1
|
Jayasekhar R, Mathew JKK, Sangi Z, Marconi SD, Rupa V, Rabi S. Immunolocalization of CD1a expressing dendritic cells in sinonasal polyposis. J Immunoassay Immunochem 2022; 43:403-419. [PMID: 35147059 DOI: 10.1080/15321819.2022.2034645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sinonasal polyps are benign projections of edematous nasal mucosa lined by respiratory epithelium. Langerhans cells (LCs) belonging to the dendritic cell family located in respiratory epithelium are involved in antigen presentation and maintenance of local immunological homeostasis. This study aims to elucidate the morphology and distribution of CD1a positive LCs in normal nasal mucosa and compare the same with polypoid nasal mucosa by immunohistochemistry. Normal nasal mucosa (n = 20) was obtained from patients who underwent septoplasty for deviated nasal septum. Polypoid nasal mucosa (n = 22) was obtained from patients with chronic rhinosinusitis (CRS) or allergic fungal rhinosinusitis who underwent excision of nasal polyps. The tissues obtained were processed for immunohistochemistry and stained with CD1a-EP80 Rabbit monoclonal antibody. In the tissues studied, CD1a positive LCs were observed in both the epithelium and lamina propria. Different morphological subtypes of LCs were noted in the epithelium. The cells were distributed adjacent to walls of subepithelial capillaries and cysts. The median number of CD1a positive LCs was significantly higher in polypoid category (13.5 per mm2) as compared with normal nasal mucosa (2.5per mm2) (p = .001). Presence of CD1a positive LCs in polypoid nasal mucosa hints at a critical immunological role in the etiopathogenesis of nasal polyps.
Collapse
Affiliation(s)
- Rachel Jayasekhar
- Department of Anatomy, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - John Kandam Kulathu Mathew
- Department of Anatomy, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Zorem Sangi
- Department of Otorhinolaryngology, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Sam David Marconi
- Department of Community Health and Development, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Vedantam Rupa
- Department of Otorhinolaryngology, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| | - Suganthy Rabi
- Department of Anatomy, Christian Medical College, The Tamil Nadu Dr. MGR Medical University Chennai, Vellore, India
| |
Collapse
|
2
|
Rizvi ZA, Puri N, Saxena RK. Evidence of CD1d pathway of lipid antigen presentation in mouse primary lung epithelial cells and its up-regulation upon Mycobacterium bovis BCG infection. PLoS One 2018; 13:e0210116. [PMID: 30596774 PMCID: PMC6312317 DOI: 10.1371/journal.pone.0210116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/17/2018] [Indexed: 01/01/2023] Open
Abstract
Presentation of a prototype lipid antigen α-Galactosylceramide (αGC) was examined on primary epithelial cells derived from mouse lungs and on bronchoalveolar lavage (BAL) cells that essentially comprise alveolar macrophages. Presence of CD1d molecules coupled to αGC was demonstrated on both types of cells pre-treated with αGC, suggesting that both cell types are equipped to present lipid antigens. Internalization of Mycobacterium bovis Bacillus Calmette–Guérin (BCG: a prototype pathogen), a pre-requisite to the processing and presentation of protein as well as lipid antigens, was clearly demonstrated in primary lung epithelial (PLE) cells as well as BAL cells. Both PLE and BAL cells expressed CD1d molecule and a significant up-regulation of its expression occurred upon infection of these cells with BCG. Besides CD1d, the expression of other important molecules that participate in lipid antigen presentation pathway (i.e. microsomal triglyceride transfer protein (MTTP), scavenger receptor B1 (SR-B1) and Saposin) was also significantly upregulated in PLE and BAL cells upon BCG infection. In situ up-regulation of CD1d expression on lung epithelial cells was also demonstrated in the lungs of mice exposed intra-tracheally to BCG. Taken together these results suggest that lung epithelial cells may have the ability to present lipid antigens and this pathway seems to get significantly upregulated in response to BCG infection.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- * E-mail:
| | - Rajiv K. Saxena
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, Delhi, India
| |
Collapse
|
3
|
Lutter L, Hoytema van Konijnenburg DP, Brand EC, Oldenburg B, van Wijk F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat Rev Gastroenterol Hepatol 2018; 15:637-649. [PMID: 29973676 DOI: 10.1038/s41575-018-0039-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Lisanne Lutter
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - David P Hoytema van Konijnenburg
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Eelco C Brand
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
4
|
Mortier C, Govindarajan S, Venken K, Elewaut D. It Takes "Guts" to Cause Joint Inflammation: Role of Innate-Like T Cells. Front Immunol 2018; 9:1489. [PMID: 30008717 PMCID: PMC6033969 DOI: 10.3389/fimmu.2018.01489] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
Innate-like T cells such as invariant natural killer T (iNKT) cells and mucosal-associated T (MAIT) cells, characterized by a semi-invariant T cell receptor and restriction toward MHC-like molecules (CD1 and MR1 respectively), are a unique unconventional immune subset acting at the interface of innate and adaptive immunity. Highly represented at barrier sites and capable of rapidly producing substantial amounts of cytokines, they serve a pivotal role as first-line responders against microbial infections. In contrast, it was demonstrated that innate-like T cells can be skewed toward a predominant pro-inflammatory state and are consequently involved in a number of autoimmune and inflammatory diseases like inflammatory bowel diseases and rheumatic disorders, such as spondyloarthritis (SpA) and rheumatoid arthritis. Interestingly, there is link between gut and joint disease as they often co-incide and share certain aspects of the pathogenesis such as established genetic risk factors, a critical role for pro-inflammatory cytokines, such as TNF-α, IL-23, and IL-17 and therapeutic susceptibility. In this regard dysregulated IL-23/IL-17 responses appear to be crucial in both debilitating pathologies and innate-like T cells likely act as key player. In this review, we will explore the remarkable features of iNKT cells and MAIT cells, and discuss their contribution to immunity and combined gut-joint disease.
Collapse
Affiliation(s)
- Céline Mortier
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Srinath Govindarajan
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Koen Venken
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Dirk Elewaut
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Abstract
Tuberculosis is one of the most successful human diseases in our history due in large part to the multitude of virulence factors exhibited by the causative agent, Mycobacterium tuberculosis. Understanding the pathogenic nuances of this organism in the context of its human host is an ongoing topic of study facilitated by isolating cells from model organisms such as mice and non-human primates. However, M. tuberculosis is an obligate intracellular human pathogen, and disease progression and outcome in these model systems can differ from that of human disease. Current in vitro models of infection include primary macrophages and macrophage-like immortalized cell lines as well as the induced pluripotent stem cell-derived cell types. This article will discuss these in vitro model systems in general, what we have learned so far about utilizing them to answer questions about pathogenesis, the potential role of other cell types in innate control of M. tuberculosis infection, and the development of new coculture systems with multiple cell types. As we continue to expand current in vitro systems and institute new ones, the knowledge gained will improve our understanding of not only tuberculosis but all infectious diseases.
Collapse
|
6
|
Jurewicz A, Domowicz M, Galazka G, Raine CS, Selmaj K. Multiple sclerosis: Presence of serum antibodies to lipids and predominance of cholesterol recognition. J Neurosci Res 2017; 95:1984-1992. [DOI: 10.1002/jnr.24062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Anna Jurewicz
- Department of Neurology; Medical University of Lodz; Lodz Poland
| | | | - Grazyna Galazka
- Department of Neurology; Medical University of Lodz; Lodz Poland
| | - Cedric S. Raine
- Department of Pathology; Albert Einstein College of Medicine; New York USA
| | - Krzysztof Selmaj
- Department of Neurology; Medical University of Lodz; Lodz Poland
| |
Collapse
|
7
|
Abstract
Through thousands of years of reciprocal coevolution, Mycobacterium tuberculosis has become one of humanity's most successful pathogens, acquiring the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies that interfere with both innate and adaptive immunity. These include the manipulation of their phagosomal environment within host macrophages, the selective avoidance or engagement of pattern recognition receptors, modulation of host cytokine production, and the manipulation of antigen presentation to prevent or alter the quality of T-cell responses. In this article we review an extensive array of published studies that have begun to unravel the sophisticated program of specific mechanisms that enable M. tuberculosis and other pathogenic mycobacteria to persist and replicate in the face of considerable immunological pressure from their hosts. Unraveling the mechanisms by which M. tuberculosis evades or modulates host immune function is likely to be of major importance for the development of more effective new vaccines and targeted immunotherapy against tuberculosis.
Collapse
|
8
|
Leishmania infantum amastigotes trigger a subpopulation of human B cells with an immunoregulatory phenotype. PLoS Negl Trop Dis 2015; 9:e0003543. [PMID: 25710789 PMCID: PMC4339978 DOI: 10.1371/journal.pntd.0003543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/16/2015] [Indexed: 01/14/2023] Open
Abstract
Visceral leishmaniasis is caused by the protozoan parasites Leishmania infantum and Leishmania donovani. This infection is characterized by an uncontrolled parasitization of internal organs which, when left untreated, leads to death. Disease progression is linked with the type of immune response generated and a strong correlation was found between disease progression and serum levels of the immunosuppressive cytokine IL-10. Other studies have suggested a role for B cells in the pathology of this parasitic infection and the recent identification of a B-cell population in humans with regulatory functions, which secretes large amounts of IL-10 following activation, have sparked our interest in the context of visceral leishmaniasis. We report here that incubation of human B cells with Leishmania infantum amastigotes resulted in upregulation of multiple cell surface activation markers and a dose-dependent secretion of IL-10. Conditioned media from B cells incubated with Leishmania infantum amastigotes were shown to strongly inhibit CD4+ T-cell activation, proliferation and function (i.e. as monitored by TNF and IFNγ secretion). Blockade of IL-10 activity using a soluble IL-10 receptor restored only partially TNF and IFNγ production to control levels. The parasite-mediated IL-10 secretion was shown to rely on the activity of Syk, phosphatidylinositol-3 kinase and p38, as well as to require intracellular calcium mobilization. Cell sorting experiments allowed us to identify the IL-10-secreting B-cell subset (i.e. CD19+CD24+CD27-). In summary, exposure of human B cells to Leishmania infantum amastigotes triggers B cells with regulatory activities mediated in part by IL-10, which could favor parasite dissemination in the organism. Leishmaniasis is an infection caused by protozoan parasites of the genus Leishmania and is a significant neglected tropical disease, with 350 million people in 98 countries at risk of developing one of the forms of the disease. Visceral leishmaniasis is characterized by an uncontrolled parasitization of internal organs, which leads to death when left untreated. Disease progression is linked with the type of immune response generated and a strong correlation was found between disease progression and serum levels of the immunosuppressive cytokine IL-10. We demonstrate that a contact between human B cells with Leishmania infantum amastigotes resulted in upregulation of multiple cell surface activation markers and a dose-dependent secretion of IL-10. Conditioned media from B cells incubated with Leishmania infantum amastigotes were shown to strongly inhibit CD4+ T-cell activation, proliferation and function (i.e. TNF and IFNγ production). Blockade of IL-10 activity using a soluble IL-10 receptor restored to some degree TNF and IFNγ secretion. Cell sorting experiments allowed us to identify a major IL-10-secreting B cell subset characterized as CD24+ and CD27-. Exposure of human B cells to Leishmania infantum amastigotes thus triggers B cells with regulatory activities mediated in part by IL-10, which could promote parasite dissemination in the organism.
Collapse
|
9
|
Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol 2013; 33:537-58. [PMID: 24354324 DOI: 10.3109/08830185.2013.863306] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gamma-delta T cells (γδ T cells) are an unique group of lymphocytes and play an important role in bridging the gap between innate and adaptive immune systems under homeostatic condition as well as during infection and inflammation. They are predominantly localized into the mucosal and epithelial sites, but also exist in other peripheral tissues and secondary lymphoid organs. γδ T cells can produce cytokines and chemokines to regulate the migration of other immune cells, can bring about lysis of infected or stressed cells by secreting granzymes, provide help to B cells and induce IgE production, can present antigen to conventional T cells, activate antigen presenting cells (APC) maturation, and are also known to produce growth factors that regulate the stromal cell function. γδ T cells spontaneously produce IFN-γ and IL-17 cytokines compared to delayed differentiation of Th1 and Th17 cells. In this review, we discussed the current knowledge about the mechanism of γδ T cell function including its mode of antigen recognition, and differentiation into various subsets of γδ T cells. We also explored how γδ T cells interact with different types of innate and adaptive immune cells, and how these interactions shape the immune response highlighting the plasticity and role of these cells-protective or pathogenic under inflammatory and tolerogenic conditions.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
10
|
Ma ZH, Lu H, Lu Q, Yao ZF, Han Y. CD1d blockade suppresses the capacity of immature dendritic cells to prime allogeneic T cell response. J Surg Res 2013; 183:894-9. [PMID: 23478084 DOI: 10.1016/j.jss.2013.01.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/27/2012] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Dendritic cells (DCs) are the principal antigen-presenting cells involved in primary immune response and immunoregulation. The function of DCs is believed to depend on their degree of maturation. Mature DCs activate immune responses, whereas immature DCs (imDCs) tend to induce immune tolerance. CD1 is involved in regulating the development of imDCs, which have important roles in initiating or suppressing the immune response after transplantation. MATERIALS AND METHODS We used male BALB/c mice and C57BL/6 mice (aged 8-10 wk, 18-22 g). We isolated and purified T lymphocytes from mouse spleen. Immature DCs modified by viral delivery of interleukin-10 (IL-10) were stimulated with granulocyte macrophage colony-stimulating factor and lipopolysaccharide (LPS) and treated with anti-CD1d in vitro. We used mixed lymphocyte cultures to evaluate the heterogeneity of T lymphocyte response. We also examined the proliferation of T lymphocytes and the expression of cytokines. RESULTS CD1d blockade did not impair granulocyte macrophage colony-stimulating factor and LPS-stimulated DC maturation. We observed a dramatic increase in allogeneic T lymphocyte proliferation (stimulation index) at all tested responder-stimulator ratios in response to imDCs cultured in the presence of LPS (P < 0.05). CD1d has an important role in imDC-primed T cell response (P < 0.05). CD1d blockade reduced the capacity of imDCs to prime allogeneic T cells. T cells pre-sensitized by LPS-stimulated imDCs showed remarkably elevated proliferation in response to T cells from either BALB/c or C57BL/6 mice (P < 0.01). We observed a significant decrease in the proliferation of T cells pre-sensitized by stimulated imDCs after CD1d blockade. Lipopolysaccharide stimulation caused elevated the production of IL-12 and tumor necrosis factor-α (TNF-α) (P < 0.01) and decreased the secretion of IL-10 (P < 0.05). The addition of CD1d neutralization antibody did not significantly change the concentrations of IL-12, TNF-α, or IL-10 produced by imDCs cultured in the presence of LPS (P > 0.05). CONCLUSIONS Blockade of CD1d impaired the ability of imDCs to stimulate allogeneic T cell response. By reduced T cell proliferation, the secretion of IL-12 and TNF-α decreased and production of a T-helper type 2 cytokine IL-10 increased, which indicates the potential of CD1d blockade as a method to induce immune tolerance to allograft antigens in transplantation.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD1d/drug effects
- Antigens, CD1d/immunology
- Antigens, CD1d/physiology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/metabolism
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/physiology
- Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology
- Immune Tolerance/drug effects
- Immune Tolerance/physiology
- In Vitro Techniques
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Models, Animal
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- Transplantation, Homologous
Collapse
Affiliation(s)
- Zhao-Hui Ma
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Nowak M, Schmidt-Wolf IGH. Natural killer T cells subsets in cancer, functional defects in prostate cancer and implications for immunotherapy. Cancers (Basel) 2011; 3:3661-75. [PMID: 24212972 PMCID: PMC3759215 DOI: 10.3390/cancers3033661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/01/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022] Open
Abstract
Natural killer T cells are T lymphocytes with unique activation and effector properties. The majority of NKT cells, termed type-I or iNKT cells, recognize lipid antigens presented on MHC-like CD1d molecules. Type-I NKT cells have the capacity to rapidly secrete various cytokines upon activation, thereby regulate immune responses exerts dominant anti-tumor and anti-microbial effector functions. Specific activation of type-I NKT cells in mouse models boosts immunity and prevents metastasis, which has led to a number of phase I-II clinical trials. Since the discovery of NKT cells other subsets with different specificities and effector functions have been described. This article briefly reviews the physiological functions of NKT cell subsets, their implications in cancer and the attempts that have been made to employ NKT cells for immune therapy of cancer.
Collapse
Affiliation(s)
- Michael Nowak
- Department of Internal Medicine III, University Hospital Bonn, Sigmund-Freud-Strasse 25, Bonn 53127, Germany.
| | | |
Collapse
|
12
|
Yang FL, Yang YL, Wu SH. Structure and function of glycolipids in thermophilic bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:367-80. [PMID: 21618118 DOI: 10.1007/978-1-4419-7877-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | | | |
Collapse
|
13
|
Gibbons DL, Spencer J. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol 2011; 4:148-57. [PMID: 21228770 DOI: 10.1038/mi.2010.85] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study of animal immune physiology and animal models of human disease have accelerated many aspects of translational research by allowing direct, definitive investigations. In particular, the use of mice has allowed genetic manipulation, adoptive transfer, immunization, and focused cell and tissue sampling, which would obviously be unthinkable for studies in humans. However, the disease relevance of some animal models may be uncertain and difficulties in interpretation may occur as a consequence of immunological differences between the two species. In this review, we will consider general differences in the structure and development of human and mouse mucosal lymphoid microenvironments and then discuss species differences in mucosal B- and T-cell biology that relate to the current concepts of intestinal immune function.
Collapse
Affiliation(s)
- D L Gibbons
- Peter Gorer Department of Immunobiology, Kings College London, London, UK.
| | | |
Collapse
|
14
|
BOSSETO MAIRACEGATTI, PALMA PATRICIAVIANNABONINI, COVAS DIMASTADEU, GIORGIO SELMA. Hypoxia modulates phenotype, inflammatory response, and leishmanial infection of human dendritic cells. APMIS 2010; 118:108-14. [DOI: 10.1111/j.1600-0463.2009.02568.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Baena A, Porcelli SA. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. TISSUE ANTIGENS 2009; 74:189-204. [PMID: 19563525 PMCID: PMC2753606 DOI: 10.1111/j.1399-0039.2009.01301.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis is one of the most successful of human pathogens and has acquired the ability to establish latent or progressive infection and persist even in the presence of a fully functioning immune system. The ability of M. tuberculosis to avoid immune-mediated clearance is likely to reflect a highly evolved and coordinated program of immune evasion strategies, including some that interfere with antigen presentation to prevent or alter the quality of T-cell responses. Here, we review an extensive array of published studies supporting the view that antigen presentation pathways are targeted at many points by pathogenic mycobacteria. These studies show the multiple potential mechanisms by which M. tuberculosis may actively inhibit, subvert or otherwise modulate antigen presentation by major histocompatibility complex class I, class II and CD1 molecules. Unraveling the mechanisms by which M. tuberculosis evades or modulates antigen presentation is of critical importance for the development of more effective new vaccines based on live attenuated mycobacterial strains.
Collapse
Affiliation(s)
- Andres Baena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Bowman C, Delrieu O. Immunogenetics of drug-induced skin blistering disorders. Part II: Synthesis. Pharmacogenomics 2009; 10:779-816. [DOI: 10.2217/pgs.09.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The overall immunopathogenesis relevant to a large series of disorders caused by a drug or its associated hyperimmune condition is discussed based upon examining the genetics of severe drug-induced bullous skin problems (sporadic idiosyncratic adverse events including Stevens–Johnson syndrome and Toxic epidermal necrolysis). New results from an exemplar study on shared precipitating and perpetuating inner causes with other related disease phenotypes including aphtous stomatitis, Behçets, erythema multiforme, Hashimoto’s thyroiditis, pemphigus, periodic fevers, Sweet’s syndrome and drug-induced multisystem hypersensitivity are presented. A call for a collaborative, wider demographic profiling and deeper immunotyping in suggested future work is made.
Collapse
Affiliation(s)
- Clive Bowman
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AH, UK
| | | |
Collapse
|
17
|
Garcia Diaz YR, Wojno J, Cox LR, Besra GS. Synthesis of threitol ceramide and [14C]threitol ceramide, non-glycosidic analogues of the potent CD1d antigen α-galactosyl ceramide. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Abstract
The need of a specific defence mechanism against intracellular pathogens is proposed to have arisen very early in evolution, perhaps already in protozoa, e.g. amoebae. The phagocytic machinery of amoebae lends itself as a possible starting point for the evolution of such a mechanism. The hypothetical evolutionary pathway described here has been constructed to demonstrate the feasibility of developing a defence system against pathogens in the amoeba, which bears resemblances to contemporary cell-mediated immunity, and can thus be considered as its ancestor.
Collapse
Affiliation(s)
- Z A Nagy
- DrZaN Pharma Research Consulting, Wolfratshausen, Germany.
| |
Collapse
|
19
|
Yang FL, Hua KF, Yang YL, Zou W, Chen YP, Liang SM, Hsu HY, Wu SH. TLR-independent induction of human monocyte IL-1 by phosphoglycolipids from thermophilic bacteria. Glycoconj J 2007; 25:427-39. [PMID: 18161025 DOI: 10.1007/s10719-007-9088-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/04/2007] [Accepted: 11/07/2007] [Indexed: 12/12/2022]
Abstract
The structures of phosphoglycolipids PGL1 and PGL2 from the thermophilic bacteria Meiothermus taiwanensis, Meiothermus ruber, Thermus thermophilus, and Thermus oshimai are determined recently (Yang et al. in J Lipid Res. 47:1823-1932, 2006). These bacteria belong to Gram-negative bacteria that do not contain lipopolysaccharide, but high amounts of phosphoglycolipids and glycoglycerolipids. Here we show that PGL1/PGL2 mixture (PGL1: PGL2 = 10:1 ~ 10:2) from M. taiwanensis and T. oshimai, but not T. thermophilus and M. ruber, up-regulate interleukin-1beta (IL-1beta) production in human THP-1 monocytes and blood-isolated primary monocytes. PGL2 was purified after phospholipase A2 hydrolysis of PGL1 in the PGL1/PGL2 mixture followed by column chromatography. PGL2 did not induce proIL-1 production, even, partially (35-40%) inhibited PGL1-mediated proIL-1 production, showing that PGL1 is the main inducer of proIL-1 production in PGL1/PGL2 mixture. The production of proIL-1 stimulated by phosphoglycolipids was strongly inhibited by specific PKC-alpha, MEK1/2, and JNK inhibitors, but not by p38-specific inhibitor. The intracellular calcium influx was involved in phosphoglycolipids-mediated proIL-1 production. Using blocking antibody and Toll-like receptor (TLR)-linked NF-kappaB luciferase assays, we found that the cellular receptor(s) for phosphoglycolipids on proIL-1 production was TLR-independent. Further, phosphoglycolipids isolated from T. thermophilus and M. ruber did not induce proIL-1 production, even though T. thermophilus possess more PGL1 than PGL2 (6:4). Specially, the fatty acid composition of phosphoglycolipids from both T. thermophilus and M. ruber consists of a low percentage of C15 (<10%) and a high percentage of C17 (>75%). It suggests, the C15 percentage of PGL may play a critical role in PGL-mediated proIL-1 induction.
Collapse
Affiliation(s)
- Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Willcox BE, Willcox CR, Dover LG, Besra G. Structures and Functions of Microbial Lipid Antigens Presented by CD1. Curr Top Microbiol Immunol 2007; 314:73-110. [PMID: 17593658 DOI: 10.1007/978-3-540-69511-0_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The CD1 family of proteins has evolved to bind a range of endogenous and foreign lipids and present these at the cell surface for antigen-specific recognition by T cells. The distinct intracellular trafficking pathways of CD 1 molecules indicate that collectively, they have the potential to survey the endocytic system widely for antigen, consistent with a role in the presentation of lipids derived from intracellular microbial pathogens. In keeping with this idea, CDla, CDlb, CDlc and CDld have now been shown to present foreign lipid antigens derived from mycobacteria, Gram-negative bacteria and also protozoan species to T cells. These antigens are extremely diverse chemically, and include naturally occurring lipopeptide, glycolipid and phospholipid structures that are distinct from mammalian lipids. CD1-restricted mycobacterial lipids defined to date derive from the highly complex microbial cell envelope. They play a variety of physiological roles for the microbe, including formation of the plasma membrane and protective cell wall and as metabolic intermediates in iron-scavenging pathways. In each case, alkyl chains of CD 1-restricted lipid antigens are accommodated within a deep hydrophobic groove in the membrane-distal alphal-alpha2 domains of the CD1 molecule, with hydrophilic elements solvent-exposed and accessible for recognition by the T cell receptor. Variation in the number, length and saturation of alkyl chains, and the precise chemistry and chirality of the lipid headgroup, clearly exert dominant influences on antigenicity, mediated by effects on CD1 binding and T cell receptor recognition. In the context of structural studies of CD1-lipid complexes, these data suggest that the CD1 isoforms have evolved binding specificities for different classes of foreign lipids, and strongly support a model for antigen recognition involving fine discrimination of lipid headgroup components by the alpha beta T cell receptor. In this review, we summarise our current knowledge of foreign lipid antigens bound by CD 1, focusing on the roles their distinct structural features play in presentation and T cell antigen recognition, and their likely function in antimicrobial T cell responses.
Collapse
Affiliation(s)
- B E Willcox
- CRUK Institute for Cancer Studies, Edgbaston, B 15 2TT Birmingham, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Rook GAW, Martinelli R, Brunet LR. Modelling gene-environment interactions in Th1- and Th2-dominated diseases of laboratory animals. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:45-68. [PMID: 15526936 DOI: 10.1007/3-540-26811-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- G A W Rook
- Centre for Infectious Diseases and International Health, Royal Free and University College, UK.
| | | | | |
Collapse
|
22
|
Steinbach F, Stark R, Ibrahim S, Gawad EAE, Ludwig H, Walter J, Commandeur U, Mauel S. Molecular cloning and characterization of markers and cytokines for equid myeloid cells. Vet Immunol Immunopathol 2005; 108:227-36. [PMID: 16112744 DOI: 10.1016/j.vetimm.2005.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The myeloid cell system comprises of monocytes, macrophages (MPhi), dendritic cells (DC), Kupffer cells, osteoclasts or microglia and is also known as the mononuclear phagocytic system (MPS). Essential cytokines to differentiate or activate these cells include GM-CSF or IL-4. Important markers for characterization include CD1, CD14, CD68, CD163 and CD206. All these markers, however, were not cloned or further characterized in equids by use of monoclonal antibodies earlier. To overcome this problem with the present study, two approaches were used. First, we cloned equine cytokines and markers, and second we analyzed cross-reactivity of human homologues or anti-human monoclonal antibodies. For cloning of equine cytokines and markers, we used degenerate primers delineated from other species, or equine-specific primers based on previous information in Genbank. Flow cytometry was used to determine the expression of markers on myeloid cells. Cross-reactivity could be shown for anti-human CD14, CD163 and mannose receptor (CD206) mAbs. Surface markers such as CD1 and CD68 that distinguish MPhi and DC were cloned and sequenced. According to blast homology, equine CD1a and CD1b could be identified and distinguished. With the resulting information, dendritic cells and macrophages of horses may be characterized.
Collapse
Affiliation(s)
- Falko Steinbach
- Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lu J, Fraser-Reid B, Gowda C. A Strategy for Ready Preparation of Glycolipids for Multivalent Presentation. Org Lett 2005; 7:3841-3. [PMID: 16119912 DOI: 10.1021/ol0511981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The olefinic residue of n-pentenyl glycosides serves as the trigger for regioselective construction of higher saccharides and then for elaboration in multivalent glycolipids. [reaction: see text]
Collapse
Affiliation(s)
- Jun Lu
- Natural Products and Glycotechnology Research Institute, Inc., 595-F Weathersfield Road, Fearrington Post 595 F, Pittsboro, NC 27312, USA.
| | | | | |
Collapse
|
24
|
Barbieri L, Costantino V, Fattorusso E, Mangoni A, Basilico N, Mondani M, Taramelli D. Immunomodulatory α-Galactoglycosphingolipids: Synthesis of 2'-Fluoro-2'-deoxy-α-galactosylceramide and an Evaluation of Its Immunostimulating Properties. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Lehner M, Morhart P, Stilper A, Holter W. Functional characterization of monocyte-derived dendritic cells generated under serumfree culture conditions. Immunol Lett 2005; 99:209-16. [PMID: 16009271 DOI: 10.1016/j.imlet.2005.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/25/2005] [Accepted: 02/27/2005] [Indexed: 10/25/2022]
Abstract
The culture of human monocyte-derived dendritic cells (DCs) is typically performed in media containing human or fetal calf serum, supplements with the potential to influence the cells phenotype and their functional properties. Published clinical trails based on serumfree cultured DCs reported the use of the commercially available medium AIMV. In this study, we directly compared DCs generated in AIMV medium ("AIMV/sf-DCs") with DCs generated in RPMI supplemented with 2% human serum ("RPMI/HS-DCs") in functional assays of potential relevance for vaccine application. Using TNF-alpha/PGE(2)/IL-1beta/IL-6 as maturation stimulus, AIMV/sf-DCs revealed to be comparable with RPMI/HS-DCs with regard to phenotypic expression of maturation markers, survival in vitro, migratory capacity and stimulation of lymphocyte proliferation except for CD1a which was expressed on a fraction of DCs only when cultured in serumfree AIMV medium. However, IL-12p70 production in response to Toll-like receptor (TLR) stimulating agents plus IFN-gamma was consistently lower in AIMV medium although also under serumfree culture conditions, nanogram quantities of IL-12 were produced. Together, DCs with functional characteristics important for in vivo application can be generated under defined serumfree conditions; however, medium and/or serum conditions appear to have strong influence on the production of relevant T cell differentiating cytokines.
Collapse
Affiliation(s)
- Manfred Lehner
- Department of Cellular Therapy, Children's University Hospital, Erlangen, Germany
| | | | | | | |
Collapse
|
26
|
Oiso R, Fujiwara N, Yamagami H, Maeda S, Matsumoto S, Nakamura S, Oshitani N, Matsumoto T, Arakawa T, Kobayashi K. Mycobacterial trehalose 6,6′-dimycolate preferentially induces type 1 helper T cell responses through signal transducer and activator of transcription 4 protein. Microb Pathog 2005; 39:35-43. [PMID: 15967629 DOI: 10.1016/j.micpath.2005.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/31/2005] [Accepted: 03/31/2005] [Indexed: 11/25/2022]
Abstract
Mycobacterium tuberculosis is an intracellular pathogen of tuberculosis and its pathogenicity is related to the ability to escape killing by ingested macrophages and induce delayed-type hypersensitivity (DTH). A major component of the cell wall of M. tuberculosis is trehalose 6,6'-dimycolate (TDM), which has been implicated as a pathogenetic factor. The expression of DTH and cell-mediated immunity is dependent on the macrophage-cytokine-type 1 helper T (Th1) lymphocyte axis. Cytokines, interleukin-12 (IL-12) and interferon-gamma (IFN-gamma), play a critical role in the process and IL-12-activated signal transducer and activator of transcription (STAT) 4 is required for the development of fully functional Th1 cells. To clarify host responses to mycobacterial TDM, we have analyzed footpad reaction, histopathology and cytokine profile of experimental granulomatous lesions using STAT4-deficient mice. In the present study, we have demonstrated that mycobacterial TDM selectively induces the Th1 response through the STAT4 signaling pathway, because mice lacking STAT4 protein significantly reduced to develop DTH, hypersensitivity granulomas, and Th1 cytokine responses, when compared to BALB/c mice. These results shed light on the molecular pathogenesis of mycobacterial disease. Taken together with previous studies, TDM is a pleiotropic molecule against the host and participates in the pathogenesis.
Collapse
Affiliation(s)
- Ryuta Oiso
- Department of Host Defense, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rao V, Fujiwara N, Porcelli SA, Glickman MS. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. ACTA ACUST UNITED AC 2005; 201:535-43. [PMID: 15710652 PMCID: PMC2213067 DOI: 10.1084/jem.20041668] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection remains a global health crisis. Recent genetic evidence implicates specific cell envelope lipids in Mtb pathogenesis, but it is unclear whether these cell envelope compounds affect pathogenesis through a structural role in the cell wall or as pathogenesis effectors that interact directly with host cells. Here we show that cyclopropane modification of the Mtb cell envelope glycolipid trehalose dimycolate (TDM) is critical for Mtb growth during the first week of infection in mice. In addition, TDM modification by the cyclopropane synthase pcaA was both necessary and sufficient for proinflammatory activation of macrophages during early infection. Purified TDM isolated from a cyclopropane-deficient pcaA mutant was hypoinflammatory for macrophages and induced less severe granulomatous inflammation in mice, demonstrating that the fine structure of this glycolipid was critical to its proinflammatory activity. These results established the fine structure of lipids contained in the Mtb cell envelope as direct effectors of pathogenesis and identified temporal control of host immune activation through cyclopropane modification of TDM as a critical pathogenic strategy of Mtb.
Collapse
Affiliation(s)
- Vivek Rao
- Division of Infectious Diseases, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | |
Collapse
|
28
|
Gerlini G, Tun-Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO. Metastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 165:1853-63. [PMID: 15579430 PMCID: PMC1618726 DOI: 10.1016/s0002-9440(10)63238-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD1 molecules are expressed by antigen-presenting cells such as dendritic cells and mediate primary immune responses to lipids and glycolipids which have been shown to be expressed by various tumors. Glycolipids are expressed by melanoma cells but, despite their immunogenicity, no efficient spontaneous immune responses are elicited. As IL-10 has previously been shown to down-regulate CD1a on dendritic cells and is known to be expressed by various melanoma cell lines, we investigated if melanoma-derived IL-10 could down-regulate CD1 molecule expression on dendritic cells as a possible way to circumvent immune recognition. We found that CD1a, CD1b, CD1c, and CD1d were significantly down-regulated on dendritic cells in metastatic (n = 10) but not in primary melanoma lesions (n = 10). We further detected significantly higher IL-10 protein levels in metastatic than in primary melanomas. Moreover, supernatants from metastatic melanomas were significantly more effective in down-regulating CD1 molecules on dendritic cells than supernatants from primary melanoma cultures. This effect was blocked using a neutralizing IL-10 antibody in a dose dependent manner. Our findings suggest that metastatic but not primary melanomas can down-regulate CD1 molecules on infiltrating dendritic cells by secreting IL-10 which may represent a novel way to escape the immune response directed against the tumor.
Collapse
Affiliation(s)
- Gianni Gerlini
- Department of Dermatological Sciences, University of Florence Medical School, Florence, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Scotton CJ, Martinez FO, Smelt MJ, Sironi M, Locati M, Mantovani A, Sozzani S. Transcriptional Profiling Reveals Complex Regulation of the Monocyte IL-1β System by IL-13. THE JOURNAL OF IMMUNOLOGY 2005; 174:834-45. [PMID: 15634905 DOI: 10.4049/jimmunol.174.2.834] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IL-4 and IL-13 are prototypic Th2 cytokines that generate an "alternatively activated" phenotype in macrophages. We used high-density oligonucleotide microarrays to investigate the transcriptional profile induced in human monocytes by IL-13. After 8-h stimulation with IL-13, 142 genes were regulated (85 increased and 57 decreased). The majority of these genes were related to the inflammatory response and innate immunity; a group of genes related to lipid metabolism was also identified, with clear implications for atherosclerosis. In addition to characteristic markers of alternatively activated macrophages, a number of novel IL-13-regulated genes were seen. These included various pattern recognition receptors, such as CD1b/c/e, TLR1, and C-type lectin superfamily member 6. Several components of the IL-1 system were regulated. IL-1RI, IL-1RII, and IL-1Ra were all up-regulated, whereas the IL-1beta-converting enzyme, caspase 1, and IRAK-M were down-regulated. LPS-inducible caspase 1 enzyme activity was also reduced in IL-13-stimulated monocytes, with a consequent decrease in pro-IL-1beta processing. These data reveal that IL-13 has a potent effect on the transcriptional profile in monocytes. The IL-13-induced modulation of genes related to IL-1 clearly highlights the tightly controlled and complex levels of regulation of the production and response to this potent proinflammatory cytokine.
Collapse
Affiliation(s)
- Chris J Scotton
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The ability of DNA vaccines to provide effective immunological protection against infection and tumors depends on their ability to generate good CD4+ and CD8+ T-cell responses. Priming of these responses is a property of dendritic cells (DCs), and so the efficacy of DNA-encoded vaccines is likely to depend on the way in which the antigens they encode are processed by DCs. This processing could either be via the synthesis of the vaccine-encoded antigen by the DCs themselves or via its uptake by DCs following its synthesis in bystander cells that are unable to prime T cells. These different sources of antigen are likely to engage different antigen-processing pathways, which are the subject of this review. Understanding how to access different processing pathways in DCs may ultimately aid the rational development of plasmid-based vaccines to pathogens and to cancer.
Collapse
Affiliation(s)
- Mark Howarth
- Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK
| | | |
Collapse
|
31
|
Martin SF. T Lymphocyte-Mediated Immune Responses to Chemical Haptens and Metal Ions: Implications for Allergic and Autoimmune Disease. Int Arch Allergy Immunol 2004; 134:186-98. [PMID: 15178887 DOI: 10.1159/000078765] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chemical haptens and metal ions interact with proteins and thereby become recognizable by T and B lymphocytes. They induce the production of proinflammatory cytokines and chemokines by various cell types due to triggering of innate immune responses. This is an important prerequisite for the activation of the adaptive immune system and the development of diseases like allergic contact dermatitis and adverse drug and autoimmune reactions. Our increasing knowledge about the molecular basis of hapten and metal ion recognition by T cells and about the pathomechanisms of contact hypersensitivity and chemical-induced autoimmune reactions allows concomitant progress in the development of modern strategies for immunotherapy and will hopefully enable more specific intervention in hapten- and metal ion-induced human diseases in the future.
Collapse
Affiliation(s)
- Stefan F Martin
- Clinical Research Group Allergology, Department of Dermatology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. THE JOURNAL OF IMMUNOLOGY 2004; 172:2731-8. [PMID: 14978070 DOI: 10.4049/jimmunol.172.5.2731] [Citation(s) in RCA: 2585] [Impact Index Per Article: 123.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mice are the experimental tool of choice for the majority of immunologists and the study of their immune responses has yielded tremendous insight into the workings of the human immune system. However, as 65 million years of evolution might suggest, there are significant differences. Here we outline known discrepancies in both innate and adaptive immunity, including: balance of leukocyte subsets, defensins, Toll receptors, inducible NO synthase, the NK inhibitory receptor families Ly49 and KIR, FcR, Ig subsets, the B cell (BLNK, Btk, and lambda5) and T cell (ZAP70 and common gamma-chain) signaling pathway components, Thy-1, gammadelta T cells, cytokines and cytokine receptors, Th1/Th2 differentiation, costimulatory molecule expression and function, Ag-presenting function of endothelial cells, and chemokine and chemokine receptor expression. We also provide examples, such as multiple sclerosis and delayed-type hypersensitivity, where complex multicomponent processes differ. Such differences should be taken into account when using mice as preclinical models of human disease.
Collapse
Affiliation(s)
- Javier Mestas
- Center for Immunology and Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | | |
Collapse
|
33
|
Wallner FK, Chen L, Moliner A, Jondal M, Elofsson M. Loading of the Antigen-Presenting Protein CD1d with Synthetic Glycolipids. Chembiochem 2004; 5:437-44. [PMID: 15185366 DOI: 10.1002/cbic.200300655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CD1 proteins present mammalian and microbial lipid and glycolipid antigens to different subsets of T cells. Few such antigens have been identified and the binding of these to CD1 molecules has mainly been studied by using responding T cells in cellular assays or recombinant solid-phase CD1 proteins. In the present study we use four different glycolipids, some of which contain tumor-associated carbohydrate antigens, to develop a procedure to easily detect binding of glycolipids to CD1 proteins on viable cells. Two of these glycolipids are novel glycoconjugates containing alpha-D-N-acetylgalactosamine (alpha-GalNAc) that were prepared by a combined solution and solid-phase approach. The key step, a Fischer glycosylation of 9-fluorenylmethoxycarbonylaminoethanol with GalNAc, furnished the alpha-glycoside 4 in 34% yield. Cells were incubated with glycolipids and stained with monoclonal antibodies specific for the carbohydrate part. The level of glycolipid bound to cells was then determined by flow cytometry with a secondary antibody labeled with fluorescein isothiocyanate. All four glycolipids were found to bind to CD1d but with different selectivity. The loading was dose dependent and could be inhibited by an established CD1d ligand, alpha-galactosylceramide. Through use of this procedure, glycolipids were selectively loaded onto CD1d expressed on professional antigen-presenting cells for future use as cellular vaccines. Moreover, the glycolipids described in this study represent novel CD1d-binding ligands that will be useful derivatives in the study of CD1d-dependent immune responses, for example, against tumors.
Collapse
Affiliation(s)
- Fredrik K Wallner
- Organic Chemistry, Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | | | | | | | | |
Collapse
|
34
|
Lee G, Jeong Y, Wirguin I, Hays AP, Willison HJ, Latov N. Induction of human IgM and IgG anti-GM1 antibodies in transgenic mice in response to lipopolysaccharides from Campylobacter jejuni. J Neuroimmunol 2004; 146:63-75. [PMID: 14698848 DOI: 10.1016/j.jneuroim.2003.10.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Campylobacter jejuni lipopolysaccharides (LPS) are implicated in the development of autoantibodies to GM1 ganglioside in patients with neuropathy following C. jejuni infection. CjLPS bears oligosaccharides that are cross reactive with GM1 ganglioside and presumably exerts its effects via molecular mimicry. To study the mechanisms that are involved in development of the autoantibody response, a transgenic mouse line was developed that expresses an IgM anti-GM1 antibody derived from a patient with multifocal motor neuropathy (MMN). In vivo stimulation of the transgenic mice with C. jejuni lipopolysaccharides (CjLPS), but not of wild-type mice readily elicited high serum titers of anti-GM1 IgM antibodies, followed by IgG anti-GM1 antibodies after two booster injections. In in vitro experiments, CjLPS stimulated the transgenic B-cells at lower concentration than control LPS. The increased sensitivity to CjLPS and the induction of IgG anti-GM1 by CjLPS but not control LPS are consistent with a mechanism of B-cell activation that involves both the LPS and the antigen-specific surface Ig receptors, with possible participation of T-cells.
Collapse
Affiliation(s)
- Grace Lee
- Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Rook GAW, Martinelli R, Brunet LR. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr Opin Allergy Clin Immunol 2004; 3:337-42. [PMID: 14501431 DOI: 10.1097/00130832-200310000-00003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Exposure to certain environmental microorganisms can promote the induction of T regulatory cells via the innate immune system. This review explores the possibility that reduced exposure to such organisms is leading to increased immunoregulatory disorders in a subset of individuals in whom this regulatory T-cell-inducing pathway is less efficient. We concentrate on mycobacteria and on asthma, because these are well documented. RECENT FINDINGS The blood cells of the children of farmers, who are partly protected from allergies, express increased levels of messenger RNA encoding CD14 and TLR2, and polymorphisms of CD14 are linked to allergic manifestations in some studies. Polymorphisms of TLR2 (which recognizes mycobacterial components in concert with CD14) are involved in the pattern of response to mycobacteria, and in the type of leprosy that develops. Similarly, polymorphisms of Nramp1, which affect the response to mycobacteria, are linked with the diseases of immunodysregulation that are increasing in parallel with allergic disorders. Moreover, congenic mice bearing different variants of Nramp1 differ in their allergic responses. These parallels are suggestive, in view of the observation that a saprophytic environmental mycobacterium is a potent inducer of regulatory T cells, and has shown significant effects in several phase I/II studies in man. SUMMARY The components of the innate immune system that are involved in responses to mycobacteria overlap with those implicated in allergic disorders. Polymorphisms might define the subset of individuals who develop immunoregulatory disorders. Understanding the role of the innate immune system will facilitate the design of clinical trials using microbial products.
Collapse
Affiliation(s)
- Graham A W Rook
- Department of Medical Microbiology, Windeyer Institute of Medical Sciences, Royal Free and University College, London, UK.
| | | | | |
Collapse
|
36
|
Rook GAW, Adams V, Hunt J, Palmer R, Martinelli R, Brunet LR. Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2004; 25:237-55. [PMID: 15007629 DOI: 10.1007/s00281-003-0148-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 08/26/2003] [Indexed: 01/22/2023]
Abstract
In the rich, developed parts of the world there has been a steady and simultaneous increase in at least three groups of disease: (1) allergies, (2) inflammatory bowel diseases (IBD; e.g. Crohn's disease and ulcerative colitis) and (3) autoimmunity (e.g. type 1 diabetes and multiple sclerosis). Because the medical world is so compartmentalised it was some time before the connection between these increases was noticed and understood. There is now evidence that the simultaneous increase in these diseases of immunodysregulation is at least partly attributable to malfunction of regulatory T cells (Treg). This paper provides an overview of relevant work in each of these fields of medicine (though with emphasis on the allergic disorders), and concludes that the increasing failure of Treg is a consequence of diminished exposure to certain micro-organisms that are "old friends", because of their continuous presence throughout mammalian evolution. These organisms, which include saprophytic mycobacteria, helminths and lactobacilli, are recognised by the innate immune system as harmless, and as adjuvants for Treg induction. Polymorphisms of components of the innate immune system such as TLR2 and NOD2 appear to define subsets of the population that will develop immunoregulatory disorders when living in the modern environment. A further role of the "old friends" and of the Treg that they induce might be to maintain the levels of regulatory IL-10 secreting macrophages and antigen-presenting cells, which are depleted in asthma and Crohn's disease. These concepts are leading to novel therapies based on harmless organisms or their components. Phase I/II clinical trials have yielded some statistically significant results, and phase II trials are in progress.
Collapse
Affiliation(s)
- G A W Rook
- Department of Medical Microbiology, Medical School, Windeyer Institute of Medical Sciences, Royal Free and University College, London, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Costantino V, Fattorusso E, Imperatore C, Mangoni A. Glycolipids from Sponges. 13.1 Clarhamnoside, the First Rhamnosylated α-Galactosylceramide from Agelas clathrodes. Improving Spectral Strategies for Glycoconjugate Structure Determination. J Org Chem 2004; 69:1174-9. [PMID: 14961667 DOI: 10.1021/jo034865h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reinvestigation of the glycosphingolipid composition of the marine sponge Agelas clathrodes revealed the presence of a new tetraglycosylated alpha-galactoglycosphingolipid (1a), containing an unusual l-rhamnose unit in the sugar head. The structure of the new compound was elucidated using extensive 2D NMR studies. Because of the strong overlapping of the signals of the sugar protons in the (1)H spectrum, (13)C-coupled and (13)C-decoupled phase-sensitive HMQC spectra were used to study the multiplicity of the overlapping signals. In addition, the absolute configuration of sugars was determined using a simple and efficient, yet underutilized CD method.
Collapse
Affiliation(s)
- Valeria Costantino
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, Napoli, Italy
| | | | | | | |
Collapse
|
38
|
Im JS, Yu KOA, Illarionov PA, LeClair KP, Storey JR, Kennedy MW, Besra GS, Porcelli SA. Direct Measurement of Antigen Binding Properties of CD1 Proteins Using Fluorescent Lipid Probes. J Biol Chem 2004; 279:299-310. [PMID: 14551186 DOI: 10.1074/jbc.m308803200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD1 proteins are antigen-presenting molecules that bind foreign and self-lipids and stimulate specific T cell responses. In the current study, we investigated ligand binding by CD1 proteins by developing a fluorescent probe binding approach using soluble recombinant human CD1 proteins. To increase stability and yield, soluble group 1 CD1 (CD1b and CD1c) and group 2 CD1 (CD1d) proteins were produced as single chain secreted CD1 proteins in which beta2-microglobulin was fused to the N termini of the CD1 heavy chains by a flexible peptide linker sequence. Analysis of ligand binding properties of single chain secreted CD1 proteins by using fluorescent lipid probes indicated significant differences in ligand preference and in pH dependence of binding by group 1 versus group 2 CD1 proteins. Whereas group 1 CD1 isoforms (CD1b and CD1c) show stronger binding of nitrobenzoxadiazole (NBD)-labeled dialkyl-based ligands (phosphatidylcholine, sphingomyelin, and ceramide), group 2 CD1 (CD1d) proteins were stronger binders of small hydrophobic probes such as 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-naphthyl-5,5'-disulfonic acid. Competition studies indicated that binding of fluorescent lipid probes involved association of the probe with the hydrophobic ligand binding groove of CD1 proteins. Analysis of selected alanine substitution mutants of human CD1b known to inhibit antigen presentation showed that NBD-labeled lipid probe binding could be used to distinguish mutations that interfere with ligand binding from those that affect T cell receptor docking. Our findings provide further evidence for the functional specialization of different CD1 isoforms and demonstrate the value of the fluorescent lipid probe binding method for assisting structure-based studies of CD1 function.
Collapse
Affiliation(s)
- Jin S Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Fais F, Morabito F, Stelitano C, Callea V, Zanardi S, Scudeletti M, Varese P, Ciccone E, Grossi CE. CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates ?-galactosylceramide presentation to natural killer T lymphocytes. Int J Cancer 2004; 109:402-11. [PMID: 14961579 DOI: 10.1002/ijc.11723] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Generation of immune responses against B cell chronic lymphocytic leukemia (B-CLL) has been the aim of several studies that have demonstrated a poor antigen presenting ability of B-CLL cells and an inconsistent emergence of T cells capable of killing efficiently the leukemic cells. CD1d is a restriction element structurally related to the major histocompatibility complex (MHC) and capable of presenting lipid antigens to CD1d-restricted T cells (also defined as natural killer-T [NKT] cells). The synthetic lipid alpha-galactosylceramide (alpha-GalCer) has been characterized as a potent stimulator of CD1d-restricted T cells. We have investigated the expression of CD1d on B-CLL cells. CD1d was detected by flow cytometric analyses on leukemic cells of all B-CLL cases studied (n = 38) and was expressed at higher density on cells carrying unmutated immunoglobulin variable region (IgV) genes. In addition, CD1d on B-CLL cells mediated the presentation of alpha-GalCer to CD1d-restricted T cells, which in turn induced B-CLL cell death. At variance with another study (Metelitsa et al., Leukemia 2003;17:1068-77), no correlation between expression levels of CD1d and susceptibility to NKT cell lysis was observed. Proliferation and production of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) by CD1d-restricted T cells, in the presence of B-CLL cells loaded with alpha-GalCer, were also observed. Our study demonstrates that B-CLL cells express a monomorphic restriction element that is functionally capable of antigen presentation and can be useful to design novel B-CLL immunotherapies.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD1/metabolism
- Antigens, Differentiation, T-Lymphocyte/analysis
- Cell Division
- Cohort Studies
- Flow Cytometry
- Galactosylceramides/immunology
- Humans
- Immunoglobulin Variable Region/genetics
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Franco Fais
- Human Anatomy Section, Department of Experimental Medicine, University of Genoa, Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gleimer M, Parham P. Stress management: MHC class I and class I-like molecules as reporters of cellular stress. Immunity 2003; 19:469-77. [PMID: 14563312 DOI: 10.1016/s1074-7613(03)00272-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The evolutionarily ancient intracellular stress response protects cells from the effects of external and internal forces which perturb cellular metabolism. Members of the major histocompatibility complex (MHC) class I-like superfamily act as cell surface indicators of the intracellular stress response. Cellular immunity employs these indicators as a cue for elimination of damaged, infected, and malignant cells, promoting the health of the individual and the evolutionary success of the species.
Collapse
Affiliation(s)
- Michael Gleimer
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
41
|
Dascher CC, Brenner MB. Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 2003; 24:412-8. [PMID: 12909453 DOI: 10.1016/s1471-4906(03)00179-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Christopher C Dascher
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Smith 552, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| | | |
Collapse
|