1
|
Liao L, Wang Q, Feng Y, Li G, Lai R, Jameela F, Zhan X, Liu B. Advances and challenges in the development of periodontitis vaccines: A comprehensive review. Int Immunopharmacol 2024; 140:112650. [PMID: 39079346 DOI: 10.1016/j.intimp.2024.112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/01/2024]
Abstract
Periodontitis is a prevalent polymicrobial disease. It damages soft tissues and alveolar bone, and causes a significant public-health burden. Development of an advanced therapeutic approach and exploration of vaccines against periodontitis hold promise as potential treatment avenues. Clinical trials for a periodontitis vaccine are lacking. Therefore, it is crucial to address the urgent need for developing strategies to implement vaccines at the primary level of prevention in public health. A deep understanding of the principles and mechanisms of action of vaccines plays a crucial role in the successful development of vaccines and their clinical translation. This review aims to provide a comprehensive summary of potential directions for the development of highly efficacious periodontitis vaccines. In addition, we address the limitations of these endeavors and explore future possibilities for the development of an efficacious vaccine against periodontitis.
Collapse
Affiliation(s)
- Lingzi Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Qi Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Yujia Feng
- School of Stomatology, Jinan University, Guangzhou, China
| | - Guojiang Li
- School of Stomatology, Jinan University, Guangzhou, China
| | - Renfa Lai
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, MI, USA
| | - Xiaozhen Zhan
- Hospital of Stomatology, the First Affiliated Hospital of Jinan University, Guangzhou, China; School of Stomatology, Jinan University, Guangzhou, China.
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Breivik TJ, Gjermo P, Gundersen Y, Opstad PK, Murison R, Hugoson A, von Hörsten S, Fristad I. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease. Periodontol 2000 2024. [PMID: 39233381 DOI: 10.1111/prd.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
This review highlights the significance of interactions between the microbiota, immune system, nervous and hormonal systems, and the brain on periodontal health and disease. Microorganisms in the microbiota, immune cells, and neurons communicate via homeostatic nervous and hormonal systems, regulating vital body functions. By modulating pro-inflammatory and anti-inflammatory adaptive immune responses, these systems control the composition and number of microorganisms in the microbiota. The strength of these brain-controlled responses is genetically determined but is sensitive to early childhood stressors, which can permanently alter their responsiveness via epigenetic mechanisms, and to adult stressors, causing temporary changes. Clinical evidence and research with humans and animal models indicate that factors linked to severe periodontitis enhance the responsiveness of these homeostatic systems, leading to persistent hyperactivation. This weakens the immune defense against invasive symbiotic microorganisms (pathobionts) while strengthening the defense against non-invasive symbionts at the gingival margin. The result is an increased gingival tissue load of pathobionts, including Gram-negative bacteria, followed by an excessive innate immune response, which prevents infection but simultaneously destroys gingival and periodontal tissues. Thus, the balance between pro-inflammatory and anti-inflammatory adaptive immunity is crucial in controlling the microbiota, and the responsiveness of brain-controlled homeostatic systems determines periodontal health.
Collapse
Affiliation(s)
- Torbjørn Jarle Breivik
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, Institute of Clinical Odontology, University of Oslo, Oslo, Norway
| | - Yngvar Gundersen
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Per Kristian Opstad
- Division for Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Robert Murison
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - Anders Hugoson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg and School of Health and Welfare, Gothenburg, Sweden
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Amoroso M, Langgartner D, Lowry CA, Reber SO. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci 2021; 22:ijms222312938. [PMID: 34884743 PMCID: PMC8657684 DOI: 10.3390/ijms222312938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome–gut–immune–brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Collapse
Affiliation(s)
- Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
- Correspondence:
| |
Collapse
|
4
|
Cafferata EA, Jerez A, Vernal R, Monasterio G, Pandis N, Faggion CM. The therapeutic potential of regulatory T lymphocytes in periodontitis: A systematic review. J Periodontal Res 2018; 54:207-217. [DOI: 10.1111/jre.12629] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Emilio Alfredo Cafferata
- Periodontal Biology LaboratoryFaculty of DentistryUniversidad de Chile Santiago Chile
- Faculty of DentistryUniversidad Peruana Cayetano Heredia Lima Perú
| | - Alfredo Jerez
- Department of Oral SurgerySection of PeriodontologySchool of DentistryUniversidad de Concepción Concepción Chile
| | - Rolando Vernal
- Periodontal Biology LaboratoryFaculty of DentistryUniversidad de Chile Santiago Chile
- Dentistry UnitFaculty of Health SciencesUniversidad Autónoma de Chile Santiago Chile
| | - Gustavo Monasterio
- Periodontal Biology LaboratoryFaculty of DentistryUniversidad de Chile Santiago Chile
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial OrthopedicsDental School/Medical FacultyUniversity of Bern Bern Switzerland
| | - Clovis M. Faggion
- Department of Periodontology and Operative DentistryFaculty of DentistryUniversity of Münster Münster Germany
| |
Collapse
|
5
|
Breivik T, Gundersen Y, Murison R, Turner JD, Muller CP, Gjermo P, Opstad K. Maternal Deprivation of Lewis Rat Pups Increases the Severity of Experi-mental Periodontitis in Adulthood. Open Dent J 2015; 9:65-78. [PMID: 25713634 PMCID: PMC4333617 DOI: 10.2174/1874210601509010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/24/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Background and Objective: Early life adverse events may influence susceptibility/resistance to chronic inflammatory diseases later in life by permanently dysregulating brain-controlled immune-regulatory systems. We have investigated the impact of infant-mother separation during early postnatal life on the severity of experimental periodontitis, as well as systemic stress and immune responses, in adulthood. Material and Methods: Pups of periodontitis resistant Lewis rats were separated from their mothers for 3 h daily during postnatal days 2-14 (termed maternal deprivation; MD), separated for 15 min daily during the same time period (termed handling; HD), or left undisturbed. As adults, their behaviour was tested in a novel stressful situation, and ligature-induced periodontitis applied for 21 days. Two h before sacrifice all rats were exposed to a gram-negative bacterial lipopolysaccharide (LPS) challenge to induce a robust immune and stress response. Results: Compared to undisturbed controls, MD rats developed significantly more periodontal bone loss as adults, whereas HD rats showed a tendency to less disease. MD and HD rats exhibited depression-like behaviour in a novel open field test, while MD rats showed higher glucocorticoid receptor (Gr) expression in the hippocampus, and HD rats had altered methylation of genes involved in the expression of hippocampal Gr. LPS provoked a significantly lower increase in circulating levels of the cytokine TGF-1β in MD and HD rats, but there were no significant differences in levels of the stress hormone corticosterone. Conclusion: Stressful environmental exposures in very early life may alter immune responses in a manner that influences susceptibility/resistance to periodontitis.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway ; Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| | - Yngvar Gundersen
- Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| | - Robert Murison
- Department of Biology and Medical Psychology, Faculty of Psychology, University of Bergen, Norway
| | - Jonathan D Turner
- Institute of Immunology, CRP- Santé/Laboratoire National de Sante, 20A Rue Auguste Lumière, L-1950, Luxembourg
| | - Claude P Muller
- Institute of Immunology, CRP- Santé/Laboratoire National de Sante, 20A Rue Auguste Lumière, L-1950, Luxembourg
| | - Per Gjermo
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway
| | - Kristian Opstad
- Norwegian Defence Research Establishment, Division for Protection, Kjeller, Norway
| |
Collapse
|
6
|
Effects of long-term exposure of 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") on neuronal transmitter transport, brain immuno-regulatory systems and progression of experimental periodontitis in rats. Neurochem Int 2014; 72:30-6. [PMID: 24726767 DOI: 10.1016/j.neuint.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/05/2014] [Accepted: 04/03/2014] [Indexed: 11/23/2022]
Abstract
The present study was designed to investigate the effects of long-term exposure (4 weeks) to the widely used narcotic drug and putative neurotoxicant 3,4-methylenedioxymetamphetamine (MDMA; "ecstasy") on neuronal transmitter transport and progression of experimental periodontitis in male Wistar rats. The rats were exposed to MDMA (10mg/kg/day i.p.) or saline five days a week for four consecutive weeks. Exposure to MDMA induced a significant reduction in the synaptosomal reuptake of serotonin, while the uptake of dopamine was significantly increased 24h after the last injection of MDMA. In contrast, the synaptosomal uptake of noradrenaline and the vesicular uptake through the vesicular monoamine transporter 2 were not affected. In the experiments of periodontitis development, ligature-induced periodontitis was induced three days prior to MDMA administration. Compared to controls, MDMA-treated rats developed significantly more periodontitis. In conclusion, our results show that long-term exposure to MDMA affects the serotonergic and dopaminergic transport systems in the rat brain and increased the susceptibility to the psychosomatic ailment periodontitis following disturbances of brain immune-regulatory systems. These results are interesting with respect to recent research showing that changes in neurotransmitter signalling may alter the reactivity of brain-controlled immunoregulatory systems controlling pathogenic microorganisms colonizing mucosal surfaces.
Collapse
|
7
|
Semenoff-Segundo A, Delle Vedove Semenoff TA, Borges ÁH, Pedro FLM, Caporossi LS, Bosco ÁF. The influence of chronic stress imposed on pregnant rats on the induced bone loss in their adult offspring. Arch Oral Biol 2011; 57:477-82. [PMID: 22153316 DOI: 10.1016/j.archoralbio.2011.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 09/14/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Stress during pregnancy may alter offspring susceptibility to diseases during adulthood. In the present study, female Lewis rats were subjected to chronic stress during the gestational period, and the effect of this stress was evaluated histometrically on the progression of ligature-induced bone loss in their adult offspring. MATERIAL AND METHODS After confirming pregnancy, half of the pregnant rats were randomly designated as control animals (no stress regimen was imposed), and the other half was submitted to a chronic stress model (immobilization at cold temperature) between the 7th and the 18th gestational day. After birth, 12 male rats delivered by stressed mothers - Group 1 (G1) - and 12 male rats delivered by non-stressed mothers - Group 2 (G2) - were selected. When birthed rats reached 250 g of body weight, a silk ligature was placed around their maxillary right second molar in order to induce bone loss. The non-ligated left side served as a control. Sixty days later, these animals were sacrificed by anaesthetic overdose. After routine laboratorial processing, images of the histological sections were digitized and submitted for histometric measurement using two parameters: histological attachment loss and bone loss. RESULTS On the ligated side, G1 presented with greater histological attachment and bone loss than G2 (p<0.05). On the non-ligated control side, neither of the groups presented with alterations in these parameters (p>0.05). CONCLUSION The chronic stress regimen imposed on pregnant rats produced a greater progression of ligature-induced bone loss in their adult offspring.
Collapse
|
8
|
Breivik T, Gundersen Y, Gjermo P, Taylor SM, Woodruff TM, Opstad PK. Oral treatment with complement factor C5a receptor (CD88) antagonists inhibits experimental periodontitis in rats. J Periodontal Res 2011; 46:643-7. [PMID: 21722134 DOI: 10.1111/j.1600-0765.2011.01383.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE The complement activation product 5a (C5a) is a potent mediator of the innate immune response to infection, and may thus also importantly determine the development of periodontitis. The present study was designed to explore the effect of several novel, potent and orally active C5a receptor (CD88) antagonists (C5aRAs) on the development of ligature-induced periodontitis in an animal model. MATERIAL AND METHODS Three different cyclic peptide C5aRAs, termed PMX205, PMX218 and PMX273, were investigated. Four groups of Wistar rats (n = 10 in each group) were used. Starting 3 d before induction of experimental periodontitis, rats either received one of the C5aRas (1-2 mg/kg) in the drinking water or received drinking water only. Periodontitis was assessed when the ligatures had been in place for 14 d. RESULTS Compared with control rats, PMX205- and PMX218-treated rats had significantly reduced periodontal bone loss. CONCLUSION The findings suggest that complement activation, and particularly C5a generation, may play a significant role in the development and progression of periodontitis. Blockade of the major C5a receptor, CD88, with specific inhibitors such as PMX205, may offer novel treatment options for periodontitis.
Collapse
Affiliation(s)
- T Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
9
|
Breivik T, Gundersen Y, Gjermo P, Fristad I, Opstad PK. Systemic chemical desensitization of peptidergic sensory neurons with resiniferatoxin inhibits experimental periodontitis. Open Dent J 2011; 5:1-6. [PMID: 21339860 PMCID: PMC3040995 DOI: 10.2174/1874210601105010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 09/23/2010] [Accepted: 10/14/2010] [Indexed: 02/08/2023] Open
Abstract
Background and objective: The immune system is an important player in the pathophysiology of periodontitis. The brain controls immune responses via neural and hormonal pathways, and brain-neuro-endocrine dysregulation may be a central determinant for pathogenesis. Our current knowledge also emphasizes the central role of sensory nerves. In line with this, we wanted to investigate how desensitization of peptidergic sensory neurons influences the progression of ligature-induced periodontitis, and, furthermore, how selected cytokine and stress hormone responses to Gram-negative bacterial lipopolysaccharide (LPS) stimulation are affected. Material and methods: Resiniferatoxin (RTX; 50 μg/kg) or vehicle was injected subcutaneously on days 1, 2, and 3 in stress high responding and periodontitis-susceptible Fischer 344 rats. Periodontitis was induced 2 days thereafter. Progression of the disease was assessed after the ligatures had been in place for 20 days. Two h before decapitation all rats received LPS (150 μg/kg i.p.) to induce a robust immune and stress response. Results: Desensitization with RTX significantly reduced bone loss as measured by digital X-rays. LPS provoked a significantly higher increase in serum levels of the pro-inflammatory cytokine tumour necrosis factor (TNF)-α, but lower serum levels of the anti-inflammatory cytokine interleukin (IL)-10 and the stress hormone corticosterone. Conclusions: In this model RTX-induced chemical desensitization of sensory peptidergic neurons attenuated ligature-induced periodontitis and promoted a shift towards stronger pro-inflammatory cytokine and weaker stress hormone responses to LPS. The results may partly be explained by the attenuated transmission of immuno-inflammatory signals to the brain. In turn, this may weaken the anti-inflammatory brain-derived pathways.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
10
|
Breivik T, Gundersen Y, Gjermo P, von Hörsten S, Opstad PK. Nicotinic acetylcholine receptor activation mediates nicotine-induced enhancement of experimental periodontitis. J Periodontal Res 2009; 44:297-304. [DOI: 10.1111/j.1600-0765.2009.01223.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Carvalho RR, Pellizzon CH, Justulin L, Felisbino SL, Vilegas W, Bruni F, Lopes-Ferreira M, Hiruma-Lima CA. Effect of mangiferin on the development of periodontal disease: Involvement of lipoxin A4, anti-chemotaxic action in leukocyte rolling. Chem Biol Interact 2009; 179:344-50. [DOI: 10.1016/j.cbi.2008.10.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/23/2008] [Accepted: 10/24/2008] [Indexed: 12/18/2022]
|
12
|
Breivik T, Gundersen Y, Gjermo P, von Hörsten S, Opstad PK. Nicotinic acetylcholine receptor activation mediates nicotine-induced enhancement of experimental periodontitis. J Periodontal Res 2009; 44:110-6. [DOI: 10.1111/j.1600-0765.2008.01095.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Sharma DCG, Prasad SBM, Karthikeyan BV. Vaccination against periodontitis: the saga continues. Expert Rev Vaccines 2007; 6:579-90. [PMID: 17669011 DOI: 10.1586/14760584.6.4.579] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Periodontal disease can be considered to be one of the most common chronic inflammatory diseases inflicting humans. With the advent of advanced molecular diagnostic techniques, a better understanding of the role of specific pathogens and the contributory role of the host immune response in the initiation and progression of periodontal disease has been possible - although not completely. However, successful vaccine development that fully utilizes the current level of understanding has not yet occurred for human use. This paper reviews various in vitro, animal studies and human trials undertaken to develop a vaccine against periodontal disease, with emphases on the shortfalls of these efforts and future prospects of developing a successful vaccine against periodontal disease.
Collapse
Affiliation(s)
- Dileep C G Sharma
- Department of Periodontics, KGF College of Dental Sciences, Kolar Gold Fields, Karnataka, India.
| | | | | |
Collapse
|
14
|
Breivik T, Gundersen Y, Osmundsen H, Fonnum F, Opstad PK. Neonatal dexamethasone and chronic tianeptine treatment inhibit ligature-induced periodontitis in adult rats. J Periodontal Res 2006; 41:23-32. [PMID: 16409252 DOI: 10.1111/j.1600-0765.2005.00833.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis has been found to play a significant role for susceptibility and resistance to periodontal disease. In the present study we have investigated the effects of two different treatment strategies, which have been found to down-regulate the HPA axis, on ligature-induced periodontitis. METHODS In experiment 1, newborn rats were treated with the synthetic glucocorticoid hormone dexamethasone-21-phosphate, which permanently down-regulates HPA axis responsiveness. In experiment 2, adult rats were treated with the novel antidepressant drug tianeptine, which opposes the action of stress. Periodontitis was inflicted upon all rats. Just before decapitation the animals received gram-negative bacterial lipopolysaccharide (LPS) to induce a robust immune and HPA axis response. RESULTS Compared to the saline-treated control rats, dexamethasone-treated rats had significantly less periodontal bone loss (p < 0.01), reduced expression of glucocorticoid receptors in the hippocampus (p < 0.001), lower corticosterone (p=0.01) and higher plasma levels of the cytokine tumor necrosis factor (TNF)-alpha (p < 0.05) after LPS challenge. Also the tianeptine-treated rats showed significantly reduced periodontal bone loss (p=0.01), enhanced plasma levels of TNF-alpha (p < 0.05), and transforming growth factor-1beta (p < 0.01), whereas no significant difference was found in corticosterone levels. CONCLUSION An individual's responsiveness to danger signals, whether they are of immunological, chemical, or psychological origin, may be an important factor for explaining variability in susceptibility to periodontal disease. The results may provide new insight into the mechanisms of periodontal disease development, and open new vistas for disease prevention.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
15
|
Breivik T, Opstad PK, Engstad R, Gundersen G, Gjermo P, Preus H. Soluble beta-1,3/1,6-glucan from yeast inhibits experimental periodontal disease in Wistar rats. J Clin Periodontol 2005; 32:347-52. [PMID: 15811050 DOI: 10.1111/j.1600-051x.2005.00672.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We have investigated whether a purified immunomodulatory water soluble beta-1,3/1,6-glucan isolated from the cell wall of Bakers yeast, Saccharomyces cerevisiae, would influence the progression of ligature-induced periodontal disease, and to modulate accompanying cytokine and hypothalamic-pituitary-adrenal (HPA) axis responses to a lipopolysaccharide (LPS) challenge. MATERIAL AND METHODS beta-1,3/1,6-glucan (10 mg/kg/day) was given in the drinking water to Wistar rats during the entire experiment, starting 14 days before disease induction, while control rats were given tap water only. Periodontal disease was assessed when the ligatures had been in place for 35 days. RESULTS Orally administered soluble beta-1,3/1,6-glucan significantly reduced periodontal bone loss as measured on digital X-rays (p=0,026). Glucan-treated rats also showed a significantly enhanced plasma level of the HPA axis-driven hormone corticosterone (p=0.047), and of the cytokine transforming growth factor-1beta (p=0.032), as well as a tendency to enhanced IL-10 (p=0.106), induced by intra-peritoneally administered LPS. CONCLUSION Soluble beta-1,3/1,6-glucan administered by the oral route diminishes ligature-induced periodontal bone loss in this model. This effect may be attributable to the well documented ability of beta-1,3/1,6-glucan to stimulate macrophage phagocytosis and to skew the T helper (Th)1/Th2 balance towards Th1 and T regulatory responses. The HPA axis may play a significant role in beta-1,3/1,6-glucan induced immune modulation.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Breivik T, Gundersen Y, Osmundsen H, Opstad PK, Fonnum F. Chronic treatment with the glutamate receptor antagonist MK-801 alters periodontal disease susceptibility. J Periodontal Res 2005; 40:28-35. [PMID: 15613076 DOI: 10.1111/j.1600-0765.2004.00765.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Previous experiments in rats suggest that hypothalamic-pituitary-adrenal (HPA) axis over-responsiveness, which leads to increased secretion of immunoregulatory glucocorticoid hormones, increases periodontal disease susceptibility, whereas HPA axis under-responsiveness is associated with increased resistance to the disease. The present study was designed to investigate whether MK-801 (dizocilipine malate), an antagonist of the glutamate receptor N-methyl-D-aspartate (NMDA) in the brain, which has been found to play an important role in the regulation of the HPA axis, would influence the outcome of experimental ligature-induced periodontal disease in a rat model. METHODS Experimental periodontal disease was induced in periodontal disease susceptible and HPA axis high-responding Fischer 344 rats 2 days before chronic treatment with MK-801(1 mg/kg intraperitoneally). The periodontal breakdown was assessed after the ligatures had been in place for 23 days. Following intraperitoneal Gram-negative bacterial lipopolysaccharide stimulation (Escherichia coli, 250 microg/kg), concentrations of glucocorticoid receptors (GRs) in the hippocampus, and levels of the cytokine tumour necrosis factor alpha (TNF-alpha), as well as the HPA axis-derived hormone corticosterone, were measured in serum. RESULTS Compared to vehicle-treated controls, MK-801-treated rats had significantly increased periodontal tissue destruction (p < 0.01). MK-801-treated rats also showed significantly increased expression of GRs in the hippocampus (p < 0.05), elevated levels of corticosterone (p < 0.001) and reduced levels of TNF-alpha (p < 0.01) in serum 2 h after lipopolysaccharide stimulation. CONCLUSION These findings may implicate glutamate receptor-dependent mechanisms in periodontal disease, and support the concept of a bidirectional immune-brain-immune regulatory network with importance for periodontal health and disease.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|
17
|
Breivik T, Gundersen Y, Fonnum F, Vaagenes P, Opstad PK. Chronic glycine treatment inhibits ligature-induced periodontal disease in Wistar rats. J Periodontal Res 2005; 40:43-7. [PMID: 15613078 DOI: 10.1111/j.1600-0765.2004.00767.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Dysregulation of immune and stress responses plays a significant role for the development and progression of inflammatory diseases, including periodontal disease. The non-essential amino acid glycine modulates immune and central nervous system (CNS) responses, and has been shown to beneficially affect tissue destructive inflammatory conditions. The purpose of this study was to test the ability of orally administered glycine to influence periodontal disease progression, as well as immune and hypothalamic-pituitary-adrenal (HPA) responses following lipopolysaccharide stimulation. METHODS Glycine was supplied in the drinking water during the whole experiment to male Wistar rats, starting 3 days before the induction of experimental ligature-induced periodontal disease. Control rats were given tap water only. The periodontal breakdown was assessed after the ligatures had been in place for 34 days. Following intraperitonal lipopolysaccharide stimulation, concentrations of the proximal cytokines tumour necrosis factor-alpha (TNF-alpha) and interleukin-10, as well as the HPA axis-derived hormone corticosterone, were measured in blood serum. RESULTS Orally administered glycine significantly reduced periodontal bone loss as measured by digital X-rays (p = 0.007). Bone loss was negatively correlated with increased serum glycine, whereas no significant relationship was found with TNF-alpha, interleukin-10, or corticosterone. CONCLUSION Chronic ingestion of glycine supplied in the drinking water significantly reduced periodontal bone loss. No effect of glycine on immune and HPA-axis responses was revealed. Further studies are needed to clarify the mechanisms of action.
Collapse
Affiliation(s)
- Torbjørn Breivik
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | | | | | | | | |
Collapse
|