1
|
Nyaga DM, Vickers MH, Jefferies C, Perry JK, O'Sullivan JM. The genetic architecture of type 1 diabetes mellitus. Mol Cell Endocrinol 2018; 477:70-80. [PMID: 29913182 DOI: 10.1016/j.mce.2018.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1D) is a complex autoimmune disorder characterised by loss of the insulin-producing pancreatic beta cells in genetically predisposed individuals, ultimately resulting in insulin deficiency and hyperglycaemia. T1D is most common among children and young adults, and the incidence is on the rise across the world. The aetiology of T1D is hypothesized to involve genetic and environmental factors that result in the T-cell mediated destruction of pancreatic beta cells. There is a strong genetic risk to T1D; with genome-wide association studies (GWAS) identifying over 60 susceptibility regions within the human genome which are marked by single nucleotide polymorphisms (SNPs). Here, we review what is currently known about the genetics of T1D. We argue that advancing our understanding of the aetiology and pathogenesis of T1D will require the integration of genome biology (omics-data) with GWAS data, thereby making it possible to elucidate the putative gene regulatory networks modulated by disease-associated SNPs. This approach has a potential to revolutionize clinical management of T1D in an era of precision medicine.
Collapse
Affiliation(s)
- Denis M Nyaga
- The Liggins Institute, The University of Auckland, New Zealand
| | - Mark H Vickers
- The Liggins Institute, The University of Auckland, New Zealand
| | - Craig Jefferies
- The Liggins Institute, The University of Auckland, New Zealand; Starship Children's Health, Auckland, New Zealand
| | - Jo K Perry
- The Liggins Institute, The University of Auckland, New Zealand
| | | |
Collapse
|
2
|
Abstract
Type 1 diabetes (T1D) is one of the most widely studied complex genetic disorders, and the genes in HLA are reported to account for approximately 40-50% of the familial aggregation of T1D. The major genetic determinants of this disease are polymorphisms of class II HLA genes encoding DQ and DR. The DR-DQ haplotypes conferring the highest risk are DRB1*03:01-DQA1*05:01-DQB1*02:01 (abbreviated "DR3") and DRB1*04:01/02/04/05/08-DQA1*03:01-DQB1*03:02/04 (or DQB1*02; abbreviated "DR4"). The risk is much higher for the heterozygote formed by these two haplotypes (OR = 16.59; 95% CI, 13.7-20.1) than for either of the homozygotes (DR3/DR3, OR = 6.32; 95% CI, 5.12-7.80; DR4/DR4, OR = 5.68; 95% CI, 3.91). In addition, some haplotypes confer strong protection from disease, such as DRB1*15:01-DQA1*01:02-DQB1*06:02 (abbreviated "DR2"; OR = 0.03; 95% CI, 0.01-0.07). After adjusting for the genetic correlation with DR and DQ, significant associations can be seen for HLA class II DPB1 alleles, in particular, DPB1*04:02, DPB1*03:01, and DPB1*02:02. Outside of the class II region, the strongest susceptibility is conferred by class I allele B*39:06 (OR =10.31; 95% CI, 4.21-25.1) and other HLA-B alleles. In addition, several loci in the class III region are reported to be associated with T1D, as are some loci telomeric to class I. Not surprisingly, current approaches for the prediction of T1D in screening studies take advantage of genotyping HLA-DR and HLA-DQ loci, which is then combined with family history and screening for autoantibodies directed against islet-cell antigens. Inclusion of additional moderate HLA risk haplotypes may help identify the majority of children with T1D before the onset of the disease.
Collapse
Affiliation(s)
- Janelle A Noble
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
3
|
Varney MD, Valdes AM, Carlson JA, Noble JA, Tait BD, Bonella P, Lavant E, Fear AL, Louey A, Moonsamy P, Mychaleckyj JC, Erlich H. HLA DPA1, DPB1 alleles and haplotypes contribute to the risk associated with type 1 diabetes: analysis of the type 1 diabetes genetics consortium families. Diabetes 2010; 59:2055-62. [PMID: 20424227 PMCID: PMC2911060 DOI: 10.2337/db09-0680] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the relative risk associated with DPA1 and DPB1 alleles and haplotypes in type 1 diabetes. RESEARCH DESIGN AND METHODS The frequency of DPA1 and DPB1 alleles and haplotypes in type 1 diabetic patients was compared to the family based control frequency in 1,771 families directly and conditional on HLA (B)-DRB1-DQA1-DQB1 linkage disequilibrium. A relative predispositional analysis (RPA) was performed in the presence or absence of the primary HLA DR-DQ associations and the contribution of DP haplotype to individual DR-DQ haplotype risks examined. RESULTS Eight DPA1 and thirty-eight DPB1 alleles forming seventy-four DPA1-DPB1 haplotypes were observed; nineteen DPB1 alleles were associated with multiple DPA1 alleles. Following both analyses, type 1 diabetes susceptibility was significantly associated with DPB1*0301 (DPA1*0103-DPB1*0301) and protection with DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 but not DPA1*0201-DPB1*0101. In addition, DPB1*0202 (DPA1*0103-DPB1*0202) and DPB1*0201 (DPA1*0103-DPB1*0201) were significantly associated with susceptibility in the presence of the high risk and protective DR-DQ haplotypes. Three associations (DPB1*0301, *0402, and *0202) remained statistically significant when only the extended HLA-A1-B8-DR3 haplotype was considered, suggesting that DPB1 alone may delineate the risk associated with this otherwise conserved haplotype. CONCLUSIONS HLA DP allelic and haplotypic diversity contributes significantly to the risk for type 1 diabetes; DPB1*0301 (DPA1*0103-DPB1*0301) is associated with susceptibility and DPB1*0402 (DPA1*0103-DPB1*0402) and DPA1*0103-DPB1*0101 with protection. Additional evidence is presented for the susceptibility association of DPB1*0202 (DPA1*0103-DPB1*0202) and for a contributory role of individual amino acids and DPA1 or a gene in linkage disequilibrium in DR3-DPB1*0101 positive haplotypes.
Collapse
Affiliation(s)
- Michael D Varney
- Department of Surgery, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Eike MC, Becker T, Humphreys K, Olsson M, Lie BA. Conditional analyses on the T1DGC MHC dataset: novel associations with type 1 diabetes around HLA-G and confirmation of HLA-B. Genes Immun 2008; 10:56-67. [PMID: 18830248 DOI: 10.1038/gene.2008.74] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The major histocompatibility complex (MHC) is known to harbour genetic risk factors for type 1 diabetes (T1D) additional to the class II determinants HLA-DRB1, -DQA1 and -DQB1, but strong linkage disequilibrium (LD) has made efforts to establish their location difficult. This study utilizes a dataset generated by the T1D genetics consortium (T1DGC), with genotypes for 2965 markers across the MHC in 2321 T1D families of multiple (mostly Caucasian) ethnicities. Using a comprehensive approach consisting of complementary conditional methods and LD analyses, we identified three regions with T1D association, independent both of the known class II determinants and of each other. A subset of polymorphisms that could explain most of the association in each region included single nucleotide polymorphisms (SNPs) in the vicinity of HLA-G, particular HLA-B and HLA-DPB1 alleles, and SNPs close to the COL11A2 and RING1 genes. Apart from HLA-B and HLA-DPB1, all of these represent novel associations, and subpopulation analyses did not indicate large population-specific differences among Caucasians for our findings. On account of the unusual genetic complexity of the MHC, further fine mapping is demanded, with the possible exception of HLA-B. However, our results mean that these efforts can be focused on narrow, defined regions of the MHC.
Collapse
Affiliation(s)
- M C Eike
- Institute of Immunology, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
5
|
Baschal EE, Aly TA, Babu SR, Fernando MS, Yu L, Miao D, Barriga KJ, Norris JM, Noble JA, Erlich HA, Rewers MJ, Eisenbarth GS. HLA-DPB1*0402 protects against type 1A diabetes autoimmunity in the highest risk DR3-DQB1*0201/DR4-DQB1*0302 DAISY population. Diabetes 2007; 56:2405-9. [PMID: 17513705 DOI: 10.2337/db07-0029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A major goal in genetic studies of type 1A diabetes is prediction of anti-islet autoimmunity and subsequent diabetes in the general population, as >85% of patients do not have a first-degree relative with type 1A diabetes. Given prior association studies, we hypothesized that the strongest candidates for enhancing diabetes risk among DR3-DQB1*0201/DR4-DQB1*0302 individuals would be alleles of DP and DRB1*04 subtypes and, in particular, the absence of reportedly protective alleles DPB1*0402 and/or DRB1*0403. RESEARCH DESIGN AND METHODS We genotyped 457 DR3-DQB1*0201/DR4-DQB1*0302 Diabetes Autoimmunity Study of the Young (DAISY) children (358 general population and 99 siblings/offspring of type 1 diabetic patients) at the DPB1, DQB1, and DRB1 loci using linear arrays of immobilized sequence-specific oligonucleotides, with direct sequencing to differentiate DRB1*04 subtypes. RESULTS By survival curve analysis of DAISY children, the risk of persistently expressing anti-islet autoantibodies is approximately 55% for relatives (children with a parent or sibling with type 1 diabetes) in the absence of these two protective alleles vs. 0% (P = 0.02) with either protective allele, and the risk is 20 vs. 2% (P = 0.004) for general population children. Even when the population analyzed is limited to DR3-DQB1*0201/DR4-DQB1*0302 children with DRB1*0401 (the most common DRB1*04 subtype), DPB1*0402 influences development of anti-islet autoantibodies. CONCLUSIONS The ability to identify a major group of general population newborns with a 20% risk of anti-islet autoimmunity should enhance both studies of the environmental determinants of type 1A diabetes and the design of trials for the primary prevention of anti-islet autoimmunity.
Collapse
Affiliation(s)
- Erin E Baschal
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Aurora, CO 80045-6511, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Aminkeng F, Van Autreve JE, Koeleman BPC, Quartier E, Van Schravendijk C, Gorus FK, Van der Auwera BJR. TNFa microsatellite polymorphism modulates the risk of type 1 diabetes in the Belgian population, independent of HLA-DQ. Hum Immunol 2007; 68:690-7. [PMID: 17678725 DOI: 10.1016/j.humimm.2007.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 05/02/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
To determine the contribution of the tumor necrosis factor alpha gene (TNFA) to the immunogenetic risk prediction of type 1 diabetes (T1D) in the Belgian population, well-characterized antibody-positive patients with type 1 diabetes (T1D), nondiabetic control subjects, and nuclear families were analyzed for HLA-DQA1-DQB1, TNFA -308 G/A promoter single nucleotide polymorphism (SNP) and TNFa microsatellite markers in both case-control and transmission studies. A total of 1,029 patients (mean age at onset, 18 years; male/female ratio, 1.2), 575 control subjects and 179 nuclear families were analyzed for the -308 SNP and 1,082 patients (mean age at onset, 17 years; and male/female ratio, 1.3), 606 control subjects, and 261 nuclear families were analyzed for the TNFa microsatellite marker. All subjects were typed initially for HLA-DQ. No primary association was detected with the -308 G/A promoter SNP. In contrast, we found evidence of a contribution of TNFa1 allele to susceptibility for T1D independently of HLA-DQ. We observed that the conserved HLA-DQ-TNFa extended haplotype, HLA-DQA1 0501-DQB1 0201-TNFa1 is a diabetogenic haplotype in the Belgian population and is independent of age at onset and gender and confers an estimated relative risk of 4.55 and an absolute risk of 1.7%. In conclusion, our observations suggest that the-308 G/A promoter SNP is not a genetic marker for T1D, but that the TNFa microsatellite may have an added value to further refine the immunogenetic risk conferred by the HLA-DQ region in the Belgian population.
Collapse
Affiliation(s)
- Folefac Aminkeng
- Diabetes Research Center, Molecular Diagnosis Unit, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
7
|
Valdes AM, Erlich HA, Noble JA. Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset. Hum Immunol 2005; 66:301-13. [PMID: 15784469 PMCID: PMC4049521 DOI: 10.1016/j.humimm.2004.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/29/2004] [Accepted: 12/01/2004] [Indexed: 11/26/2022]
Abstract
Alleles of human leukocyte antigen (HLA) class II genes are well known to affect susceptibility to type 1 diabetes (T1D), but less is known about the contribution of HLA class I alleles to T1D susceptibility. In this study, molecular genotyping was performed at the HLA-B and HLA-C loci for 283 multiplex Caucasian families, previously typed for HLA-A and the class II loci. Allele frequencies were compared between affected siblings and affected family-based controls. Linkage disequilibrium coefficients were calculated for HLA-B-HLA-C haplotypes and for class I-lass II haplotypes. After adjustment for linkage disequilibrium, the following alleles remain associated with T1D: B*1801, B*3906, B*4403, C*0303, C*0802, and C*1601. B and C allele associations were tested for certain T1D-associated DRB1-DQB1 haplotypes, with the following results: B*3801 is protective on DRB1*0401-DQB1*0302 haplotypes, both C*0701 and C*0702 are predisposing on DRB1*0404-DQB1*0302 haplotypes, and B*3906 is predisposing on DRB1*0801-DQB1*0402 haplotypes. As with previous results for HLA-A, HLA-B and HLA-C are associated with age at T1D onset (mean 11.6 +/- 0.3 years). The protective allele B*4403 was associated with older age at onset (15.1 years; p < 0.04), and the predisposing alleles C*0702 and B*3906 were associated with younger age at onset (9.5 years, p < 0.001; and 7.8 years, p < 0.002, respectively). These data support a role for HLA class I alleles in susceptibility to and age at onset of T1D.
Collapse
Affiliation(s)
- Ana M Valdes
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | |
Collapse
|
8
|
Cruz TD, Valdes AM, Santiago A, Frazer de Llado T, Raffel LJ, Zeidler A, Rotter JI, Erlich HA, Rewers M, Bugawan T, Noble JA. DPB1 alleles are associated with type 1 diabetes susceptibility in multiple ethnic groups. Diabetes 2004; 53:2158-63. [PMID: 15277401 DOI: 10.2337/diabetes.53.8.2158] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genetic associations between type 1 diabetes and alleles at the HLA class II locus DPB1 have been previously reported. Observed associations could be due to variation in the DPB1 locus itself or to linkage disequilibrium (LD) between DPB1 alleles and other susceptibility loci. One measure of whether the association of an allele with a disease reflects a true effect of the locus or is simply due to LD is the observation of that association in multiple ethnic groups. Previous type 1 diabetes associations have been reported for DPB1*0301 and DPB1*0202 (predisposing) and for DPB1*0402 (protective). In this study, results are reported from testing these associations in three different sample sets: 1) Puerto Rican case and control subjects, 2) Mexican-American simplex families, and 3) high-risk (DR3/DR4) individuals with and without an affected relative. DPB1*0301 was associated in all three groups, even after accounting for LD with DRB1-DQB1. DPB1*0202 and DPB1*0402 were positively and negatively associated, respectively, in two of the three populations. These results suggest that the observed DPB1 associations, especially that of the DPB1*0301 allele, with type 1 diabetes are likely to be true associations. This supports the concept that multiple genes in the HLA region can affect type 1 diabetes susceptibility.
Collapse
Affiliation(s)
- Thomas D Cruz
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|