1
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
2
|
The Underappreciated Role of Epithelial Mesenchymal Transition in Chronic Obstructive Pulmonary Disease and Its Strong Link to Lung Cancer. Biomolecules 2021; 11:biom11091394. [PMID: 34572606 PMCID: PMC8472619 DOI: 10.3390/biom11091394] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
The World Health Organisation reported COPD to be the third leading cause of death globally in 2019, and in 2020, the most common cause of cancer death was lung cancer; when these linked conditions are added together they come near the top of the leading causes of mortality. The cell-biological program termed epithelial-to-mesenchymal transition (EMT) plays an important role in organ development, fibrosis and cancer progression. Over the past decade there has emerged a substantial literature that also links EMT specifically to the pathophysiology of chronic obstructive pulmonary disease (COPD) as primarily an airway fibrosis disease; COPD is a recognised strong independent risk factor for the development of lung cancer, over and above the risks associated with smoking. In this review, our primary focus is to highlight these linkages and alert both the COPD and lung cancer fields to these complex interactions. We emphasise the need for inter-disciplinary attention and research focused on the likely crucial roles of EMT (and potential for its inhibition) with recognition of its strategic place mechanistically in both COPD and lung cancer. As part of this we discuss the future potential directions for novel therapeutic opportunities, including evidence-based strategic repurposing of currently used familiar/approved medications.
Collapse
|
3
|
Edwinson AL, Grover M. Measurement of novel intestinal secretory and barrier pathways and effects of proteases. Neurogastroenterol Motil 2019; 31:e13547. [PMID: 30843358 PMCID: PMC6407641 DOI: 10.1111/nmo.13547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
The epithelial lining of the gastrointestinal (GI) tract in conjunction with the enteric nervous system (ENS) plays an important role in mediating solute absorption and secretion. A dysregulated ionic movement across the epithelium can result in GI diseases that manifest as either watery diarrhea or constipation. Hirschsprung disease is an example of an ENS disorder characterized by absence of enteric ganglia in distal gut resulting in obstructive phenotype. Receptor rearranged during transfection (RET) gene variants are the most commonly recognized genetic associations with Hirschsprung disease. In this issue of Neurogastroenterology and Motility, Russell et al demonstrate that RET mediates colonic ion transport through modulation of cholinergic nerves. They go on to show inhibition of RET can attenuate accelerated transit in a rat model. Normalizing secretory and absorptive defects has been an attractive therapeutic strategy. In addition to the intrinsic regulation of secretory processes, luminal mediators like bile acids, short-chain fatty acids, and proteases can affect both secretion and barrier function of the intestinal epithelium. Elevated levels of proteases have been identified in a wide range of GI diseases including irritable bowel syndrome. Proteases are known to cause visceral hypersensitivity and barrier disruption in vitro and in animal models. The goals of this review are to describe fundamental concepts related to intestinal epithelial secretion, the utility of Ussing chambers to measure ionic mechanisms and to discuss examples of novel signaling pathways; namely the RET signaling cascade in secretomotor neurons and effects of luminal proteases on barrier and ionic secretion.
Collapse
Affiliation(s)
- Adam L. Edwinson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Madhusudan Grover
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA,Correspondence: Madhusudan Grover, MD, Assistant Professor of Medicine and Physiology, Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA, Tel: 507-284-2478, Fax: 507-266-0350,
| |
Collapse
|
4
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
5
|
Morris HT, Machesky LM. Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract. Br J Cancer 2015; 112:613-20. [PMID: 25611303 PMCID: PMC4333498 DOI: 10.1038/bjc.2014.658] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022] Open
Abstract
The formation of epithelial tissues allows organisms to specialise and form tissues with diverse functions and compartmentalised environments. The tight controls on cell growth and migration required to maintain epithelia can present problems such as the development and spread of cancer when normal pathways are disrupted. By attaining a deeper understanding of how cell migration is suppressed to maintain the epithelial organisation and how it is reactivated when epithelial tissues become mesenchymal, new insights into both cancer and development can be gained. Here we discuss recent developments in our understanding of epithelial and mesenchymal regulation of the actin cytoskeleton in normal and cancerous tissue, with a focus on the pancreas and intestinal tract.
Collapse
Affiliation(s)
- H T Morris
- The CRUK Beatson Institute for Cancer Research and University of Glasgow College of Medical, Veterinary and Life Sciences, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - L M Machesky
- The CRUK Beatson Institute for Cancer Research and University of Glasgow College of Medical, Veterinary and Life Sciences, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
6
|
Nantajit D, Lin D, Li JJ. The network of epithelial-mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol 2014; 141:1697-713. [PMID: 25270087 DOI: 10.1007/s00432-014-1840-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
PURPOSE In multiple cell metazoans, the ability of polarized epithelial cells to convert to motile mesenchymal cells in order to relocate to another location is governed by a unique process termed epithelial-mesenchymal transition (EMT). While being an essential process of cellular plasticity for normal tissue and organ developments, EMT is found to be involved in an array of malignant phenotypes of tumor cells including proliferation and invasion, angiogenesis, stemness of cancer cells and resistance to chemo-radiotherapy. Although EMT is being extensively studied and demonstrated to play a key role in tumor metastasis and in sustaining tumor hallmarks, there is a lack of clear picture of the overall EMT signaling network, wavering the potential clinical trials targeting EMT. METHODS In this review, we highlight the potential key therapeutic targets of EMT linked with tumor aggressiveness, hypoxia, angiogenesis and cancer stem cells, emphasizing on an emerging EMT-associated NF-κB/HER2/STAT3 pathway in radioresistance of breast cancer stem cells. RESULTS Further definition of cancer stem cell repopulation due to EMT-controlled tumor microenvironment will help to understand how tumors exploit the EMT mechanisms for their survival and expansion advantages. CONCLUSIONS The knowledge of EMT will offer more effective targets in clinical trials to treat therapy-resistant metastatic lesions.
Collapse
Affiliation(s)
- Danupon Nantajit
- Radiation Oncology Unit, Chulabhorn Hospital, Bangkok, 10210, Thailand
| | | | | |
Collapse
|
7
|
Romero-Valdovinos M, Bobadilla-Sandoval N, Flisser A, Vadillo-Ortega F. The epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome. Med Hypotheses 2014; 83:306-11. [PMID: 24998668 DOI: 10.1016/j.mehy.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The etiology of the amniotic band syndrome is unknown, and has been subject of debate since the time of Hippocrates. The most accepted theories fail to cover all the abnomalities found in affected children. During organogenesis the epithelial-mesenchymal transition process (EMTP) participates in adequate formation of different organs from three embryo layers. Altered activation of EMTP occurs when the epithelial homeostasis is disturbed, the resulting myofibroblasts are able to secrete extracellular matrix proteins and deposit them on the tissues contributing to a fibrotic phenotype. If injury occurs during organogenesis, wound healing could be exaggerated and fibrotic response could be triggered. The molecule that regulates both of these processes (EMTP and fibrosis) is the transforming growth factor β (TGFβ); indeed null animals for TGFβ isoforms show similar defects than those seen in the amniotic band syndrome. Based on documented evidence this review intends to explain how the epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome.
Collapse
Affiliation(s)
- M Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Secretaría de Salud, Mexico
| | - N Bobadilla-Sandoval
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico
| | - A Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - F Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico.
| |
Collapse
|
8
|
Lodh S, O’Hare EA, Zaghloul NA. Primary cilia in pancreatic development and disease. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2014; 102:139-58. [PMID: 24864023 PMCID: PMC4213238 DOI: 10.1002/bdrc.21063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/30/2014] [Accepted: 03/30/2014] [Indexed: 01/04/2023]
Abstract
Primary cilia and their anchoring basal bodies are important regulators of a growing list of signaling pathways. Consequently, dysfunction in proteins associated with these structures results in perturbation of the development and function of a spectrum of tissue and cell types. Here, we review the role of cilia in mediating the development and function of the pancreas. We focus on ciliary regulation of major pathways involved in pancreatic development, including Shh, Wnt, TGF-β, Notch, and fibroblast growth factor. We also discuss pancreatic phenotypes associated with ciliary dysfunction, including pancreatic cysts and defects in glucose homeostasis, and explore the potential role of cilia in such defects.
Collapse
Affiliation(s)
- Sukanya Lodh
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth A. O’Hare
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Norann A. Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
El-Sherbini SM, Shahen SM, Mosaad YM, Abdelgawad MS, Talaat RM. Gene polymorphism of transforming growth factor-β1 in Egyptian patients with type 2 diabetes and diabetic nephropathy. Acta Biochim Biophys Sin (Shanghai) 2013; 45:330-8. [PMID: 23399816 DOI: 10.1093/abbs/gmt003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Role of the transforming growth factor-β1 (TGF-β1) gene polymorphisms located at codons 10 and 25 in the genetic predisposition to type 2 diabetes (T2D) and in diabetic nephropathy (DN) in Egyptian patients was investigated. A case control study was done for 99 unrelated Egyptian patients with T2D (50 DN(-) and 49 DN(+)) and 98 age- and sex-matched healthy controls. TGF-β1 T869C (codon 10) and G915C (codon 25) polymorphism detection was done by amplification refractory mutation system method. DN(+) patients were younger, with higher body mass index, serum triglycerides, serum creatinine, and lower serum albumin than those in DN(-) patients. Moderate and bad grades of diabetic control were associated with DN (P < 0.001). The TGF-β1 (T869C) C allele, TC and TC + CC genotypes were significantly higher in patients; the T allele and TT genotype were significantly higher in controls (Pc < 0.001). The TGF-β1 TC genotype was associated with DN (Pc < 0.05). Non-significant differences were detected between T2D patients and controls in the frequencies of TGF-β1 (G915C) alleles and genotypes. In conclusion, these preliminary data showed that the TGF-β1 codon 10 C allele, and C allele-containing genotypes may be susceptible, and T allele/TT genotype may be protective factors for T2D and DN(+) complications.
Collapse
Affiliation(s)
- Sherif M El-Sherbini
- Molecular Immunology, Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Menofia University, Menofia 22857, Egypt
| | | | | | | | | |
Collapse
|
10
|
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial, evolutionarily conserved process that occurs during development and is essential for shaping embryos. Also implicated in cancer, this morphological transition is executed through multiple mechanisms in different contexts, and studies suggest that the molecular programs governing EMT, albeit still enigmatic, are embedded within developmental programs that regulate specification and differentiation. As we review here, knowledge garnered from studies of EMT during gastrulation, neural crest delamination and heart formation have furthered our understanding of tumor progression and metastasis.
Collapse
Affiliation(s)
- Jormay Lim
- Institute of Molecular Cell Biology, ASTAR, 61 Biopolis Drive, Singapore
| | | |
Collapse
|
11
|
Hammerman MR. Pancreas and kidney transplantation using embryonic donor organs. Organogenesis 2012; 1:3-13. [PMID: 19521554 DOI: 10.4161/org.1.1.1008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 06/01/2004] [Indexed: 01/09/2023] Open
Abstract
One novel solution to the shortage of human organs available for transplantation envisions 'growing' new organs in situ. This can be accomplished by transplantation of developing organ anlagen/primordia. We and others have shown that renal anlagen (metanephroi) transplanted into animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin and exhibit excretory function. Metanephroi can be stored for up to 3 days in vitro prior to transplantation with no impairment in growth or function post-implantation. Metanephroi can be transplanted across both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. Similarly, pancreatic anlagen can be transplanted across concordant and highly disparate barriers, and undergo growth, differentiation and secrete insulin in a physiological manner following intra-peritoneal placement. Implantation of the embryonic pancreas, is followed by selective differentiation of islet components. Here we review studies exploring the potential therapeutic applicability for organogenesis of the kidney or endocrine pancreas.
Collapse
|
12
|
Foroni C, Broggini M, Generali D, Damia G. Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 2011; 38:689-97. [PMID: 22118888 DOI: 10.1016/j.ctrv.2011.11.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/05/2011] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. In this process, cells acquire molecular alterations that facilitate dysfunctional cell-cell adhesive interactions and junctions. These processes may promote cancer cell progression and invasion into the surrounding microenvironment. Such transformation has implications in progression of breast carcinoma to metastasis, and increasing evidences support most tumors contain a subpopulation of cells with stem-like and mesenchymal features that is resistant to chemotherapy. This review focuses on the physiological and pathological role of EMT process, its molecular related network, its putative role in the metastatic process and its implications in response/resistance to the current and/or new approaching drugs in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Chiara Foroni
- U.O. Multidisciplinare di Patologia Mammaria, Laboratorio di Oncologia Molecolare Senologica, Istituti Ospitalieri di Cremona,Viale Concordia 1, 26100 Cremona, Italy
| | | | | | | |
Collapse
|
13
|
Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn 2011; 240:589-604. [PMID: 21287656 DOI: 10.1002/dvdy.22544] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2010] [Indexed: 12/23/2022] Open
Abstract
During development, pancreatic endocrine cells are specified within the pancreatic epithelium. They subsequently delaminate out of the epithelium and cluster in the mesenchyme to form the islets of Langerhans. Neurogenin3 (Ngn3) is a transcription factor required for the differentiation of all endocrine cells and we investigated its role in their delamination. We observed in the mouse pancreas that most Ngn3-positive cells have lost contact with the lumen of the epithelium, showing that the delamination from the progenitor layer is initiated in endocrine progenitors. Subsequently, in both mouse and chick newly born endocrine cells at the periphery of the epithelium strongly decrease E-cadherin, break-down the basal lamina and cluster into islets of Langerhans. Repression of E-cadherin is sufficient to promote delamination from the epithelium. We further demonstrate that Ngn3 indirectly controls Snail2 protein expression post-transcriptionally to repress E-cadherin. In the chick embryo, Ngn3 independently controls epithelium delamination and differentiation programs.
Collapse
|
14
|
Balasubramanian M, Shield JPH, Acerini CL, Walker J, Ellard S, Marchand M, Polak M, Vaxillaire M, Crolla JA, Bunyan DJ, Mackay DJG, Temple IK. Pancreatic hypoplasia presenting with neonatal diabetes mellitus in association with congenital heart defect and developmental delay. Am J Med Genet A 2010; 152A:340-6. [PMID: 20082465 DOI: 10.1002/ajmg.a.33194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Congenital pancreatic hypoplasia is a rare cause of neonatal diabetes. We report on a series of three patients with pancreatic agenesis and congenital heart defects. All had abdominal scan evidence of pancreatic agenesis. In addition, Patient 1 had a ventricular septal defect, patent ductus arteriosus and pulmonary artery stenosis; Patient 2 had a truncus arteriosus and Patient 3 had tetralogy of Fallot. Two of the three patients have developmental delay. All three patients were isolated cases within the family. Investigations included sequencing of GCK, ABCC8, IPF1, NEUROD1, PTF1A, HNF1B, INS, ISL1, NGN3, HHEX, G6PC2, TCF7L2, SOX4, FOXP3 (Patients 1 and 2), GATA4 and KCNJ11 genes (all three patients), but no mutations were found. Genetic investigation to exclude paternal UPD 6, methylation aberrations and duplications of 6q24 was also negative in all three. 22q11 deletion was excluded in all three patients. Array CGH in Patient (1) showed a approximately 250 kb, paternally inherited duplication of chromosome 12q [arr cgh 12q24.33 (B35:CHR12:131808577-132057649++) pat], not found in the other two patients. Permanent neonatal diabetes mellitus due to pancreatic hypoplasia with congenital heart defects has been reported before and may represent a distinct condition. We discuss this rare association and review previously reported literature.
Collapse
Affiliation(s)
- M Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871-90. [PMID: 19945376 DOI: 10.1016/j.cell.2009.11.007] [Citation(s) in RCA: 7527] [Impact Index Per Article: 501.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
Collapse
|
16
|
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119:1438-49. [PMID: 19487820 DOI: 10.1172/jci38019] [Citation(s) in RCA: 1045] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | | | | | | | | |
Collapse
|
17
|
Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009. [PMID: 19487820 DOI: 10.1172/jci38019.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review the EMT events that build the embryo and further discuss two prototypical processes governed by EMT in amniotes: gastrulation and neural crest formation. Cells undergo EMT to migrate and colonize distant territories. Not surprisingly, this is also the mechanism used by cancer cells to disperse throughout the body.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias (CSIC-UMH), San Juan de Alicante, Spain
| | | | | | | | | |
Collapse
|
18
|
Abstract
In this review, I summarize some aspects of murine pancreas development, with particular emphasis on the analysis of the ontogenetic relationships between different pancreatic cell types. Lineage analyses allow the identification of the progenitor cells from which mature cell types arise. The identification and successful in vitro culture of putative pancreatic stem cells is highly relevant for future cell replacement therapies in diabetic patients.
Collapse
|
19
|
D'Alessandro JS, Lu K, Fung BP, Colman A, Clarke DL. Rapid And Efficient in Vitro Generation of Pancreatic Islet Progenitor Cells from Nonendocrine Epithelial Cells in The Adult Human Pancreas. Stem Cells Dev 2007; 16:75-89. [PMID: 17348806 DOI: 10.1089/scd.2006.0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The absence of efficient and directed methods for the differentiation of adult pancreatic progenitor cell populations to pancreatic islet cells has raised doubts concerning the regeneration potential inherent in the adult pancreas. Relatively low levels of islet cell differentiation have been reported using adult pancreatic cells in vivo and in vitro. In the present study, we initially enriched for a nonendocrine epithelial component of the adult human pancreas and defined conditions that are permissive to islet cell differentiation in vitro. Sequential progression of cell differentiation in the permissive conditions allowed for incremental evaluation of changes occurring in the cell population. Optimization of the differentiation process, for the efficient production of islet endocrine cells, was accomplished by identifying specific factors and culture conditions that increased islet progenitor production 250-fold. Ultimately, 85% percent of the nonendocrine epithelial cells isolated from human pancreatic tissue and cultured in the optimized conditions for 8 days, readily re-expressed pancreatic duodenal homeobox-1 (Pdx1). Sixty-five percent of these Pdx1-expressing cells were capable of additional islet endocrine cell differentiation. This represents a significant advancement in the differentiation of an adult pancreatic progenitor cell population in vitro and suggests that the nonendocrine compartment of the human pancreas remains an important cell resource for the generation of transplantable islets to treat diabetes.
Collapse
|
20
|
Marjanovic G, Obermaier R, Benz S, Bley T, Juettner E, Hopt UT, Adam U. Complete pancreatic encasement of the portal vein--surgical implications of an extremely rare anomaly. Langenbecks Arch Surg 2007; 392:489-91. [PMID: 17221270 DOI: 10.1007/s00423-006-0123-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Due to the complex embryologic development, pancreatic anatomy can be very variable. DISCUSSION The authors present the second ever reported case in the literature of a complete pancreatic encasement of the portal vein which forced us to alter the standard operative procedure of pancreatic head resection, thus enabling possible dangerous complications.
Collapse
Affiliation(s)
- Goran Marjanovic
- Department of General and Visceral Surgery, Albert Ludwigs University, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Pancreas divisum is the most common congenital anomaly of the pancreas. Abnormal hedgehog protein signaling appears related to the formation of several pancreatic malformations, including annular pancreas, pancreatic-biliary malunion, pancreatic rests, and pancreas divisum. Pancreas divisum by itself should not necessarily require intervention. A careful evaluation should be performed to exclude other causes of symptoms. If the patient is asymptomatic, no further evaluation is necessary. However, a significant percentage of patients with pancreas divisum and acute recurrent pancreatitis benefit from intervention. Surgical sphincteroplasty and endoscopic interventions appear similar in outcome. Thus, endoscopic intervention with prophylactic temporary stenting is advised as initial therapy. Surgery should be reserved for patients with chronic pancreatitis.
Collapse
Affiliation(s)
- J Steven Burdick
- Baylor University Medical Center, 3500 Gaston Avenue, 3rd Floor Truett, Dallas, TX 75246, USA.
| | | |
Collapse
|
22
|
Hammerman MR. Growing new endocrine pancreas in situ. Clin Exp Nephrol 2006; 10:1-7. [PMID: 16544171 DOI: 10.1007/s10157-005-0393-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 10/17/2005] [Indexed: 10/24/2022]
Abstract
Type 1 diabetes mellitus is a major cause of endstage renal disease in young adults. Maintenance of normoglycemia in type 1 diabetics using exogenous insulin is difficult under the best of circumstances. Transplantation therapies are limited by the scarcity of human donor organs, rendering a priority the identification of an alternative source for replacing insulin-secreting cells. Embryonic pancreatic primordia transplanted into diabetic animal hosts undergo selective endocrine differentiation in situ and normalize glucose tolerance. Pancreatic primordia can be transplanted across isogeneic, allogeneic, and both concordant (rat-to-mouse) and highly disparate (pig-to-rodent) xenogeneic barriers. Successful transplantation of pancreatic primordia depends on obtaining them at defined windows during embryonic development within which the risk of teratogenicity is eliminated, growth potential is maximized, and immunogenicity is reduced. Here we review studies exploring the potential for pancreatic organogenesis post-transplantation of embryonic primordia as a therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Marc R Hammerman
- Renal Division, Box 8126, Department of Medicine, and Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Blitz IL, Andelfinger G, Horb ME. Germ layers to organs: Using Xenopus to study “later” development. Semin Cell Dev Biol 2006; 17:133-45. [PMID: 16337415 DOI: 10.1016/j.semcdb.2005.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The amphibian embryo is a highly successful model system with great promise for organogenesis research. Since the late 1800s, amphibians have been employed to understand vertebrate development and since the 1950s, the African clawed frog Xenopus laevis has been the amphibian of choice. In the past two decades, Xenopus has led the way forward in, among other things, identifying transcription factors, gene regulatory networks and inter- and intracellular signaling pathways that control early development (from fertilization through gastrulation and neurulation). Perhaps the best measure of how successful Xenopus has been as a model for early mammalian development is the observation that much of the knowledge gleaned from Xenopus studies has subsequently directly translated to discoveries of similar mechanisms operating in mouse development. Despite this great success in early development, research on organogenesis in Xenopus has lagged behind the mouse. However, recent technical advances now make Xenopus amenable for studies on later development, including organogenesis. Here, we discuss why Xenopus is well suited for such research and, we believe, permits addressing questions that have been difficult to approach using other model systems. We also highlight how Xenopus researchers have already begun studying a number of major organs, pancreas, liver, kidney and heart, and suggest how Xenopus might contribute more to these areas in the near future.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology and the Developmental Biology Center, University of California, Irvine, CA 92697, USA, and Division of Pediatric Cardiology, Ste Justine Hospital, Montréal, QC, Canada
| | | | | |
Collapse
|
24
|
Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 2005; 123:42-55. [PMID: 16326079 DOI: 10.1016/j.mod.2005.10.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/25/2023]
Abstract
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.
Collapse
Affiliation(s)
- Jessica Dessimoz
- ISREC, Chemin des Boveresses 155, CH1066, Epalinges/Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Wagner RA, Tabibiazar R, Liao A, Quertermous T. Genome-wide expression dynamics during mouse embryonic development reveal similarities to Drosophila development. Dev Biol 2005; 288:595-611. [PMID: 16310180 DOI: 10.1016/j.ydbio.2005.09.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 07/16/2005] [Accepted: 09/01/2005] [Indexed: 11/16/2022]
Abstract
Gene transcription mediates many vital aspects of mammalian embryonic development. A comprehensive characterization and analysis of the dynamics of gene transcription in the embryo is therefore likely to provide significant insights into the basic mechanisms of this process. We used microarrays to map transcription in the mouse embryo in the important period from embryonic day 8 (e8.0) to postnatal day 1 (p1) during which the bulk of the differentiation and development of organ systems takes place. Analysis of these expression profiles revealed distinct patterns of gene expression which correlate with the differentiation of organs including the nervous system, liver, skin, lungs, and digestive system, among others. Statistical analysis of the data based on Gene Ontology (GO) group annotation showed that specific temporal sequence patterns in gene class utilization across development are very similar to patterns seen during the embryonic development of Drosophila, suggesting conservation of the temporal progression of these processes across 550 million years of evolution. The temporal profiles of gene expression and activation of processes revealed here provide intriguing insights into the mechanisms of mammalian development, embryogenesis, and organogenesis, as well as into the evolution of developmental processes.
Collapse
Affiliation(s)
- Roger A Wagner
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Falk CVRC, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
26
|
Martín M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, Chambon P, Dollé P, Gradwohl G. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev Biol 2005; 284:399-411. [PMID: 16026781 DOI: 10.1016/j.ydbio.2005.05.035] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 05/10/2005] [Accepted: 05/26/2005] [Indexed: 12/19/2022]
Abstract
During embryogenesis, the pancreas arises from dorsal and ventral pancreatic protrusions from the primitive gut endoderm upon induction by different stimuli from neighboring mesodermal tissues. Recent studies have shown that Retinoic Acid (RA) signaling is essential for the development of the pancreas in non-mammalian vertebrates. To investigate whether RA regulates mouse pancreas development, we have studied the phenotype of mice with a targeted deletion in the retinaldehyde dehydrogenase 2 (Raldh2) gene, encoding the enzyme required to synthesize RA in the embryo. We show that Raldh2 is expressed in the dorsal pancreatic mesenchyme at the early stage of pancreas specification. RA-responding cells have been detected in pancreatic endodermal and mesenchymal cells. Raldh2-deficient mice do not develop a dorsal pancreatic bud. Mutant embryos lack Pdx 1 expression, an essential regulator of early pancreas development, in the dorsal but not the ventral endoderm. In contrast to Pdx 1-deficient mice, the early glucagon-expressing cells do not develop in Raldh2 knockout embryos. Shh expression is, as in the wild-type embryo, excluded from the dorsal endodermal region at the site where the dorsal bud is expected to form, indicating that the dorsal bud defect is not related to a mis-expression of Shh. Mesenchymal expression of the LIM homeodomain protein Isl 1, required for the formation of the dorsal mesenchyme, is altered in Raldh2--/-- embryos. The homeobox gene Hlxb9, which is essential for the initiation of the pancreatic program in the dorsal foregut endoderm, is still expressed in Raldh2--/-- dorsal epithelium but the number of HB9-expressing cells is severely reduced. Maternal supplementation of RA rescues early dorsal pancreas development and restores endodermal Pdx 1 and mesenchymal Isl 1 expression as well as endocrine cell differentiation. These findings suggest that RA signaling is important for the proper differentiation of the dorsal mesenchyme and development of the dorsal endoderm. We conclude that RA synthesized in the mesenchyme is specifically required for the normal development of the dorsal pancreatic endoderm at a stage preceding Pdx 1 function.
Collapse
|
27
|
Hammerman MR. Organogenesis of the endocrine pancreas. Kidney Int 2005; 68:1953-5. [PMID: 16221174 DOI: 10.1111/j.1523-1755.2005.00628.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organogenesis of the endocrine pancreas. Embryonic pancreatic primordia transplanted into diabetic animal hosts undergo selective endocrine differentiation in situ and normalize glucose tolerance. Pancreatic primordia can be transplanted across isogeneic, allogeneic, and both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. This review explores the therapeutic potential for pancreatic organogenesis posttransplantation of embryonic primordia.
Collapse
Affiliation(s)
- Marc R Hammerman
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Hammerman MR. Windows of opportunity for organogenesis. Transpl Immunol 2005; 15:1-8. [PMID: 16223667 DOI: 10.1016/j.trim.2005.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 03/14/2005] [Indexed: 11/30/2022]
Abstract
Growing new organs in situ by implanting developing animal organ anlagen/primordia represents a novel solution to the problem of limited supply for human donor organs that offers advantages relative to transplanting embryonic stem (ES) cells or xenotransplantation of developed organs. We and others have shown that renal anlagen transplanted into animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin, exhibit excretory function and support life in otherwise anephric hosts. Renal anlagen can be transplanted across both concordant (rat to mouse) and highly disparate (pig to rodent) xenogeneic barriers. Similarly, pancreatic anlagen can be transplanted across concordant and highly disparate barriers, and undergo growth, differentiation and secrete insulin in a physiological manner following intra-peritoneal placement. Successful transplantation of organ primordia depends on obtaining them at defined windows during embryonic development within which the risk of teratogenicity is eliminated, growth potential is maximized, and immunogenicity is reduced. Here we review studies that delineate such developmental windows of opportunity for kidney and pancreas.
Collapse
Affiliation(s)
- Marc R Hammerman
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Rogers SA, Liapis H, Hammerman MR. Normalization of glucose post-transplantation of pig pancreatic anlagen into non-immunosuppressed diabetic rats depends on obtaining anlagen prior to embryonic day 35. Transpl Immunol 2005; 14:67-75. [PMID: 15935296 DOI: 10.1016/j.trim.2005.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 01/12/2023]
Abstract
Embryonic day (E) 28 (E28) pig pancreatic anlagen (PPA) transplanted into the omentum of non-immunosuppressed steptozotocin-diabetic Lewis rats normalize levels of circulating glucose within 2-4 weeks. Following transplantation formerly diabetic rats have porcine insulin, but no rat insulin detectable in circulation. At 3 weeks post-E28 PPA transplantation, bits of insulin-positive tissue are observed amidst host omental fat, but by 6 weeks only individual alpha and beta cells remain. In contrast, E35 PPA transplantation does not normalize glucose and 6 weeks post-implantation of E35 PPA transplanted tissue is rejected. In contrast to E28 PPA, no trace of implanted renal tissue is detectable post implantation of E28 pig renal anlagen (PRA) in non-immunosuppressed non-diabetic rats or in streptozocin-diabetic rats previously transplanted with E28 PPA. In the latter, normoglycemia is maintained post-PRA transplantation. We conclude that normalization of glucose levels following transplantation of PPA into non-immunosuppressed Lewis rats depends on obtaining the anlagen before E35 and that prior successful engraftment of E28 PPA as reflected by normalization of glucose, does not permit successful engraftment of E28 PRA.
Collapse
Affiliation(s)
- Sharon A Rogers
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis MO 63110, USA
| | | | | |
Collapse
|
30
|
Loiler SA, Tang Q, Clarke T, Campbell-Thompson ML, Chiodo V, Hauswirth W, Cruz P, Perret-Gentil M, Atkinson MA, Ramiya VK, Flotte TR. Localized Gene Expression Following Administration of Adeno-associated Viral Vectors via Pancreatic Ducts. Mol Ther 2005; 12:519-27. [PMID: 15979413 DOI: 10.1016/j.ymthe.2005.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 04/01/2005] [Accepted: 04/12/2005] [Indexed: 12/16/2022] Open
Abstract
Gene transfer into pancreatic cells in vivo could be of immense therapeutic benefit in cases of type 1 diabetes (T1D) through the production of molecules capable of interrupting the progression of autoimmunity or promoting regeneration of insulin-secreting beta cells. We adapted a clinically relevant surgical technique (endoscopic retrograde cholangiopancreatography) to deliver rAAV encoding human alpha1-antitrypsin (approved gene symbol SERPINA1) to the pancreas of 3-week-old Fisher 344 rats and C57BL/6 mice. We compared natural as well as bioengineered serotypes of rAAV (rAAV1, rAAV2/Apo, rAAV8) as well as different promoters (chicken beta-actin, human insulin) for their expression in vivo. Rats injected with rAAV1 showed the highest hAAT expression (week 2, rAAV1/CB-AT, 579 +/- 457 ng/ml). In mice, rAAV8 vector delivered the highest serum concentration of hAAT (week 2, rAAV8/CB-AT, 19 +/- 6 microg/ml). The chicken beta-actin promoter provided the highest expression in both rodent experiments. Immunohistochemical staining indicated transduction primarily of pancreatic acinar cells with either the rAAV1/CB-AT vector in the rat or the rAAV8/CB-AT vector in the mouse. This study demonstrates that rAAV vectors can be designed to deliver therapeutic genes efficiently to the pancreas and achieve high levels of gene expression and may be useful in treating pancreatic disorders, including T1D.
Collapse
Affiliation(s)
- Scott A Loiler
- Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Neureiter D, Zopf S, Dimmler A, Stintzing S, Hahn EG, Kirchner T, Herold C, Ocker M. Different capabilities of morphological pattern formation and its association with the expression of differentiation markers in a xenograft model of human pancreatic cancer cell lines. Pancreatology 2005; 5:387-97. [PMID: 15980667 DOI: 10.1159/000086539] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 03/28/2005] [Indexed: 12/11/2022]
Abstract
AIMS New concepts of tumorigenesis favor an unregulated process recapitulating different stages of embryogenic development with dysregulation of transition states. The aim of our study was to investigate the possibility of differentiation pathways of human pancreatic cancer cell lines in vivo. MATERIAL AND METHODS Different human pancreatic cancer cell lines (YAPC, DAN-G, CAPAN-1, PANC-1 and MIA PaCa-2) were implanted subcutaneously (3 x 10(6) cells) for 28 days in nude mice. Xenotransplants were characterized with histochemistry (HE, PAS), immunohistochemistry (cytokeratin (CK)7, CK8, CK18, CK19, CK20, vimentin, chromogranin A (Chr-A), alpha1-antichymotrypsin (alpha1-chym), beta-catenin, laminin-5, pancreatic and duodenal homeobox gene 1 (pdx-1), sonic hedgehog protein (shh), Patched (ptc)), Western blotting and real-time PCR (CK7, CK8, CK20, Chr-A, pdx-1, shh, ptc). RESULTS Depending on three major morphologic phenotypes of tumor cell xenotransplants (ductal (YAPC), ductal/solid (DAN-G, CAPAN-1), solid (PANC-1, MIA PaCa-2)), a decrease of CK7/CK19 was found, accompanied by an increase of CK8/18 and vimentin. Predominantly the CK7-positive ductal phenotype (YAPC and DAN-G) was associated with pdx-1 expression, whereas the CK8-positive solid phenotype was associated with shh/ptc expression on protein and mRNA level. Additionally, CK-20 expression was mainly linked to the ductal phenotype, co-localized with nuclear beta-catenin. The endocrine-exocrine transdifferentiation, as assessed by Chr-A and alpha1-chym, was on a constant low to moderate level in all xenotransplants. Finally, an intensive epithelial-mesenchymal interaction was observed by overexpression of laminin-5 at the invasion front. CONCLUSION The observed patterns of morphology and molecular differentiation in human pancreatic cancer xenografts indicate that these cancer cell lines have different capabilities of pattern formation in vivo associated with molecular differentiation markers, especially of embryonic pancreatic development.
Collapse
Affiliation(s)
- Daniel Neureiter
- Department of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Carroccio A, di Prima L. [Physiopathology, diagnosis, and treatment of exocrine pancreatic insufficiency in other clinical situations: diabetes mellitus and HIV infection]. GASTROENTEROLOGIA Y HEPATOLOGIA 2005; 28 Suppl 1:43-7. [PMID: 15899238 DOI: 10.1157/13071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- A Carroccio
- Medicina Interna, Policlínico P. Giaccone de Palermo, Palermo, Italy.
| | | |
Collapse
|
33
|
Brandt R, Grützmann R, Bauer A, Jesnowski R, Ringel J, Löhr M, Pilarsky C, Hoheisel JD. DNA microarray analysis of pancreatic malignancies. Pancreatology 2004; 4:587-97. [PMID: 15557762 DOI: 10.1159/000082241] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis. To improve the prognosis, novel molecular markers and targets for earlier diagnosis and adjuvant and/or neoadjuvant treatment are needed. Recent advances in human genome research and high-throughput molecular technologies make it possible to cope with the molecular complexity of malignant tumors. With DNA array technology, mRNA expression levels of thousand of genes can be measured simultaneously in a single assay. As several studies using microarrays in PDAC have already been published, this review attempts to compare the published data and therefore to validate the results. In addition, the applied techniques are discussed in the context of pancreatic malignancies.
Collapse
Affiliation(s)
- Regine Brandt
- Department of Medicine II, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Skoudy A, Rovira M, Savatier P, Martin F, León-Quinto T, Soria B, Real FX. Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. Biochem J 2004; 379:749-56. [PMID: 14733613 PMCID: PMC1224110 DOI: 10.1042/bj20031784] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/19/2004] [Accepted: 01/20/2004] [Indexed: 02/02/2023]
Abstract
Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation.
Collapse
Affiliation(s)
- Anouchka Skoudy
- Unitat de Biologia Cel.lular i Molecular, Institut Municipal d'Investigació Mèdica, 08003 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
In this review, analyses of the ontogenetic relations between the different pancreatic cell types are summarized. Lineage analyses allow identification of progenitor cells from which mature cell types differentiate. This knowledge is highly relevant for future cell replacement therapies in diabetic patients, helping to define the identity of putative pancreatic stem cells.
Collapse
Affiliation(s)
- Pedro Luis Herrera Merino
- Department of Genetic Medicine and Development, University of Geneva Medical School, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
36
|
Developmental biology of the pancreas. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|