1
|
Pesce P, Canullo L, Testori T, Mastroianni A, Fabbro MD, Menini M. The clinical effect of bone perforations in periodontal regeneration and alveolar socket preservation: a systematic review with meta-analysis. Clin Oral Investig 2025; 29:64. [PMID: 39814954 PMCID: PMC11735581 DOI: 10.1007/s00784-025-06152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVES The present systematic review aimed to evaluate if cortical bone perforation is effective in enhancing periodontal surgery and guided bone regeneration (GBR) in humans. MATERIALS AND METHODS Electronic search was performed in PubMed, Scopus and Cochrane CENTRAL up to October 31st, 2023. Grey literature was also searched. Prospective controlled studies were included. Two PICO questions were created; one focusing on the effect of bone perforation in the treatment of peridodontal intrabony defects (primary outcome probing depth (PD)) and one focusing on the effect of bone perforation in guided bone regeneration (primary outcome: histologic and histomorphometric data). The risk of bias of the included studies was assessed using the Cochrane tool for randomized controlled studies (RCTs) and the Joanna Briggs Institute Critical Appraisal tool for cohort studies. Pairwise meta-analysis was undertaken when possible, to estimate the overall effect for the outcomes investigated. RESULTS The search on databases yielded a total of 653 articles. After screening, five RCTs and one non-randomized study were included. A meta-analysis was performed for the first PICO. PD was evaluated in 4 articles and no significant difference was found between the perforation vs. no perforation groups (0.11 mm (95% CI [-0.14 to 0.37 mm], P = 0.38). Additionally, radiographic defect depth (mean difference 0.77 mm, 95% CI [0.24 to 1.30 mm], P = 0.004) and distance between cemento-enamel junction and bone defect (standardized mean difference 0.98 mm, 95% CI [0.47 to 1.50 mm], P = 0.0002) resulted improved in the cortical bone perforation group. CONCLUSION The evidence supporting a positive effect of using cortical perforations is very poor. Further studies with larger sample sizes are needed to determine whether decortication brings meaningful advantages. CLINICAL RELEVANCE This study is focused on clinical studies and, using a rigorous study selection and a meta-analytic approach suggests that the apparent positive effect of bone decortication on the regeneration process still requires to be confirmed by more solid evidence.
Collapse
Affiliation(s)
- Paolo Pesce
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences, University of Genova, Genova, Italy
| | - Luigi Canullo
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences, University of Genova, Genova, Italy
| | - Tiziano Testori
- Dental Clinic, Section of Implant Dentistry and Oral Rehabilitation, IRCCS Galeazzi Sant'Ambrogio Hospital, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via della Commenda 10, Milano, 20122, Italy
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via della Commenda 10, Milano, 20122, Italy.
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Maria Menini
- Division of Prosthodontics and Implant Prosthodontics, Department of Surgical Sciences, University of Genova, Genova, Italy
| |
Collapse
|
2
|
Di Spirito F, Giordano F, Di Palo MP, Ferraro C, Cecere L, Frucci E, Caggiano M, Lo Giudice R. Customized 3D-Printed Mesh, Membrane, Bone Substitute, and Dental Implant Applied to Guided Bone Regeneration in Oral Implantology: A Narrative Review. Dent J (Basel) 2024; 12:303. [PMID: 39452431 PMCID: PMC11506345 DOI: 10.3390/dj12100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The new frontiers of computer-based surgery, technology, and material advances, have allowed for customized 3D printed manufacturing to become widespread in guided bone regeneration (GBR) in oral implantology. The shape, structural, mechanical, and biological manufacturing characteristics achieved through 3D printing technologies allow for the customization of implant-prosthetic rehabilitations and GBR procedures according to patient-specific needs, reducing complications and surgery time. Therefore, the present narrative review aims to elucidate the 3D-printing digital radiographic process, materials, indications, 3D printed manufacturing-controlled characteristics, histological findings, complications, patient-reported outcomes, and short- and long-term clinical considerations of customized 3D printed mesh, membranes, bone substitutes, and dental implants applied to GBR in oral implantology. Methods: An electronic search was performed through MEDLINE/PubMed, Scopus, BioMed Central, and Web of Science until 30 June 2024. Results: Three-dimensionally printed titanium meshes and bone substitutes registered successful outcomes in vertical/horizontal bone defect regeneration. Three-dimensionally printed polymeric membranes could link the advantages of conventional resorbable and non-resorbable membranes. Few data on customized 3D printed dental implants and abutments are available, but in vitro and animal studies have shown new promising designs that could improve their mechanical properties and tribocorrosion-associated complications. Conclusions: While 3D printing technology has demonstrated potential in GBR, additional human studies are needed to evaluate the short- and long-term follow-up of peri-implant bone levels and volumes following prosthetic functional loading.
Collapse
Affiliation(s)
- Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Maria Pia Di Palo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Cosimo Ferraro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Luigi Cecere
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Eugenio Frucci
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Mario Caggiano
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, SA, Italy; (F.G.); (M.P.D.P.); (C.F.); (L.C.); (E.F.); (M.C.)
| | - Roberto Lo Giudice
- Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University Hospital “G. Martino” of Messina, Via Consolare Valeria 1, 98123 Messina, ME, Italy
| |
Collapse
|
3
|
Al‐Asfour A, Karched M, Qasim SSB, Zafiropoulos G. Adhesion of Candida albicans on PTFE membranes used in guided bone regeneration. Clin Exp Dent Res 2024; 10:e902. [PMID: 39014549 PMCID: PMC11252019 DOI: 10.1002/cre2.902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/28/2024] [Accepted: 03/24/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVES Guided bone regeneration (GBR) is a core procedure used to regenerate bone defects. The aim of the study was to investigate the adherence of Candida albicans on six commercially available polytetrafluoroethylene (PTFE) membranes used in GBR procedures and the subsequent clinical consequences. MATERIALS AND METHODS Six commercially available PTFE membranes were tested. Two of the membranes had a textured surface and the other four a plane, nontextured one. C. albicans (ATCC 24433) was cultured for 24 h, and its cell surface hydrophobicity was assessed using a modified method. C. albicans adhesion to membrane discs was studied by scanning electron microscopy (SEM) and real-time polymerase chain reaction (PCR). RESULTS C. albicans was found to be hydrophobic (77.25%). SEM analysis showed that C. albicans adherence to all membranes examined was characterized by patchy, scattered, and small clustered patterns except for one nontextured membrane with a most rough surface in which a thick biofilm was observed. Real-time PCR quantification revealed significantly greater adhesion of C. albicans cells to PTFE membranes than the control membrane (p ≤ .001) with the membranes having a textured surface exhibiting the highest count of 2680 × 104 cells/ml compared to the count of 707 × 104 cells/mL on those with a nontextured one (p ≤ .001). One membrane with nontextured surface, but with most rough surface was found to exhibit the highest count of 3010 × 104 cells/ml (p ≤ .05). CONCLUSION The results of this study indicate that C. albicans adhesion on membranes' surfaces depends on the degree of surface roughness and/or on the presence of a texture. Textured PTFE membranes and/or membranes high roughness showed significantly more adhered C. albicans cells. These findings can impact the surgeon's choice of GBR membrane and postoperative maintenance.
Collapse
Affiliation(s)
- Adel Al‐Asfour
- Department of Surgical Sciences, College of DentistryKuwait UniversitySafatKuwait
| | - Maribasappa Karched
- Department of Bioclinical Sciences, College of DentistryKuwait UniversitySafatKuwait
| | - Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of DentistryKuwait UniversitySafatKuwait
| | | |
Collapse
|
4
|
Mizraji G, Davidzohn A, Gursoy M, Gursoy U, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000 2023; 93:56-76. [PMID: 37855164 DOI: 10.1111/prd.12502] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 10/20/2023]
Abstract
Dental implants revolutionized the treatment options for restoring form, function, and esthetics when one or more teeth are missing. At sites of insufficient bone, guided bone regeneration (GBR) is performed either prior to or in conjunction with implant placement to achieve a three-dimensional prosthetic-driven implant position. To date, GBR is well documented, widely used, and constitutes a predictable and successful approach for lateral and vertical bone augmentation of atrophic ridges. Evidence suggests that the use of barrier membranes maintains the major biological principles of GBR. Since the material used to construct barrier membranes ultimately dictates its characteristics and its ability to maintain the biological principles of GBR, several materials have been used over time. This review, summarizes the evolution of barrier membranes, focusing on the characteristics, advantages, and disadvantages of available occlusive barrier membranes and presents results of updated meta-analyses focusing on the effects of these membranes on the overall outcome.
Collapse
Affiliation(s)
- Gabriel Mizraji
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Ulvi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Lior Shapira
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Donos N, Akcali A, Padhye N, Sculean A, Calciolari E. Bone regeneration in implant dentistry: Which are the factors affecting the clinical outcome? Periodontol 2000 2023; 93:26-55. [PMID: 37615306 DOI: 10.1111/prd.12518] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/08/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
The key factors that are needed for bone regeneration to take place include cells (osteoprogenitor and immune-inflammatory cells), a scaffold (blood clot) that facilitates the deposition of the bone matrix, signaling molecules, blood supply, and mechanical stability. However, even when these principles are met, the overall amount of regenerated bone, its stability over time and the incidence of complications may significantly vary. This manuscript provides a critical review on the main local and systemic factors that may have an impact on bone regeneration, trying to focus, whenever possible, on bone regeneration simultaneous to implant placement to treat bone dehiscence/fenestration defects or for bone contouring. In the future, it is likely that bone tissue engineering will change our approach to bone regeneration in implant dentistry by replacing the current biomaterials with osteoinductive scaffolds combined with cells and mechanical/soluble factors and by employing immunomodulatory materials that can both modulate the immune response and control other bone regeneration processes such as osteogenesis, osteoclastogenesis, or inflammation. However, there are currently important knowledge gaps on the biology of osseous formation and on the factors that can influence it that require further investigation. It is recommended that future studies should combine traditional clinical and radiographic assessments with non-invasive imaging and with patient-reported outcome measures. We also envisage that the integration of multi-omics approaches will help uncover the mechanisms responsible for the variability in regenerative outcomes observed in clinical practice.
Collapse
Affiliation(s)
- Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aliye Akcali
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Periodontology, Faculty of Dentistry, Dokuz Eylul University, Izmir, Turkey
| | - Ninad Padhye
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine and Dentistry, Dental School, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Mantovani R, Fernandes Y, Meza-Mauricio J, Reino D, Gonçalves LS, Sousa LG, Almeida AL, Faveri M, Scombatti de Souza S. Influence of Different Porosities of Titanium Meshes on Bone Neoformation: Pre-Clinical Animal Study with Microtomographic and Histomorphometric Evaluation. J Funct Biomater 2023; 14:485. [PMID: 37888150 PMCID: PMC10607573 DOI: 10.3390/jfb14100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The aim of this study was to evaluate the influence of different types of porosity of titanium meshes on the bone neoformation process in critical defects surgically created in rat calvaria, by means of microtomographic and histomorphometric analyses. Defects of 5 mm in diameter were created in the calvaria of 36 rats, and the animals were randomly treated and divided into the following groups (6 animals per group): NCOG (negative control, only blood clot), TEMG (Polytetrafluoroethylene-PTFE-membrane), SPTMG (small pore titanium mesh), SPMMG (small pore mesh + PTFE), LPTMG (large pore titanium mesh), and LPMMG (large pore mesh + PTFE). After 60 days, the animals were sacrificed, and the bone tissue formed was evaluated with micro-CT and histomorphometry. The data were compared using an ANOVA followed by the Tukey post-test (p ≤ 0.05). The microtomographic results showed that the SPTMG group presented the highest numerical value for bone volume/total volume (22.24 ± 8.97), with statistically significant differences for all the other groups except LPTMG. Considering the histomorphometric evaluation, groups with only porous titanium meshes showed higher values compared to the groups that used the PTFE membrane and the negative control. The SPTMG group presented higher values in the parameters of area (0.44 mm2 ± 0.06), extension (1.19 mm2 ± 0.12), and percentage (7.56 ± 1.45%) of neoformed bone. It was concluded that titanium mesh with smaller pores showed better results and that the association of PTFE membranes with titanium meshes did not improve the outcomes, suggesting a correlation between mesh porosity and underlying bone repair.
Collapse
Affiliation(s)
- Rafael Mantovani
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil; (R.M.); (L.G.S.)
| | - Ytalo Fernandes
- Department of Dentistry, Faculty Unicamps Goiânia, Rua 210, Setor Coimbra 386, Goiânia 74535-280, GO, Brazil;
| | - Jonathan Meza-Mauricio
- Department of Periodontology, Universidad Cientifica del Sur, Calle Cantuarias 398, Lima 15048, Miraflores, Peru;
| | - Danilo Reino
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n., Ribeirao Preto 14040-904, SP, Brazil; (D.R.); (L.S.G.); (A.L.A.)
| | - Laura Sanches Gonçalves
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n., Ribeirao Preto 14040-904, SP, Brazil; (D.R.); (L.S.G.); (A.L.A.)
| | - Luiz Gustavo Sousa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, SP, Brazil; (R.M.); (L.G.S.)
| | - Adriana Luisa Almeida
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n., Ribeirao Preto 14040-904, SP, Brazil; (D.R.); (L.S.G.); (A.L.A.)
| | - Marcelo Faveri
- Independent Researcher, Guarulhos 07072-000, SP, Brazil;
| | - Sergio Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n., Ribeirao Preto 14040-904, SP, Brazil; (D.R.); (L.S.G.); (A.L.A.)
| |
Collapse
|
7
|
Petposri S, Thuaksuban N, Buranadham S, Suwanrat T, Punyodom W, Supphaprasitt W. Physical Characteristics and Biocompatibility of 3D-Printed Polylactic-Co-Glycolic Acid Membranes Used for Guided Bone Regeneration. J Funct Biomater 2023; 14:jfb14050275. [PMID: 37233385 DOI: 10.3390/jfb14050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Bioresorbable polymeric membranes for guided bone regeneration (GBR) were fabricated using the three-dimensional printing technique. Membranes made of polylactic-co-glycolic acid (PLGA), which consist of lactic acid (LA) and glycolic acid in ratios of 10:90 (group A) and 70:30 (group B), were compared. Their physical characteristics including architecture, surface wettability, mechanical properties, and degradability were compared in vitro, and their biocompatibilities were compared in vitro and in vivo. The results demonstrated that the membranes of group B had mechanical strength and could support the proliferation of fibroblasts and osteoblasts significantly better than those of group A (p < 0.05). The degradation rate in Group B was significantly lower than that in Group A, but they significantly produced less acidic environment (p < 0.05). In vivo, the membranes of group B were compared with the commercially available collagen membranes (group C). The amount of newly formed bone of rat's calvarial defects covered with the membranes of group C was stable after week 2, whereas that of group B increased over time. At week 8, the new bone volumes in group B were greater than those in group C (p > 0.05). In conclusion, the physical and biological properties of the PLGA membrane (LA:GA, 70:30) were suitable for GBR.
Collapse
Affiliation(s)
- Sidabhat Petposri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Nuttawut Thuaksuban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Supanee Buranadham
- Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Trin Suwanrat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Amphur Muang 50200, Chiang Mai, Thailand
| | - Woraporn Supphaprasitt
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hatyai 90112, Songkhla, Thailand
| |
Collapse
|
8
|
Patil S, Bhandi S, Bakri MMH, Albar DH, Alzahrani KJ, Al-Ghamdi MS, Alnfiai MM, Tovani-Palone MR. Evaluation of efficacy of non-resorbable membranes compared to resorbable membranes in patients undergoing guided bone regeneration. Heliyon 2023; 9:e13488. [PMID: 36942236 PMCID: PMC10024103 DOI: 10.1016/j.heliyon.2023.e13488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Replacement of missing teeth in patients with prolonged edentulism poses a challenge for clinicians. An extended period of edentulism results in severe atrophy of alveolar ridges rendering them unsatisfactory for rehabilitation using an implant-supported prosthesis. To overcome this difficulty, Guided Bone Regeneration (GBR) was introduced and constructed upon the principles of Guided Tissue Regeneration (GTR) procedures. Evidence suggests that GBR has proven to be a predictable treatment modality for treating vertical and horizontal ridge deficiencies. OBJECTIVE The present systematic review aimed to evaluate the efficacy of non-resorbable (N-RES) membranes compared to resorbable (RES) membranes in patients undergoing GBR. METHODS An electronic search of three databases, including PubMed, Web of Science, and Scopus, was conducted for articles published until March 2022. A supplementary manual search of references from these articles was performed to include any articles that may have been overlooked in the electronic search. Articles that evaluated the efficacy of RES membranes and N-RES membranes in GBR were included. Case reports, case series, commentaries, letters to the editor, narrative or systematic reviews were excluded. Articles in languages other than English were also excluded. The articles were assessed against risk of bias 2 tool for Randomized Control Trials (RCTs) and ROBINS-I tool for Non-Randomized Clinical Trials (N-RCTs). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment was followed based on the Cochrane Handbook for quality assessment. A summary of findings table was used to present the results. RESULTS One hundred and fifty one articles were identified in an electronic search. Eight articles met the inclusion criteria and were included in the present systematic review. The studies were conducted on partially or completely edentulous patients with alveolar ridge deficiencies undergoing vertical or horizontal bone for subsequent implant placement. The majority of the studies reported similar results for bone gain in both RES and N-RES membrane groups. CONCLUSION The available evidence suggests that RES and N-RES membranes are equally effective in GBR. However, the evidence must be interpreted with caution due to its 'low quality' GRADE assessment. CLINICAL IMPLICATIONS Further research focusing on human clinical trials with well-matched subjects with homogeneity in the type and method of GBR and method of assessment of new bone formation will derive conclusive results on the efficacy of RES and N-RES membranes in achieving new bone formation.
Collapse
Affiliation(s)
- Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah 84095, USA
| | - Shilpa Bhandi
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah 84095, USA
| | - Mohammed Mousa H. Bakri
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Dhalia H. Albar
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mohammad S. Al-Ghamdi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mrim M. Alnfiai
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Marcos Roberto Tovani-Palone
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| |
Collapse
|
9
|
Zelikman H, Slutzkey G, Rosner O, Levartovsky S, Matalon S, Beitlitum I. Bacterial Growth on Three Non-Resorbable Polytetrafluoroethylene (PTFE) Membranes-An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5705. [PMID: 36013840 PMCID: PMC9414989 DOI: 10.3390/ma15165705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
GBR (Guided Bone Regeneration) procedure is challenged by the risk of membrane exposure to the oral cavity and contamination. The barrier quality of these membranes serve as a mechanical block from bacterial penetration into the GBR site. The purpose of this in vitro study was to evaluate the antibacterial effect of three commercial non-resorbable polytetrafluoroethylene membranes. (Two d-PTFE membranes and one double layer e-PTFE +d-PTFE membrane). A validated in vitro model with two bacterial species (Streptococcus sanguinis and Fusobacterium nucleatum) was used. Eight samples from membrane each were placed in a 96-well microtiter plate. The experimental and positive control groups were exposed to a bacterial suspension which involved one bacterial species in each plate. Bacterial growth was monitored spectrophotometrically at 650 nm for 24 h in temperature controlled microplate spectrophotometer under anaerobic conditions. One- Sample Kolmogorov−Smirnov Normal test and the Kruskal−Wallis test was used for the statistical analysis. As shown by the bacterial growth curves obtained from the spectrophotometer readings, all three membranes resulted in bacterial growth. We have not found a statistical difference in F. nucleatum growth between different membrane samples and the positive control group. However, S. sanguinis growth was reduced significantly in the presence of two membranes (CYTOPLAST TXT-200 and NeoGenTM) when compared to the control (p < 0.01). The presence of Permamem® had no significant influence on S. sanguinis growth. Some types of commercial non-resorbable PTFE membranes may have an impact on the growth dynamics of specific bacterial species.
Collapse
Affiliation(s)
- Helena Zelikman
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Slutzkey
- Department of Periodontology and Dental Implantology, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Rosner
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shifra Levartovsky
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Matalon
- Department of Oral Rehabilitation, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ilan Beitlitum
- Department of Periodontology and Dental Implantology, Goldschleger School of Dental Medicine, Sackler Medical Faculty, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Aristodemou E, Retzepi M, Calciolari E, Donos N. The effect of experimental diabetes and membrane occlusiveness on guided bone regeneration: A proof of principle study. Clin Oral Investig 2022; 26:5223-5235. [PMID: 35688955 DOI: 10.1007/s00784-022-04491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To evaluate the effect of membrane occlusiveness and experimental diabetes on early and late healing following guided bone regeneration. MATERIAL AND METHODS A total of 30 Wistar rats were randomly allocated to three groups: healthy (H), uncontrolled diabetic (UD) and controlled diabetic (CD). A critical size calvarial defect (CSD) was created at the mid-portion of one parietal bone, and it was treated with a double layer of e-PTFE membrane presenting 0.5 mm perforations. The animals were killed at 7 and 30 days of healing, and qualitative and quantitative histological evaluations were performed. Data were compared with the ones previously obtained from other 30 animals (10H, 10UD, 10 CD), where two CSDs were randomly treated with a double-layer e-PTFE occlusive membrane or left empty. RESULTS Following application of cell occlusive or cell permeable membranes, significant regeneration can be observed. However, at 30 days in the H group occlusive compared to cell permeable membranes promoted enhanced bone regeneration (83.9 ± 7.3% vs. 52.5 ± 8.6%), while no significant differences were observed within the CD and UD groups. UD led to reduced regeneration compared to H when an occlusive barrier was applied, whereas comparable outcomes to H and CD were observed when placing perforated membranes. CONCLUSION The application of cell permeable membranes may have masked the potentially adverse effect of experimental UD on bone regeneration. CLINICAL RELEVANCE Membrane porosity might contribute to modulate the bone regenerative response in UD conditions. Future studies are needed to establish the degree of porosity associated with the best regenerative outcomes as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - M Retzepi
- Centre for Oral Clinical Research and Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - E Calciolari
- Centre for Oral Clinical Research and Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
- Dental School, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - N Donos
- Centre for Oral Clinical Research and Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK.
| |
Collapse
|
11
|
Chen L, Cheng G, Meng S, Ding Y. Collagen Membrane Derived from Fish Scales for Application in Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14132532. [PMID: 35808577 PMCID: PMC9269230 DOI: 10.3390/polym14132532] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Guided tissue/bone regeneration (GTR/GBR) is currently the main treatment for alveolar bone regeneration. The commonly used barrier membranes in GTR/GBR are collagen membranes from mammals such as porcine or cattle. Fish collagen is being explored as a potential substitute for mammalian collagen due to its low cost, no zoonotic risk, and lack of religious constraints. Fish scale is a multi-layer natural collagen composite with high mechanical strength, but its biomedical application is limited due to the low denaturation temperature of fish collagen. In this study, a fish scale collagen membrane with a high denaturation temperature of 79.5 °C was prepared using an improved method based on preserving the basic shape of fish scales. The fish scale collagen membrane was mainly composed of type I collagen and hydroxyapatite, in which the weight ratios of water, organic matter, and inorganic matter were 20.7%, 56.9%, and 22.4%, respectively. Compared to the Bio-Gide® membrane (BG) commonly used in the GTR/GBR, fish scale collagen membrane showed good cytocompatibility and could promote late osteogenic differentiation of cells. In conclusion, the collagen membrane prepared from fish scales had good thermal stability, cytocompatibility, and osteogenic activity, which showed potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Liang Chen
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Guoping Cheng
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu Meng
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (L.C.); (G.C.); (S.M.)
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Periodontology, West China College of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
12
|
Vacaras S, Baciut G, Gheban D, Bran S, Colosi H, Toader S, Opris D, Kretschmer W, Manea A, Armencea G, Baciut M, Opris H, Mitre I, Hedesiu M, Dinu C. Engaging a polylactide copolymer in oral tissue regeneration: first validation of Suprathel ® for guided epithelial and osseous healing. J Med Life 2021; 14:181-197. [PMID: 34104241 PMCID: PMC8169152 DOI: 10.25122/jml-2021-0083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The present study investigated the capacity of Suprathel® (a copolymer membrane, so far validated for skin regeneration) to also regenerate oral tissue – mucosa and bone, by comparing this biomaterial, in a split-mouth rabbit model, to Mucoderm®, a xenogeneic collagen matrix certified for keratinized oral mucosa healing. The clinical reason behind this experimental animal model was to determine whether the benefits of this advanced skin regeneration product (Suprathel®) could be conveyed for future evaluation in clinical trials of oral tissue regeneration in humans. The outcomes of this study validated the use of Suprathel®, a terpolymer of polylactide with trimethylene carbonate and ε-caprolactone, for stimulation of oral epithelium and alveolar bone regeneration in rabbits. Both Suprathel® and Mucoderm® exhibited comparable results and the null hypothesis stating a comparable regenerating effect of these two materials could not be rejected.
Collapse
Affiliation(s)
- Sergiu Vacaras
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Gheban
- Department of Morphological Sciences, Division of Pathoanatomy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horatiu Colosi
- Department of Medical Education, Division of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Septimiu Toader
- Center for Experimental Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daiana Opris
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Winfried Kretschmer
- Klinik fur Mund-, Kiefer- und Plastische Gesichtschirurgie, Alb Fils Kliniken GmbH, Goppingen, Baden-Wurttemberg, Germany
| | - Avram Manea
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horia Opris
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ileana Mitre
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Radiology, Division of Maxillofacial Surgery and Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Guerra NB, Sant'Ana Pegorin G, Boratto MH, de Barros NR, de Oliveira Graeff CF, Herculano RD. Biomedical applications of natural rubber latex from the rubber tree Hevea brasiliensis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112126. [PMID: 34082943 DOI: 10.1016/j.msec.2021.112126] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022]
Abstract
The past decades have witnessed tremendous progress in biomaterials in terms of functionalities and applications. To realize various functions such as tissue engineering, tissue repair, and controlled release of therapeutics, a biocompatible and biologically active material is often needed. However, it is a difficult task to find either synthetic or natural materials suitable for in vivo applications. Nature has provided us with the natural rubber latex from the rubber tree Hevea brasiliensis, a natural polymer that is biocompatible and has been proved as inducing tissue repair by enhancing the vasculogenesis process, guiding and recruiting cells responsible for osteogenesis, and acting as a solid matrix for controlled drug release. It would be extremely useful if medical devices can be fabricated with materials that have these biological properties. Recently, various types of natural rubber latex-based biomedical devices have been developed to enhance tissue repair by taking advantage of its biological properties. Most of them were used to enhance tissue repair in chronic wounds and critical bone defects. Others were used to design drug release systems to locally release therapeutics in a sustained and controlled manner. Here, we summarize recent progress made in these areas. Specifically, we compare various applications and their performance metrics. We also discuss critical problems with the use of natural rubber latex in biomedical applications and highlight future opportunities for biomedical devices produced either with pre-treated natural rubber latex or with proteins purified from the natural rubber latex.
Collapse
Affiliation(s)
- Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, BR
| | - Giovana Sant'Ana Pegorin
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Miguel Henrique Boratto
- Department of Physics, São Paulo State University (UNESP), School of Sciences, Bauru, São Paulo, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11570 West Olympic Boulevard, Los Angeles, CA 90064, USA.
| | | | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| |
Collapse
|
14
|
Abbasi N, Lee RSB, Ivanovski S, Love RM, Hamlet S. In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds. Biomater Res 2020; 24:17. [PMID: 33014414 PMCID: PMC7529514 DOI: 10.1186/s40824-020-00196-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/21/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Biomaterial-based bone tissue engineering represents a promising solution to overcome reduced residual bone volume. It has been previously demonstrated that gradient and offset architectures of three-dimensional melt electrowritten poly-caprolactone (PCL) scaffolds could successfully direct osteoblast cells differentiation toward an osteogenic lineage, resulting in mineralization. The aim of this study was therefore to evaluate the in vivo osteoconductive capacity of PCL scaffolds with these different architectures. METHODS Five different calcium phosphate (CaP) coated melt electrowritten PCL pore sized scaffolds: 250 μm and 500 μm, 500 μm with 50% fibre offset (offset.50.50), tri layer gradient 250-500-750 μm (grad.250top) and 750-500-250 μm (grad.750top) were implanted into rodent critical-sized calvarial defects. Empty defects were used as a control. After 4 and 8 weeks of healing, the new bone was assessed by micro-computed tomography and immunohistochemistry. RESULTS Significantly more newly formed bone was shown in the grad.250top scaffold 8 weeks post-implantation. Histological investigation also showed that soft tissue was replaced with newly formed bone and fully covered the grad.250top scaffold. While, the bone healing did not happen completely in the 250 μm, offset.50.50 scaffolds and blank calvaria defects following 8 weeks of implantation. Immunohistochemical analysis showed the expression of osteogenic markers was present in all scaffold groups at both time points. The mineralization marker Osteocalcin was detected with the highest intensity in the grad.250top and 500 μm scaffolds. Moreover, the expression of the endothelial markers showed that robust angiogenesis was involved in the repair process. CONCLUSIONS These results suggest that the gradient pore size structure provides superior conditions for bone regeneration.
Collapse
Affiliation(s)
- Naghmeh Abbasi
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Ryan S. B. Lee
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Saso Ivanovski
- School of Dentistry, University of Queensland, Herston Campus, Herston, Queensland 4006 Australia
| | - Robert M. Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| | - Stephen Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland 4215 Australia
| |
Collapse
|
15
|
Siddiqui HK, Azeem S, Kotsailidi EA, Javed F. Influence of a state of chronic hyperglycemia on guided bone regeneration—A systematic review of studies on animal-models. SURGERY IN PRACTICE AND SCIENCE 2020. [DOI: 10.1016/j.sipas.2020.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Dau M, Volprich L, Grambow E, Vollmar B, Frerich B, Al-Nawas B, Kämmerer PW. Collagen membranes of dermal and pericardial origin-In vivo evolvement of vascularization over time. J Biomed Mater Res A 2020; 108:2368-2378. [PMID: 32363796 DOI: 10.1002/jbm.a.36989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
Aim of the study was to compare the evolvement of vascularization over time of collagen membranes (CMs) of dermal and pericardial origin in an in vivo animal study. Twenty-eight mice underwent implantation of three commercially available CM derived from porcine dermis (homogenous structure: CM1 (Control 1) and bilayer structure: CM2 [Control 2]), from porcine pericardium (CM3; Test 1) as well as CM3 sprayed with silica-enhanced nanostructured hydroxyapatite (CM4, Test 2). After 3, 6, 9, and 12 days, intravital fluorescence microscopy was conducted for determination of capillary diameter, density, flow, and length. At Day 12, samples were examined immunohistologically for expression of fibroblast growth factor receptor 4 (FGFR4), CD11b, CD68, αSMA, and CD34. In all CM, intravital fluorescence microscopy over time showed increasing values for all parameters with the highest levels in CM4 and the lowest values in CM1. Significant lower amounts of FGFR4, CD11b, and CD68 were detected in CM4 when compared to CM2 (p < .05). In contrast to CM3, lower values of αSMA and higher numbers of CD34 positive-marked vessels were observed in CM4 (p < .05). In conclusion, dermal bilayer as well as pericardial CM seem to have a higher vascularization rate than dermal homogenous CM. Additional coating of pericardial CM with a silica-enhanced hydroxyapatite increases the speed of vascularization as well as biological remodeling processes.
Collapse
Affiliation(s)
- Michael Dau
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Lisann Volprich
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Eberhard Grambow
- Department for General-, Visceral-, Vascular- and Transplantation Surgery, University Medical Center Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medical Center Rostock, Rostock, Germany
| | - Bernhard Frerich
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany
| | - Bilal Al-Nawas
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Rostock, Rostock, Germany.,Department of Oral, Maxillofacial Plastic Surgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
17
|
Nguyen TDT, Jang YS, Kim YK, Kim SY, Lee MH, Bae TS. Osteogenesis-Related Gene Expression and Guided Bone Regeneration of a Strontium-Doped Calcium-Phosphate-Coated Titanium Mesh. ACS Biomater Sci Eng 2019; 5:6715-6724. [PMID: 33423489 DOI: 10.1021/acsbiomaterials.9b01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guided bone regeneration using a perforated titanium membrane is actively used in oral and orthopedic surgeries to provide space for the subsequent filling of a new bone in the case of bone defects and to achieve proper bone augmentation and reconstruction. The surface modification of a titanium membrane using a strontium-substituted calcium phosphate coating has become a popular trend to provide better bioactivity and biocompatibility on the membrane for improving the bone regeneration because strontium can stimulate not only the differentiation of osteoblasts but also inhibit the differentiation of osteoclasts. The strontium-doped calcium phosphate coating on the titanium mesh was formed by the cyclic precalcification method, and its effects on bone regeneration were evaluated by in vitro analysis of osteogenesis-related gene expression and in vivo evaluation of osteogenesis of the titanium mesh using the rat calvarial defect model in this study. It was identified that the strontium-doped calcium phosphate-treated mesh showed a higher expression of all genes related to osteogenesis in the osteoblast cells and resulted in new bone formation with better osseointegration with the mesh in the rat calvarial defect, in comparison with the results of untreated and calcium phosphate-treated meshes.
Collapse
Affiliation(s)
- Thuy-Duong Thi Nguyen
- Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen Street, Hue City, Thua Thien Hue 530000, Vietnam
| | - Yong-Seok Jang
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Yu-Kyoung Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Seo-Young Kim
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| | - Tae-Sung Bae
- Department of Dental Biomaterials and Institute of Biodegradable Material, Institute of Oral Bioscience, BK21 Plus Project, School of Dentistry, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju 54896, Jeollabuk-do, South Korea
| |
Collapse
|
18
|
Lee J, Lee J, Hwang S, Choi J, Rhyu I, Yeo IL. Leukocyte‐ and platelet‐rich fibrin is an effective membrane for lateral ridge augmentation: An in vivo study using a canine model with surgically created defects. J Periodontol 2019; 91:120-128. [DOI: 10.1002/jper.19-0186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jun‐Beom Lee
- Department of PeriodontologySeoul National University School of Dentistry Seoul Korea
| | - Jung‐Tae Lee
- Dental Research InstituteSeoul National University Seoul Korea
| | - Sukhyun Hwang
- Graduate CoursesKorea University College of Medicine Seoul Korea
| | - Jung‐Yoo Choi
- Dental Research InstituteSeoul National University Seoul Korea
| | - In‐Chul Rhyu
- Department of PeriodontologySeoul National University School of Dentistry Seoul Korea
| | - In‐Sung L. Yeo
- Department of ProsthodonticsSchool of Dentistry and Dental Research InstituteSeoul National University Seoul Korea
| |
Collapse
|
19
|
Non-Resorbable Nanocomposite Membranes for Guided Bone Regeneration Based On Polysulfone-Quartz Fiber Grafted with Nano-TiO 2. NANOMATERIALS 2019; 9:nano9070985. [PMID: 31288413 PMCID: PMC6669488 DOI: 10.3390/nano9070985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022]
Abstract
The polymer-inorganic nanoparticles composite membranes are the latest solutions for multiple physicochemical resistance and selectivity requirements of membrane processes. This paper presents the production of polysulfone-silica microfiber grafted with titanium dioxide nanoparticles (PSf-SiO2-TiO2) composite membranes. Silica microfiber of length 150-200 μm and diameter 12-15 μm were grafted with titanium dioxide nanoparticles, which aggregated as microspheres of 1-3 μm, applying the sol-gel method. The SiO2 microfibers grafted with nano-TiO2 were used to prepare 12% polysulfone-based nanocomposite membranes in N-methyl pyrrolidone through the inversion phase method by evaporation. The obtained nanocomposite membranes, PSf-SiO2-TiO2, have flux characteristics, retention, mechanical characteristics, and chemical oxidation resistance superior to both the polysulfone integral polymer membranes and the PSf-SiO2 composite membranes. The antimicrobial tests highlighted the inhibitory effect of the PSf-SiO2-TiO2 composite membranes on five Gram (-) microorganisms and did not allow the proliferation of Candida albicans strain, proving that they are suitable for usage in the oral environment. The designed membrane met the required characteristics for application as a functional barrier in guided bone regeneration.
Collapse
|
20
|
Zhang HY, Jiang HB, Ryu JH, Kang H, Kim KM, Kwon JS. Comparing Properties of Variable Pore-Sized 3D-Printed PLA Membrane with Conventional PLA Membrane for Guided Bone/Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1718. [PMID: 31137830 PMCID: PMC6566256 DOI: 10.3390/ma12101718] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/23/2019] [Indexed: 11/16/2022]
Abstract
The aim of this study was to fabricate bioresorbable polylactide (PLA) membranes by 3D printing and compare their properties to those of the membranes fabricated by the conventional method and compare the effect of different pore sizes on the properties of the 3D-printed membranes. PLA membranes with three different pore sizes (large pore-479 μm, small pore-273 μm, and no pore) were 3D printed, and membranes fabricated using the conventional solvent casting method were used as the control group. Scanning electron microscopy (SEM) and micro-computed tomography (µ-CT) were taken to observe the morphology and obtain the porosity of the four groups. A tensile test was performed to compare the tensile strength, elastic modulus, and elongation at break of the membranes. Preosteoblast cells were cultured on the membranes for 1, 3 and 7 days, followed by a WST assay and SEM, to examine the cell proliferation on different groups. As a result, the 3D-printed membranes showed superior mechanical properties to those of the solvent cast membranes, and the 3D-printed membranes exhibited different advantageous mechanical properties depending on the different pore sizes. The various fabrication methods and pore sizes did not have significantly different effects on cell growth. It is proven that 3D printing is a promising method for the fabrication of customized barrier membranes used in GBR/GTR.
Collapse
Affiliation(s)
- Hao Yang Zhang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Heng Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, Shandong, China.
| | - Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea.
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Hyojin Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea.
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea.
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
21
|
Jang YS, Moon SH, Nguyen TDT, Lee MH, Oh TJ, Han AL, Bae TS. In vivo bone regeneration by differently designed titanium membrane with or without surface treatment: a study in rat calvarial defects. J Tissue Eng 2019; 10:2041731419831466. [PMID: 30834101 PMCID: PMC6396043 DOI: 10.1177/2041731419831466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/25/2019] [Indexed: 12/24/2022] Open
Abstract
The current objective was to evaluate six groups of titanium membranes in a rat calvarial defect model, regarding the surface treatment with or without calcium-phosphate coating and surface topography with no, small, or large holes. Critical size defects (Ф = 8 mm, n = 42) were surgically created in rat calvaria, and then were treated by one of the six groups. Biopsies were obtained at 4 weeks (n = 5 per group) for micro-computed tomography and histomorphometric analyses. Fluorochrome bone markers were injected in two rats each group at 1 (Alizarin red), 3 (Calcein green) and 5 weeks (Oxytetracyclin yellow), followed by histological examination at 7 weeks to assess bone regeneration dynamic. At 4 weeks, the highest bone volume was observed in no-hole groups independent of surface treatment (p < 0.05). Treated groups with no-hole and large-hole membranes showed increased bone mineral density than with respective non-treated groups (p < 0.05). Histology exhibited an intimate bone formation onto the treated membranes, whereas non-treated ones demonstrated interposition of connective tissue, which was confirmed through bone contact percentages. The results suggest that occlusive membranes showed more bone formation than other perforated ones, and calcium-phosphate treatment induces intimate bone formation toward the membrane.
Collapse
Affiliation(s)
- Yong-Seok Jang
- Department of Dental Biomaterials, Institute of Oral Bioscience and Institute of Biodegradable Material, BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - So-Hee Moon
- Department of Periodontology, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Thuy-Duong Thi Nguyen
- Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Min-Ho Lee
- Department of Dental Biomaterials, Institute of Oral Bioscience and Institute of Biodegradable Material, BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| | - Tae-Ju Oh
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - A-Lum Han
- Department of Family Medicine, College of Medicine, Wonkwang University, Iksan, South Korea
| | - Tae-Sung Bae
- Department of Dental Biomaterials, Institute of Oral Bioscience and Institute of Biodegradable Material, BK21 Plus Project, School of Dentistry, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
22
|
Ghuman MS, Al-Masri M, Xavier G, Cobourne MT, McKay IJ, Hughes FJ. Gingival fibroblasts prevent BMP-mediated osteoblastic differentiation. J Periodontal Res 2018; 54:300-309. [PMID: 30511378 PMCID: PMC6492095 DOI: 10.1111/jre.12631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 10/04/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Objectives The inhibitory action of the superficial gingival connective tissues may limit the regenerative potential of alveolar bone in periodontal therapy or dental implant applications. The aims of this study were to investigate the hypothesis that gingival fibroblasts (GF) can inhibit bone morphogenetic protein (BMP)‐induced osteoblastic differentiation, to determine their expression of BMP inhibitors, and finally to determine whether reduction of these inhibitors can relieve suppression of osteoblastic differentiation. Methods Gingival fibroblasts were co‐cultured either directly or indirectly with calvarial osteoblasts to assess alkaline phosphatase inhibitory activity, a marker of osteoblastic differentiation. To test total BMP‐inhibitory activity of rat GF, conditioned media (GFCM) were collected from cultures. ROS 17/2.8 osteoblastic cells were stimulated with BMP2, together with GFCM. Inhibitor expression was tested using RT‐qPCR, Western blotting and in situ hybridization. Removal of inhibitors was carried out using immunoprecipitation beads. Results Co‐culture experiments showed GF‐secreted factors that inhibit BMP‐stimulated ALP activity. 10 ng/ml BMP2 increased alkaline phosphatase expression in ROS cells by 41%. GFCM blocked BMP activity which was equivalent to the activity of 100 ng/ml Noggin, a well‐described BMP inhibitor. Cultured gingival fibroblasts constitutively expressed BMP antagonist genes from the same subfamily, Grem1, Grem2 and Nbl1 and the Wnt inhibitor Sfrp1. Gremlin1 (6.7 × reference gene expression) had highest levels of basal expression. ISH analysis showed Gremlin1 expression was restricted to the inner half of the gingival lamina propria and the PDL. Removal of Gremlin1 protein from GFCM eliminated the inhibitory effect of GFCM on ALP activity in ROS cells. Subsequent addition of recombinant Gremlin1 restored the inhibitory activity. Conclusions Factors secreted by gingival fibroblasts inhibit BMP‐induced bone formation and a range of BMP inhibitors are constitutively expressed in gingival connective tissues. These inhibitors, particularly Gremlin1, may limit coronal alveolar bone regenerative potential during oral and periodontal surgery.
Collapse
Affiliation(s)
- Mandeep S Ghuman
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, London, UK
| | | | - Guilherme Xavier
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, Guy's Hospital, London, UK
| | - Ian J McKay
- Department of Adult Oral Health, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francis J Hughes
- Division of Tissue Engineering and Biophotonics, Dental Institute, King's College London, London, UK
| |
Collapse
|
23
|
Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 2017; 125:315-337. [PMID: 28833567 PMCID: PMC5601292 DOI: 10.1111/eos.12364] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Guided bone regeneration (GBR) is commonly used in combination with the installment of titanium implants. The application of a membrane to exclude non‐osteogenic tissues from interfering with bone regeneration is a key principle of GBR. Membrane materials possess a number of properties which are amenable to modification. A large number of membranes have been introduced for experimental and clinical verification. This prompts the need for an update on membrane properties and the biological outcomes, as well as a critical assessment of the biological mechanisms governing bone regeneration in defects covered by membranes. The relevant literature for this narrative review was assessed after a MEDLINE/PubMed database search. Experimental data suggest that different modifications of the physicochemical and mechanical properties of membranes may promote bone regeneration. Nevertheless, the precise role of membrane porosities for the barrier function of GBR membranes still awaits elucidation. Novel experimental findings also suggest an active role of the membrane compartment per se in promoting the regenerative processes in the underlying defect during GBR, instead of being purely a passive barrier. The optimization of membrane materials by systematically addressing both the barrier and the bioactive properties is an important strategy in this field of research.
Collapse
Affiliation(s)
- Ibrahim Elgali
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden.,Department of Oral Maxillofacial Surgery/ENT, NU-Hospital organisation, Trollhättan, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,BIOMATCELL VINN Excellence Center of Biomaterials and Cell Therapy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Dehydrothermally Cross-Linked Collagen Membrane with a Bone Graft Improves Bone Regeneration in a Rat Calvarial Defect Model. MATERIALS 2017; 10:ma10080927. [PMID: 28796152 PMCID: PMC5578293 DOI: 10.3390/ma10080927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/29/2017] [Accepted: 08/05/2017] [Indexed: 11/17/2022]
Abstract
In this study, the bone regeneration efficacy of dehydrothermally (DHT) cross-linked collagen membrane with or without a bone graft (BG) material was evaluated in a critical-sized rat model. An 8-mm-diameter defect was created in the calvaria of 40 rats, which were randomized into four groups: (1) control; (2) DHT; (3) BG; and, (4) DHT + BG. Evaluations were made at 2 and 8 weeks after surgery using micro-computed tomographic (micro-CT), histological, and histomorphometric analyses. Micro-CT analysis showed an increase in the new bone volume (NBV) of the BG and DHT + BG groups at 2 weeks after surgery, representing a significant difference (p < 0.05). At 8 weeks after surgery, the NBV increased in all four groups. However, larger NBVs were observed in the BG and DHT + BG groups, and a significant difference was no longer observed between the two groups. Histologic analysis demonstrated that the graft materials sustained the center of the defect in the BG and DHT + BG groups, which was shown in histomorphometric analysis as well. These results suggest that DHT membrane is a safe biomaterial with adequate tissue integration, and has a positive effect on new bone formation. Moreover, the best effects were achieved when DHT was used in conjunction with BG materials.
Collapse
|
25
|
Effects of Titanium Mesh Surfaces-Coated with Hydroxyapatite/β-Tricalcium Phosphate Nanotubes on Acetabular Bone Defects in Rabbits. Int J Mol Sci 2017; 18:ijms18071462. [PMID: 28686210 PMCID: PMC5535953 DOI: 10.3390/ijms18071462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022] Open
Abstract
The management of severe acetabular bone defects in revision reconstructive orthopedic surgery is challenging. In this study, cyclic precalcification (CP) treatment was used on both nanotube-surface Ti-mesh and a bone graft substitute for the acetabular defect model, and its effects were assessed in vitro and in vivo. Nanotube-Ti mesh coated with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) was manufactured by an anodizing and a sintering method, respectively. An 8 mm diameter defect was created on each acetabulum of eight rabbits, then treated by grafting materials and covered by Ti meshes. At four and eight weeks, postoperatively, biopsies were performed for histomorphometric analyses. The newly-formed bone layers under cyclic precalcified anodized Ti (CP-AT) meshes were superior with regard to the mineralized area at both four and eight weeks, as compared with that under untreated Ti meshes. Active bone regeneration at 2-4 weeks was stronger than at 6-8 weeks, particularly with treated biphasic ceramic (p < 0.05). CP improved the bioactivity of Ti meshes and biphasic grafting materials. Moreover, the precalcified nanotubular Ti meshes could enhance early contact bone formation on the mesh and, therefore, may reduce the collapse of Ti meshes into the defect, increasing the sufficiency of acetabular reconstruction. Finally, cyclic precalcification did not affect bone regeneration by biphasic grafting materials in vivo.
Collapse
|
26
|
Marques MS, Zepon KM, Petronilho FC, Soldi V, Kanis LA. Characterization of membranes based on cellulose acetate butyrate/poly(caprolactone)triol/doxycycline and their potential for guided bone regeneration application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:365-373. [DOI: 10.1016/j.msec.2017.03.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/20/2016] [Accepted: 03/12/2017] [Indexed: 01/22/2023]
|
27
|
Micro-computed tomography analysis of early stage bone healing using micro-porous titanium mesh for guided bone regeneration: preliminary experiment in a canine model. Odontology 2017; 105:408-417. [PMID: 28389977 DOI: 10.1007/s10266-017-0298-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/26/2016] [Indexed: 10/19/2022]
Abstract
The aim of this study was to evaluate the amount of bone formation beneath a defect area after treatment with titanium mesh membranes with different thicknesses and pore sizes alone or in combination with bone graft to induce bone formation during the early stage of healing time. The mandibular premolars were extracted bilaterally from three adult beagle dogs, and 8-mm-diameter bone defects were created on the buccal site of the premolar regions. Hydroxyapatite bone graft substitute was applied in the defect site unilaterally, and other site was left empty. Then, a novel micro-porous mesh (50 μm in pore diameter) or commercially available macro-porous titanium mesh (1700 μm in pore diameter) was placed on the defect and secured with screws. After 4 weeks, the mandibles were harvested, imaged using micro-computed tomography, and prepared for histological and morphometric evaluation. Higher new bone volumes (mm3), percentage of new bone volumes in the total defect volumes (bone ratio: %), and new bone area (mm2) through morphometric evaluation were found on the novel membranes with 50-μm-diameter pores compared to the commercial titanium mesh. Moreover, experiment sites without bone graft were observed with higher new bone volume and bone ratio compared with sites with bone graft. However, bone mineral density of novel mesh was observed to be lower compared with other experimental sites. Under the experimental condition, the result of this study suggests that titanium meshes with 50-μm-diameter pores were effective for guided bone regeneration in the early stage of healing.
Collapse
|
28
|
Danesh-Sani S, Tarnow D, Yip J, Mojaver R. The influence of cortical bone perforation on guided bone regeneration in humans. Int J Oral Maxillofac Surg 2017; 46:261-266. [DOI: 10.1016/j.ijom.2016.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
|
29
|
Stavropoulos A, Sculean A, Bosshardt DD, Buser D, Klinge B. Pre-clinical in vivo models for the screening of bone biomaterials for oral/craniofacial indications: focus on small-animal models. Periodontol 2000 2017; 68:55-65. [PMID: 25867979 DOI: 10.1111/prd.12065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 11/26/2022]
Abstract
Preclinical in vivo experimental studies are performed for evaluating proof-of-principle concepts, safety and possible unwanted reactions of candidate bone biomaterials before proceeding to clinical testing. Specifically, models involving small animals have been developed for screening bone biomaterials for their potential to enhance bone formation. No single model can completely recreate the anatomic, physiologic, biomechanic and functional environment of the human mouth and jaws. Relevant aspects regarding physiology, anatomy, dimensions and handling are discussed in this paper to elucidate the advantages and disadvantages of small-animal models. Model selection should be based not on the 'expertise' or capacities of the team, but rather on a scientifically solid rationale, and the animal model selected should reflect the question for which an answer is sought. The rationale for using heterotopic or orthotopic testing sites, and intraosseous, periosseous or extraskeletal defect models, is discussed. The paper also discusses the relevance of critical size defect modeling, with focus on calvarial defects in rodents. In addition, the rabbit sinus model and the capsule model in the rat mandible are presented and discussed in detail. All animal experiments should be designed with care and include sample-size and study-power calculations, thus allowing generation of meaningful data. Moreover, animal experiments are subject to ethical approval by the relevant authority. All procedures and the postoperative handling and care, including postoperative analgesics, should follow best practice.
Collapse
|
30
|
Higuchi M, Moroi A, Yoshizawa K, Kosaka A, Ikawa H, Iguchi R, Saida Y, Hotta A, Tsutsui T, Ueki K. Comparison between various densities of pore titanium meshes and e-polytetrafluoroethylene (ePTFE) membrane regarding bone regeneration induced by low intensity pulsed ultrasound (LIPUS) in rabbit nasal bone. J Craniomaxillofac Surg 2016; 44:1152-61. [PMID: 27443802 DOI: 10.1016/j.jcms.2016.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/18/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The purpose of this study was to compare bone regenerative capability following use of polytetrafluoroethylene (ePTFE) membrane against that when various densities of pore titanium meshes are used with and without low intensity pulsed ultrasound (LIPUS). MATERIALS AND METHODS Adult male white rabbits were divided into 8 groups. In 4 groups, after incising along the nasal bone, four 3 × 8 mm bone defects were made in both sides and covered by an ePTFE membrane (group E: n = 15), a high density pore titanium mesh (group H: n = 15), a low density pore titanium mesh (group L: n = 15), and no mesh (control) (group C: n = 15). Furthermore, LIPUS was irradiated after surgery in 4 groups (groups EL, HL, LL and CL, in each n = 15). The rabbits were sacrificed at 1, 2 and 8 weeks postoperative, and formalin-fixed specimens were embedded in acrylic resin. The specimens were stained with hematoxylin and eosin. For immunohistochemical analysis, the specimens were treated with bone morphogenetic protein (BMP)-2 antibody. RESULTS Group H had significantly higher values than groups L, E, and C regarding bone area ratio and labeling index of BMP-2 positive cells (P < 0.05). Furthermore, Group HL also had significantly higher values than the other groups regarding bone area ratio and labeling index of BMP-2 positive cells at 1, 2 and 8 weeks postoperative (P < 0.05). CONCLUSION The results suggested that high density pore titanium mesh could induce new bone regeneration more than low density pore titanium mesh and ePTFE membrane. New bone formation may increase following LIPUS application.
Collapse
Affiliation(s)
- Masatoshi Higuchi
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Akinori Moroi
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Akihiko Kosaka
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Hiroumi Ikawa
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Ran Iguchi
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Yuriko Saida
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Asami Hotta
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Takamitsu Tsutsui
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K. Ueki), Division of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
31
|
Donos N, Dereka X, Mardas N. Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol 2000 2015; 68:99-121. [DOI: 10.1111/prd.12077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2014] [Indexed: 02/06/2023]
|
32
|
Anderud J, Abrahamsson P, Jimbo R, Isaksson S, Adolfsson E, Malmström J, Naito Y, Wennerberg A. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry. Clin Cosmet Investig Dent 2015; 7:45-53. [PMID: 25792855 PMCID: PMC4360835 DOI: 10.2147/ccide.s78589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome.
Collapse
Affiliation(s)
- Jonas Anderud
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden ; Maxillofacial Unit Halmstad, Region Halland, Halmstad, Sweden
| | | | - Ryo Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Sten Isaksson
- Maxillofacial Unit Halmstad, Region Halland, Halmstad, Sweden
| | | | - Johan Malmström
- Maxillofacial Unit Halmstad, Region Halland, Halmstad, Sweden
| | - Yoshihito Naito
- Department of Oral and Maxillofacial Prosthodontics and Oral Implantology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Ann Wennerberg
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
33
|
Kinard LA, Dahlin RL, Lam J, Lu S, Lee EJ, Kasper FK, Mikos AG. Synthetic biodegradable hydrogel delivery of demineralized bone matrix for bone augmentation in a rat model. Acta Biomater 2014; 10:4574-4582. [PMID: 25046637 DOI: 10.1016/j.actbio.2014.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/16/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
There exists a strong clinical need for a more capable and robust method to achieve bone augmentation, and a system with fine-tuned delivery of demineralized bone matrix (DBM) has the potential to meet that need. As such, the objective of the present study was to investigate a synthetic biodegradable hydrogel for the delivery of DBM for bone augmentation in a rat model. Oligo(poly(ethylene glycol) fumarate) (OPF) constructs were designed and fabricated by varying the content of rat-derived DBM particles (either 1:3, 1:1 or 3:1 DBM:OPF weight ratio on a dry basis) and using two DBM particle size ranges (50-150 or 150-250 μm). The physical properties of the constructs and the bioactivity of the DBM were evaluated. Selected formulations (1:1 and 3:1 with 50-150 μm DBM) were evaluated in vivo compared to an empty control to investigate the effect of DBM dose and construct properties on bone augmentation. Overall, 3:1 constructs with higher DBM content achieved the greatest volume of bone augmentation, exceeding 1:1 constructs and empty implants by 3- and 5-fold, respectively. As such, we have established that a synthetic, biodegradable hydrogel can function as a carrier for DBM, and that the volume of bone augmentation achieved by the constructs correlates directly to the DBM dose.
Collapse
|
34
|
Guided bone augmentation using a ceramic space-maintaining device. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 118:532-8. [DOI: 10.1016/j.oooo.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/12/2014] [Indexed: 11/21/2022]
|
35
|
Augmentation of intramembranous bone in rabbit calvaria using an occlusive barrier in combination with demineralized bone matrix (DBM): A pilot study. Int J Surg 2014; 12:378-83. [DOI: 10.1016/j.ijsu.2014.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/01/2014] [Accepted: 03/13/2014] [Indexed: 11/18/2022]
|
36
|
Carbonell JM, Martín IS, Santos A, Pujol A, Sanz-Moliner JD, Nart J. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review. Int J Oral Maxillofac Surg 2013; 43:75-84. [PMID: 23810680 DOI: 10.1016/j.ijom.2013.05.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Expanded polytetrafluoroethylene (e-PTFE) has been used successfully as a membrane barrier for regeneration procedures. However, when exposed to the oral cavity, its high porosity increases the risk of early infection, which can affect surgical outcomes. An alternative to e-PTFE is non-expanded and dense polytetrafluoroethylene (n-PFTE), which results in lower levels of early infection following surgical procedures. The aim of this literature review was to analyze and describe the available literature on n-PFTE, report the indications for use, advantages, disadvantages, surgical protocols, and complications. The medical databases Medline-PubMed and Cochrane Library were searched and supplemented with a hand search for reports published between 1980 and May 2012 on n-PTFE membranes. The search strategy was limited to animal, human, and in vitro studies in dental journals published in English. Twenty-four articles that analyzed the use of n-PTFE as a barrier membrane for guided tissue regeneration and guided bone regeneration around teeth and implants were identified: two in vitro studies, seven experimental studies, and 15 clinical studies. There is limited clinical and histological evidence for the use of n-PTFE membranes at present, with some indications in guided tissue regeneration and guided bone regeneration in immediate implants and fresh extraction sockets.
Collapse
Affiliation(s)
- J M Carbonell
- Department of Periodontology, Universitat Internacional de Catalunya, Spain
| | - I Sanz Martín
- Department of Periodontology, Universitat Internacional de Catalunya, Spain
| | - A Santos
- Department of Periodontology, Universitat Internacional de Catalunya, Spain
| | - A Pujol
- Department of Periodontology, Universitat Internacional de Catalunya, Spain
| | - J D Sanz-Moliner
- Department of Periodontology, Universitat Internacional de Catalunya, Spain
| | - J Nart
- Department of Periodontology, Universitat Internacional de Catalunya, Spain.
| |
Collapse
|
37
|
Thoma DS, Schneider D, Mir-Mari J, Hämmerle CHF, Gemperli AC, Molenberg A, Dard M, Jung RE. Biodegradation and bone formation of various polyethylene glycol hydrogels in acute and chronic sites in mini-pigs. Clin Oral Implants Res 2013; 25:511-21. [DOI: 10.1111/clr.12203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Daniel S. Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; Center for Dental Medicine; University of Zurich; Zurich Switzerland
| | - David Schneider
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; Center for Dental Medicine; University of Zurich; Zurich Switzerland
| | - Javier Mir-Mari
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; Center for Dental Medicine; University of Zurich; Zurich Switzerland
| | - Christoph H. F. Hämmerle
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; Center for Dental Medicine; University of Zurich; Zurich Switzerland
| | | | | | - Michel Dard
- Institut Straumann AG; Basel Switzerland
- Department of Periodontology and Implant Dentistry; College of Dentistry; New York University; New York NY USA
| | - Ronald E. Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science; Center for Dental Medicine; University of Zurich; Zurich Switzerland
| |
Collapse
|
38
|
Ronda M, Rebaudi A, Torelli L, Stacchi C. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: a prospective randomized controlled clinical trial. Clin Oral Implants Res 2013; 25:859-66. [DOI: 10.1111/clr.12157] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Lucio Torelli
- Department of Mathematics and Informatics; University of Trieste; Trieste Italy
| | - Claudio Stacchi
- Department of Medical, Surgical and Health Sciences; University of Trieste; Trieste Italy
| |
Collapse
|
39
|
Shin SI, Herr Y, Kwon YH, Chung JH. Effect of a Collagen Membrane Combined With a Porous Titanium Membrane on Exophytic New Bone Formation in a Rabbit Calvarial Model. J Periodontol 2013; 84:110-6. [DOI: 10.1902/jop.2012.110241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res 2013; 57:3-14. [DOI: 10.1016/j.jpor.2012.12.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
41
|
Guided Bone Regeneration Using Cyanoacrylate-Combined Calcium Phosphate in a Dehiscence Defect: A Histologic Study in Dogs. J Oral Maxillofac Surg 2012; 70:2070-9. [DOI: 10.1016/j.joms.2012.04.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/27/2012] [Indexed: 11/20/2022]
|
42
|
Fuegl A, Tangl S, Keibl C, Watzek G, Redl H, Gruber R. The impact of ovariectomy and hyperglycemia on graft consolidation in rat calvaria. Clin Oral Implants Res 2011; 22:524-9. [PMID: 21244496 DOI: 10.1111/j.1600-0501.2010.02048.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Implant placement frequently depends on bone augmentation. However, the impact of systemic metabolic diseases on the consolidation of bone substitutes remains poorly understood. Our goal is to study the impact of ovariectomy and hyperglycemia on graft consolidation in rat calvaria. MATERIAL AND METHODS We determined a rat model in which methacrylate hemispheres filled with deproteinized bovine bone mineral were fixed on the calvaria. The first group received streptozotocin (STZ) to induce diabetes. The second group of animals underwent ovariectomy (OVX), causing osteoporosis. Control animals remained untreated, only receiving vehicle injections (STZ-control) but not sham operation, respectively. Specimens were assessed by histomorphometry and μCT. RESULTS Graft consolidation was similar between the two groups. The rate of new bone formation after 4 weeks was 0.61±0.53% in the STZ group (n=10) and 0.69±0.91% in the control group (n=8). After 8 weeks, the rates of new bone formation were 4.98±3.16% in the OVX group (n=7) and 2.35±1.30% in the control group (n=10). The volume occupied by the bone substitute was not affected by STZ or OVX treatment. The low amount of newly formed bone could not be quantified by μCT. CONCLUSION We conclude that neither STZ nor OVX altered the early phase of graft consolidation. Our findings are limited by the weak osteogenic potential of the rat calvaria in this augmentation model.
Collapse
Affiliation(s)
- Alexander Fuegl
- Department of Oral Surgery, Medical University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
43
|
Ereno C, Guimarães SAC, Pasetto S, Herculano RD, Silva CP, Graeff CFO, Tavano O, Baffa O, Kinoshita A. Latex use as an occlusive membrane for guided bone regeneration. J Biomed Mater Res A 2010; 95:932-9. [DOI: 10.1002/jbm.a.32919] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
de Santana RB, de Mattos CML, Francischone CE, Van Dyke T. Superficial topography and porosity of an absorbable barrier membrane impacts soft tissue response in guided bone regeneration. J Periodontol 2010; 81:926-33. [PMID: 20380512 DOI: 10.1902/jop.2010.090592] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Surface topography and porosity of barrier membranes is suggested to impact the soft and hard tissue response. In this study, the specific soft and hard tissue response characteristics of a synthetic polylactide membrane are evaluated including soft tissue inflammation, osteogenesis, and osteopromotion. METHODS Analysis of porosity and surface topography of the test material was performed by scanning electron microscopy. Transosseous parietal defects were surgically created bilaterally in 32 BalbC/ByJ mice and treated either with the barrier (test) or sham-operated (control). Healing was assessed histologically and histomorphometrically with quantification of bone bridging. RESULTS Scanning electron microscopy analyses of the barrier revealed a microstructure resembling cancellous bone. Interconnecting pores and channels, measuring between 6 and 60 microm in diameter, formed by smooth internal walls were observed throughout the device. Two distinct patterns of porosity were observed. The external surface of the membrane was characterized by a highly porous structure, with minimal interporous nodes and average pore sizes ranging between 6 and 20 microm in diameter. The internal surface was characterized by a minimal porous structure, with significant interporous nodes and average pore sizes ranging between 18 and 60 mum in diameter. Histomorphometric analyses demonstrated increased bone bridging by 60% and 300% in membrane-treated sites after 14 and 28 days of healing, respectively. The rough surface of the barrier contained significantly more giant cells, whereas the smooth surface contained significantly more inflammatory cells. CONCLUSION The surface topographies engineered on different sides of the barrier promote differential soft tissue responses leading, however, to similar amounts of enhanced bone formation.
Collapse
|
45
|
Seol KY, Kim SG, Kim HK, Moon SY, Kim BO, Ahn JM, Jang HS, Kim HJ, Min JB, Lee BJ, Lim SC. Effects of decortication in the treatment of bone defect around particulate dentin-coated implants: an experimental pilot study. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2009; 108:529-536. [PMID: 19716719 DOI: 10.1016/j.tripleo.2009.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/27/2009] [Accepted: 05/21/2009] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the effects of decortication during bone grafting in defect areas surrounding particulate dentin-coated implants. STUDY DESIGN Six dogs were randomly assigned to 3 groups, and each group was further divided into 2 subgroups. The subgroups consisted of dogs that received particulate dentin-coated implants after 4 or 8 weeks. The defects were treated as follows: control group, unfilled defect; experimental group 1, defect filled with Tutoplast without decortication; experimental group 2, defect filled with Tutoplast with decortication. Histologic sections and histomorphometric analysis were obtained 4 and 8 weeks after surgery. RESULTS Compared to the 4-week subgroup, statistically significant new bone formation was observed in the 8-week subgroup. In the 4-week subgroup, the area of new bone formation was larger in the group that underwent cortical bone perforation with bone grafting; however, no significant difference was detected within the 8-week subgroup. CONCLUSION According to these results, decortication increases early bone formation after implant placement.
Collapse
Affiliation(s)
- Ka-Young Seol
- Department of Oral & Maxillofacial Surgery, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Thoma DS, Halg GA, Dard MM, Seibl R, Hammerle CHF, Jung RE. Evaluation of a new biodegradable membrane to prevent gingival ingrowth into mandibular bone defects in minipigs. Clin Oral Implants Res 2009; 20:7-16. [PMID: 19126102 DOI: 10.1111/j.1600-0501.2008.01604.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this study was to test whether a synthetic, biodegradable membrane made of polyethylene glycol (PEG) can prevent soft-tissue ingrowth into alveolar defects. MATERIAL AND METHODS In each of 16 minipigs, three mandibular premolars were bilaterally extracted. Three months later, acute standardized defects (diameter 8 mm, depth 8 mm) were prepared. Four treatment modalities were randomly allocated to the defects: (1) PEG membrane plus collagen sponge, (2) polylactide (PLA) membrane plus collagen sponge, (3) collagen sponge alone, and (4) empty defect. Animals were sacrificed at 10 days (n=5), 21 days (n=5), or 2 months (n=6) after treatment. Qualitative and quantitative histological evaluations of soft-tissue ingrowth and bone regeneration were performed on nondecalcified ground sections. For statistical analysis, the Mann-Whitney-Wilcoxon test, the Kruskal-Wallis, and the paired t-test were applied. P-values were adjusted using the Dunnett-Hsu adjustment. RESULTS At 10 days, the PEG membrane group showed the least soft-tissue ingrowth (mean value -0.75 mm; range -1.35 to -0.10), followed by the PLA membrane group -0.18 mm (-0.80 to 0.44), the collagen group 0.04 mm (-0.65 to 0.73), and the empty defects 0.60 mm (-0.08 to 1.29). Statistically significant differences were observed between the PEG membrane group and the empty defects (P<0.05). At 21 days, the highest percentage of newly formed bone was found in the PEG membrane group (mean 28.4%; range 21.6-35.2) compared with 23.7% (16.9-30.5; PLA membrane), 15.2% (8.2-22.2; collagen group), and 21.6% (14.5-28.8; empty defects). Statistically significant differences were only found between the PEG membrane group and the collagen group (P<0.05). At 2 months, the tested parameters revealed no statistically significant differences between the groups. CONCLUSION The experimental PEG membrane applied in the present study successfully prevented collapse of the covering soft tissues to a degree similar to the PLA membrane. The combination of a collagen sponge and the PEG membrane showed the least soft-tissue ingrowth at 10 days and promoted more bone formation at 21 days.
Collapse
Affiliation(s)
- Daniel S Thoma
- Clinic for Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
47
|
Vertical Bone Augmentation Using a Polytetrafluoroethylene Nonporous Barrier for Osseointegrated Implants Partially Inserted in Tibiae of Rabbits. IMPLANT DENT 2009; 18:182-91. [DOI: 10.1097/id.0b013e318198e6e3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Yamada Y, Tamura T, Hariu K, Asano Y, Sato S, Ito K. Angiogenesis in newly augmented bone observed in rabbit calvarium using a titanium cap. Clin Oral Implants Res 2009; 19:1003-9. [PMID: 18828816 DOI: 10.1111/j.1600-0501.2008.01554.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In our previous work using a rabbit experimental model, we identified the importance of using a rigid support device for augmenting the development of mineralized bone. In the early stage of healing, newly generated tissue has not filled occlusive spaces, and mineralized bone forms and tends to climb along the inner wall of a device. Even though the blood supply is critical for successful bone augmentation, few studies have been conducted on angiogenesis in augmented bone. The purpose of the present study was to evaluate a method for observing angiogenesis in newly augmented bone. MATERIAL AND METHODS The right and left sections of the calvarium of six adult male Japanese white rabbits were exposed. The cortical bone was penetrated, and custom-made, standardized, hemispherical titanium caps were fixed to the exposed bone. The caps on the right side of each rabbit were filled with granulated beta-tricalcium phosphate (beta-TCP). After a healing period of 1 month, the animals were injected with MICROFIL into the right and left common carotid arteries to form a three-dimensional cast of the vasculature, and the newly generated blood vessels in the augmented bone were observed. RESULTS The newly generated blood vessels were observed entering the space beyond the existing calvarial bone. Furthermore, angiogenesis was seen to have occurred to a similar extent through the inter-granular beta-TCP in the right caps. These areas of angiogenesis were observed in a histological study with cross-sections. CONCLUSIONS The results of the present study suggest that this observation method allows the examination of angiogenesis in hard tissue before the preparation of histological specimens.
Collapse
Affiliation(s)
- Yutaka Yamada
- Department of Periodontology, Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan. yamada-y @dent.nihon-u.ac.jp
| | | | | | | | | | | |
Collapse
|
49
|
Greenstein G, Greenstein B, Cavallaro J, Tarnow D. The Role of Bone Decortication in Enhancing the Results of Guided Bone Regeneration: A Literature Review. J Periodontol 2009; 80:175-89. [DOI: 10.1902/jop.2009.080309] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Strietzel FP, Khongkhunthian P, Khattiya R, Patchanee P, Reichart PA. Healing pattern of bone defects covered by different membrane types--a histologic study in the porcine mandible. J Biomed Mater Res B Appl Biomater 2007; 78:35-46. [PMID: 16362958 DOI: 10.1002/jbm.b.30452] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Few investigations on guided bone regeneration (GBR) focus on the behaviour of tissues adjacent to barrier membranes. This study was conducted to (1) evaluate the barrier function potential of different resorbable and nonresorbable membranes for GBR, (2) investigate their structural changes after different intervals, and (3) characterize tissue composition and reaction adjacent to the barrier by qualitative histologic evaluation. Seven barriers for GBR were used per animal (made of dense or expanded polytetrafluoroethylene (d/ePTFE), titanium, polyetherurethane, collagen and two polylactide-polyglycolide-/-trimethylenecarbonate-co-polymers (PLPG, LPGTC) in standardized defects not exceeding the critical size) without using bone substitution material or autogenous bone at the right inferior margin of the mandibles of six domestic pigs. Samples of the defect areas with membranes were harvested after 2 days (one animal), 4 and 8 (two animals, each) and 12 weeks (one animal), respectively. The healing of bone defects was completed in all animals after 12 weeks. Nonresorbable barriers prevented the soft tissue in-growth into standardized defects. Thinner layers of fibrous tissue were seen underneath the dense and rigid barriers (dPTFE, titanium) when compared with collagen and PLPG/LPGTC, in which soft-tissue plugs occupied the crestal defect portion. PLPG-/LPGTC-barriers underwent structural changes after 4 weeks and revealed blistered central layers, whereas structural changes were not evident in nonresorbable barriers. The degradation of PLPG-/LPGTC-membranes was present with in-growth of fibres, vessels, and cells. Using collagen or synthetic polymer barriers for GBR, the application of bone or bone substitutes to prevent membrane prolapse into the defect is suggested.
Collapse
Affiliation(s)
- Frank P Strietzel
- Department of Oral Surgery and Dental Radiology, Centre for Dental Medicine, Campus Virchow Clinic, Charité -University Medicine Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|