1
|
Adzhiakhmetova SL, Chervonnaya NM, Pozdnyakov DI, Popova OI, Oganisyan ET. Component Composition and Features of Biological Activity of Viscum album (Viscaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:116-132. [PMID: 39128961 DOI: 10.1134/s0012496624701072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 08/13/2024]
Abstract
The review summarizes the data on the chemical composition and some features of biological activity of the European mistletoe Viscum album L. (Viscaceae Batsch). Among secondary metabolites, viscotoxins, lectins, carbohydrates, amino acids, flavonoids, triterpene acids, and nitrogenous compounds predominate in V. album. Mistletoe extracts and their indivdiual components exert various biological activities, including antitumor, immunomodulatory, and antidiabetic activities, and improve cognitive functions.
Collapse
Affiliation(s)
- S L Adzhiakhmetova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia.
| | - N M Chervonnaya
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - D I Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - O I Popova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - E T Oganisyan
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| |
Collapse
|
2
|
Barhoumi Z. Physiological and biochemical attributes of the association host-parasite Tamarix aphylla-Plicosepalus acacia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109163. [PMID: 39342662 DOI: 10.1016/j.plaphy.2024.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Parasitic plants have been viewed as pests since they are able to damage agricultural crops and forest trees. They establish vasculature connections with the hosts and withdraw the required nutritive resources. This study aimed to explore the physiological and biochemical effects of the parasitic plant Plicosepalus acacia on the host Tamarix aphylla. It was conducted on young fully expanded leaves from the uninfected and infected trees and the parasitic plant 'in situ'. The parasite had higher net photosynthetic assimilation rate (A), transpiration rate (E) and stomatal conductance (gs) compared to the host. Equally, it had two-fold greater water potential (Ψ) and osmotic potential (Ψs). It accumulated high amount of K, while it avoided accumulation of the most trace and ultratrace elements. Otherwise, parasitism seemed to increase A, WUE, water uptake and accumulation of the most major, trace and ultra-trace elements, however it reduced the accumulation of osmolytes at the infected plants. Based on UPLC-MS approach, P. acacia seemed to use a group of composites to interact with the host, including oleamide as a protector metabolite against host's defense system, carvone to establish vasculature connections with the host, cuminaldehyde to weaken growth and proliferation of the host, and caprolactam to weaken the distal part of the host. In contrast, the host T. aphylla could be used pipecolinic acid and nicotinamide to regulate systemic resistance and to defense against the parasite infection. Finally, despite the defense molecular interactions between the two partners, the parasitic plant exhibited several beneficial effects on the host.
Collapse
Affiliation(s)
- Zouhaier Barhoumi
- King Khalid University, Biology Department, P.O. Box-9004, Abha, 61413, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
Nicoletti M. The Anti-Inflammatory Activity of Viscum album. PLANTS (BASEL, SWITZERLAND) 2023; 12:1460. [PMID: 37050086 PMCID: PMC10096603 DOI: 10.3390/plants12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The therapeutic story of European mistletoe (Viscum album L.) presents a seesawing profile. In ancient times, this hemiparasitic plant was considered a panacea and even to be endowed with exceptional beneficial properties. In more recent times, despite its multiple uses in traditional medicines, some parts of the plant, in particular the berries, were considered poisonous and dangerous, including concerns of cytotoxicity, which spread serious suspicion on its medicinal utility. However, since the last century, medical interest in mistletoe has come back in force due to its utilization in clinical cancer treatments, based on its selective action on tumor cells. In Central Europe, the hydro-alcoholic extracts of European mistletoe register a relevant and continuous utilization in anthroposophic medicine, which is a holistic system that includes the utilization of phytomedicinal substances. In Switzerland and Germany, most physicians and patients use these products as complementary therapy in oncological treatments. However, despite its increasing use in this field, the results of mistletoe's use are not always convincing, and other aspects have appeared. Nowadays, products that contain mistletoe are utilized in several fields, including diet, phytotherapy, veterinary medicine and homeopathy, but in particular in cancer therapies as coadjuvant factors, in consideration of several positive effects including effects in the improvement of quality-of-life conditions and reinforcement of the immune system. In this review, based on the understanding of the association between cancer and inflammation, we propose a relationship between these recent uses of mistletoe, based on its antioxidant properties, which are supported by phytochemical and pharmacological data. The unicity of mistletoe metabolism, which is a direct consequence of its hemiparasitism, is utilized as a key interpretation element to explain its biological properties and steer its consequent therapeutic uses.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
4
|
Watanabe M, Netzer F, Tohge T, Orf I, Brotman Y, Dubbert D, Fernie AR, Rennenberg H, Hoefgen R, Herschbach C. Metabolome and Lipidome Profiles of Populus × canescens Twig Tissues During Annual Growth Show Phospholipid-Linked Storage and Mobilization of C, N, and S. FRONTIERS IN PLANT SCIENCE 2018; 9:1292. [PMID: 30233628 PMCID: PMC6133996 DOI: 10.3389/fpls.2018.01292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
The temperate climax tree species Fagus sylvatica and the floodplain tree species Populus × canescens possess contrasting phosphorus (P) nutrition strategies. While F. sylvatica has been documented to display P storage and mobilization (Netzer et al., 2017), this was not observed for Populus × canescens (Netzer et al., 2018b). Nevertheless, changes in the abundance of organic bound P in gray poplar trees indicated adaptation of the P nutrition to different needs during annual growth. The present study aimed at characterizing seasonal changes in metabolite and lipid abundances in gray poplar and uncovering differences in metabolite requirement due to specific needs depending on the season. Seasonal variations in the abundance of (i) sugar-Ps and phospholipids, (ii) amino acids, (iii) sulfur compounds, and (iv) carbon metabolites were expected. It was hypothesized that seasonal changes in metabolite levels relate to N, S, and C storage and mobilization. Changes in organic metabolites binding Pi (Porg) are supposed to support these processes. Variation in triacylglycerols, in sugar-phosphates, in metabolites of the TCA cycle and in the amino acid abundance of poplar twig buds, leaves, bark, and wood were found to be linked to changes in metabolite abundances as well as to C, N, and S storage and mobilization processes. The observed changes support the view of a lack of any P storage in poplar. Yet, during dormancy, contents of phospholipids in twig bark and wood were highest probably due to frost-hardening and to its function in extra-plastidic membranes such as amyloplasts, oleosomes, and protein bodies. Consistent with this assumption, in spring sugar-Ps increased when phospholipids declined and poplar plants entering the vegetative growth period and, hence, metabolic activity increases. These results indicate that poplar trees adopt a policy of P nutrition without P storage and mobilization that is different from their N- and S-nutrition strategies.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- NARA Institute of Science and Technology, Ikoma, Japan
| | - Isabel Orf
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - David Dubbert
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, Potsdam, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Hu B, Sakakibara H, Takebayashi Y, Peters FS, Schumacher J, Eiblmeier M, Arab L, Kreuzwieser J, Polle A, Rennenberg H. Mistletoe infestation mediates alteration of the phytohormone profile and anti-oxidative metabolism in bark and wood of its host Pinus sylvestris. TREE PHYSIOLOGY 2017; 37:676-691. [PMID: 28338758 DOI: 10.1093/treephys/tpx006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/23/2017] [Indexed: 05/07/2023]
Abstract
European mistletoe (Viscum album L.) has largely infested Central European forests and causes high mortality probability particularly in dry years. However, little information is available about the consequences of mistletoe infestation for metabolic processes in bark and wood of its host, despite their important roles in infestation defense. We analyzed the tissue hydration, carbohydrate composition, phytohormone profile, reactive oxygen species and anti-oxidant levels in bark and wood of Scots pines (Pinus sylvestris L.), as dependent on mistletoe infestation. As a consequence of mistletoe infestation, host bark and wood showed impaired hydration and reduced total carbon content. In the bark, soluble sugar and lignin contents increased, apparently at the expense of holo-cellulose. Hydrogen peroxide accumulation was accompanied by increased glutathione and decreased reduced ascorbic acid levels. Mistletoe infestation mediated alteration of the phytohormone profile in bark and wood of its host. Cytokinins, jasmonic acid and abscisic acid levels increased in both tissues, whereas salicylic acid and indole-3-acetic acid, which were only detected in the bark, declined. The present results show that mistletoe infestation affects both the host's anti-oxidative defense system and the phytohormone profile after establishment of the xylem tapping haustorium. The significance of these processes for the development of the woody mistletoe stem and the haustorium is discussed.
Collapse
Affiliation(s)
- Bin Hu
- College of Forestry, Northwest A&F University, 3 Taicheng Road, 712100 Yangling, China
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, 230-0045 Yokohama, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, 230-0045 Yokohama, Japan
| | - Franziska S Peters
- Department of Forest Protection, FVA Forest Research Institute of Baden-Württemberg (FVA-BW), Wonnhaldestr. 4, 79100 Freiburg, Germany
| | - Jörg Schumacher
- Department of Forest Protection, FVA Forest Research Institute of Baden-Württemberg (FVA-BW), Wonnhaldestr. 4, 79100 Freiburg, Germany
| | - Monika Eiblmeier
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | - Leila Arab
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | - Jürgen Kreuzwieser
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Georg-August Universität Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Koehler-Allee 53/54, 79110 Freiburg, Germany
- College of Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Bell TL, Adams MA. Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems. TREE PHYSIOLOGY 2011; 31:3-15. [PMID: 21388997 DOI: 10.1093/treephys/tpq108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association.
Collapse
Affiliation(s)
- T L Bell
- Faculty of Agriculture, Food and Natural Resources, University of Sydney, Sydney, 2006 NSW, Australia.
| | | |
Collapse
|
7
|
Pike S, Patel A, Stacey G, Gassmann W. Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. PLANT & CELL PHYSIOLOGY 2009; 50:1923-32. [PMID: 19808809 DOI: 10.1093/pcp/pcp136] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Oligopeptide transporters (OPTs) are found in fungi, bacteria and plants. The nine Arabidopsis thaliana OPT genes are expressed mainly in the vasculature and are thought to transport tetra- and pentapeptides, and peptide-like substrates such as glutathione. Expression of AtOPT6 in Xenopus laevis oocytes demonstrated that AtOPT6 transports many tetra- and pentapeptides. In addition, AtOPT6 transported reduced glutathione (GSH), a tripeptide, but not oxidized glutathione (GSSG). Recent data showed that Candida albicans OPTs can transport peptides up to eight amino acids in length. AtOPT6 transported mammalian signaling peptides up to 10 amino acids in length and, in addition, known plant development- and nematode pathogenesis-associated peptides up to 13 amino acids long. AtOPT6 displayed high affinity for penta- and dodecapeptides, but low affinity for GSH. In comparison the Saccharomyces cerevisiae ScOPT1 was incapable of transporting any of the longer peptides tested. These data demonstrate the necessity of experimentally determining substrate specificity of individual OPTs, and lay a foundation for structure/function studies. Characterization of the AtOPT6 substrate range provides a basis for investigating the possible physiological function of AtOPT6 in peptide signaling and thiol transport in response to stress.
Collapse
Affiliation(s)
- Sharon Pike
- Division of Plant Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA
| | | | | | | |
Collapse
|
8
|
Escher P, Peuke AD, Bannister P, Fink S, Hartung W, Jiang F, Rennenberg H. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:64-70. [PMID: 18042393 DOI: 10.1016/j.plaphy.2007.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 07/25/2007] [Indexed: 05/25/2023]
Abstract
Leaves of the mistletoe Viscum album (L.) show a high rate of transpiration, even when the host is under severe drought stress. The hypothesis that a strong control of ABA influx from the xylem sap of the host into the mistletoe prevents stomatal closure in mistletoe leaves was tested under the following conditions: sections of poplar twigs carrying a mistletoe were perfused with artificial xylem sap that contained different ABA concentrations and both transpiration and ABA levels were analysed in mistletoe leaves. Despite variation by a factor of 10(4), the ABA content of the host xylem did not affect ABA levels, leaf transpiration, CO(2) assimilation, WUE, or the degree of stomatal aperture in mistletoe leaves. These observations support the hypothesis of a strong control of ABA influx from the host of the xylem into the mistletoe, although degradation of ABA before it enters the mistletoe leaves cannot be excluded. This mechanism may ensure a water and nutritional status favourable for the mistletoe, even if the water status of the host is impaired. Despite the lack of short-term sensitivity of ABA levels in mistletoe leaves to even strong changes of ABA levels in the xylem sap of the host, ABA levels in mistletoe leaves were relatively high compared to ABA levels in the leaves of several tree species including poplar. Since significant transpiration of the mistletoe leaves was observed despite high ABA levels, a diminished sensitivity of the stomata of mistletoe leaves to ABA has to be concluded. The stomatal density of adaxial Viscum leaves of 89+/-23 stomata per mm is lower than those reported in a study performed at the end of the 19th century.
Collapse
Affiliation(s)
- Peter Escher
- Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 053/054, Freiburg i.B., Germany.
| | | | | | | | | | | | | |
Collapse
|