δ34S, total organic carbon wt%, and scanning electron microscope imaging) on multiple lithologies from the Nördlinger Ries impact crater, focusing on hydrothermally altered impact breccias and associated sedimentary lake-fill sequences to determine whether the δ34S properties define a biosignature. The differences in δ34S between the host lithologies may have resulted from thermochemical sulfate reduction, microbial sulfate reduction, hydrothermal equilibrium fractionation, or any combination thereof. Despite abundant samples and instrumental precision currently exclusive to Earth-bound analyses, assertions of biogenicity from δ34S variations >21‰ at the Miocene Ries impact crater are tenuous. This discourages the use of δ34S as a biosignature in similar environments without independent checks that include the full geologic, biogeochemical, and textural context, as well as a comprehensive acknowledgment of alternative hypotheses.
Collapse
Affiliation(s)
- Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Eva E Stüeken
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, Scotland, United Kingdom
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| | - Gernot Arp
- Geowissenschaftliches Zentrum, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Ernst Böttcher
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
- Marine Geochemistry, University of Greifswald, Greifswald, Germany
- Department of Maritime Systems, Interdisciplinary Faculty (INF), University of Rostock, Rostock, Germany
| | - Steven M Bates
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Engelhardt WV, Arndt J, Fecker B, Pankau HG. Suevite breccia from the Ries crater, Germany: Origin, cooling history and devitrification of impact glasses. ACTA ACUST UNITED AC 2012. [DOI: 10.1111/j.1945-5100.1995.tb01126.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Squyres SW, Arvidson RE, Bell JF, Calef F, Clark BC, Cohen BA, Crumpler LA, de Souza PA, Farrand WH, Gellert R, Grant J, Herkenhoff KE, Hurowitz JA, Johnson JR, Jolliff BL, Knoll AH, Li R, McLennan SM, Ming DW, Mittlefehldt DW, Parker TJ, Paulsen G, Rice MS, Ruff SW, Schroder C, Yen AS, Zacny K. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science 2012; 336:570-6. [DOI: 10.1126/science.1220476] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Beaty DW, Clifford SM, Borg LE, Catling DC, Craddock RA, Des Marais DJ, Farmer JD, Frey HV, Haberle RM, McKay CP, Newsom HE, Parker TJ, Segura T, Tanaka KL. Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life. ASTROBIOLOGY 2005; 5:663-89. [PMID: 16379524 DOI: 10.1089/ast.2005.5.663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.
Collapse
Affiliation(s)
- David W Beaty
- Mars Program Office, Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109-8099, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cockell CS, Osinski GR, Lee P. The impact crater as a habitat: effects of impact processing of target materials. ASTROBIOLOGY 2003; 3:181-191. [PMID: 12804371 DOI: 10.1089/153110703321632507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.
Collapse
Affiliation(s)
- Charles S Cockell
- SETI Institute, NASA Ames Research Center, Moffett Field, California, USA.
| | | | | |
Collapse
|
7
|
Affiliation(s)
- Robert A. Craddock
- Center for Earth and Planetary Studies, National Air and Space Museum; Smithsonian Institution; Washington District of Columbia USA
| | - Alan D. Howard
- Department of Environmental Sciences; University of Virginia; Charlottesville Virginia USA
| |
Collapse
|
8
|
Abstract
Impact craters contain ecosystems that are often very different from the ecosystems that surround them. On Earth over 150 impact craters have been identified in a wide diversity of biomes. All natural events that can cause localized disruption of ecosystems have quite distinct patterns of rccovery. Impact events are unique in that they are the only extraterrestrial mechanism capable of disrupting an ecosystem locally in space and time. Thus, elucidating the chronological sequence of change at the sites of impacts is of ecological interest. In this synthetic review we use the existing literature, coupled with our own observations at the Haughton impact structure, Devon Island, Nunavut, Canada to consider the patterns of biological recovery at the site of impact craters and the ecological characteristics of impact craters. Three phases of recovery are suggested. The Phase of Thermal Biology, a phase associated with the localized, ephemeral thermal anomaly generated by an impact event. The Phase of Impact Succession and Climax, a phase marked by multiple primary and secondary succession events both in the aquatic realm (impact crater-lakes) and terrestrial realm (colonization of paleolacustrine deposits and impact-generated substrata) that are followed by periods of climax ecology. In the case of large-scale impact events (> 10(4) Mt), this latter phase may also be influenced by successional changes in the global environment. Finally, during the Phase of Ecological Assimilation, the disappearance of the surface geological expression of an impact structure results in a concomitant loss of ecological distinctiveness. In extreme cases, the impact structure is buried. Impact succession displays similarities and differences to succession following other agents of ecological disturbance, particularly volcanism.
Collapse
|
9
|
Naumov MV. Impact-Generated Hydrothermal Systems: Data from Popigai, Kara, and Puchezh-Katunki Impact Structures. IMPACTS IN PRECAMBRIAN SHIELDS 2002. [DOI: 10.1007/978-3-662-05010-1_6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Newsom HE, Hagerty JJ, Thorsos IE. Location and sampling of aqueous and hydrothermal deposits in martian impact craters. ASTROBIOLOGY 2001; 1:71-88. [PMID: 12448996 DOI: 10.1089/153110701750137459] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.
Collapse
Affiliation(s)
- H E Newsom
- Institute of Meteoritics and Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA.
| | | | | |
Collapse
|
11
|
Morris RV, Golden DC, Bell JF, Shelfer TD, Scheinost AC, Hinman NW, Furniss G, Mertzman SA, Bishop JL, Ming DW, Allen CC, Britt DT. Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. ACTA ACUST UNITED AC 2000. [DOI: 10.1029/1999je001059] [Citation(s) in RCA: 257] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Akridge DG, Sears DWG. The gravitational and aerodynamic sorting of meteoritic chondrules and metal: Experimental results with implications for chondritic meteorites. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je900021] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Newsom HE, Hagerty JJ, Goff F. Mixed hydrothermal fluids and the origin of the Martian soil. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1998je900043] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Treiman AH. The history of Allan Hills 84001 revised: multiple shock events. METEORITICS & PLANETARY SCIENCE 1998; 33:753-764. [PMID: 11543074 DOI: 10.1111/j.1945-5100.1998.tb01681.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The geologic history of Martian meteorite Allan Hills (ALH) 84001 is more complex than previously recognized, with evidence for four or five crater-forming impacts onto Mars. This history of repeated deformation and shock metamorphism appears to weaken some arguments that have been offered for and against the hypothesis of ancient Martian life in ALH 84001. Allan Hills 84001 formed originally from basaltic magma. Its first impact event (I1) is inferred from the deformation (D1) that produced the granular-textured bands ("crush zones") that transect the original igneous fabric. Deformation D1 is characterized by intense shear and may represent excavation or rebound flow of rock beneath a large impact crater. An intense thermal metamorphism followed D1 and may be related to it. The next impact (I2) produced fractures, (Fr2) in which carbonate "pancakes" were deposited and produced feldspathic glass from some of the igneous feldspars and silica. After I2, carbonate pancakes and globules were deposited in Fr2 fractures and replaced feldspathic glass and possibly crystalline silicates. Next, feldspars, feldspathic glass, and possibly some carbonates were mobilized and melted in the third impact (I3). Microfaulting, intense fracturing, and shear are also associated with I3. In the fourth impact (I4), the rock was fractured and deformed without significant heating, which permitted remnant magnetization directions to vary across fracture surfaces. Finally, ALH 84001 was ejected from Mars in event I5, which could be identical to I4. This history of multiple impacts is consistent with the photogeology of the Martian highlands and may help resolve some apparent contradictions among recent results on ALH 84001. For example, the submicron rounded magnetite grains in the carbonate globules could be contemporaneous with carbonate deposition, whereas the elongate magnetite grains, epitaxial on carbonates, could be ascribed to vapor-phase deposition during I3.
Collapse
Affiliation(s)
- A H Treiman
- Lunar and Planetary Institute, Houston, Texas 77058-1113, USA.
| |
Collapse
|
15
|
Newsom HE, Hagerty JJ. Chemical components of the Martian soil: Melt degassing, hydrothermal alteration, and chondritic debris. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/97je01687] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Newsom HE, Brittelle GE, Hibbitts CA, Crossey LJ, Kudo AM. Impact crater lakes on Mars. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96je01139] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Morris RV, Golden DC, Bell JF, Lauer HV. Hematite, pyroxene, and phyllosilicates on Mars: Implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, Canada. ACTA ACUST UNITED AC 1995. [DOI: 10.1029/94je01500] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
|