1
|
Seth P, Friedrichs J, Limasale YDP, Fertala N, Freudenberg U, Zhang Y, Lampel A, Werner C. Interpenetrating Polymer Network Hydrogels with Tunable Viscoelasticity and Proteolytic Cleavability to Direct Stem Cells In Vitro. Adv Healthc Mater 2024:e2402656. [PMID: 39506429 DOI: 10.1002/adhm.202402656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Indexed: 11/08/2024]
Abstract
The dynamic nature of cellular microenvironments, regulated by the viscoelasticity and enzymatic cleavage of the extracellular matrix, remains challenging to emulate in engineered synthetic biomaterials. To address this, a novel platform of cell-instructive hydrogels is introduced, composed of two concurrently forming interpenetrating polymer networks (IPNs). These IPNs consist of the same basic building blocks - four-armed poly(ethylene glycol) and the sulfated glycosaminoglycan (sGAG) heparin - are cross-linked through either chemical or physical interactions, allowing for precise and selective tuning of the hydrogel's stiffness, viscoelasticity, and proteolytic cleavability. The studies of the individual and combined effects of these parameters on stem cell behavior revealed that human mesenchymal stem cells exhibited increased spreading and Yes-associated protein transcriptional activity in more viscoelastic and cleavable sGAG-IPN hydrogels. Furthermore, human induced pluripotent stem cell (iPSC) cysts displayed enhanced lumen formation, growth, and pluripotency maintenance when cultured in sGAG-IPN hydrogels with higher viscoelasticity. Inhibition studies emphasized the pivotal roles of actin dynamics and matrix metalloproteinase activity in iPSC cyst morphology, which varied with the viscoelastic properties of the hydrogels. Thus, the introduced sGAG-IPN hydrogel platform offers a powerful methodology for exogenous stem cell fate control.
Collapse
Affiliation(s)
- Prannoy Seth
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany
| | - Nicole Fertala
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany
| | - Yixin Zhang
- Cluster of Excellence Physics of Life, and B CUBE - Center for Molecular Bioengineering, Dresden University of Technology, 01307, Dresden, Germany
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Center for Nanoscience and Nanotechnology Sagol Center for Regenerative Biotechnology, and Center for the Physics and Chemistry of Living Systems Tel Aviv University, Tel Aviv, 69978, Israel
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, and Cluster of Excellence Physics of Life, Dresden University of Technology, 01062, Dresden, Germany
| |
Collapse
|
2
|
Wallblom K, Lundgren S, Saleh K, Schmidtchen A, Puthia M. Image-based non-invasive assessment of suction blister wounds for clinical safety and efficacy. Wound Repair Regen 2024; 32:343-359. [PMID: 38511666 DOI: 10.1111/wrr.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Recognising the need for objective imaging-based technologies to assess wound healing in clinical studies, the suction blister wound model offers an easily accessible wound model that creates reproducible epidermal wounds that heal without scarring. This study provides a comprehensive methodology for implementing and evaluating photography-based imaging techniques utilising the suction blister wound model. Our method encompasses a protocol for capturing consistent, high-quality photographs and procedures for quantifying these images via a visual wound healing score and a computer-assisted colour analysis of wound exudation and wound redness. We employed this methodology on 16 suction blister wounds used as controls in a clinical phase-1 trial. Our method enabled us to discern and quantify subtle differences between individual wounds concerning healing progress, erythema and wound exudation. The wound healing score exhibited a high inter-rater agreement. There was a robust correlation between the spectrophotometer-measured erythema index and photography-based wound redness, as well as between dressing protein content and photography-based dressing yellowness. In conclusion, this study equips researchers conducting clinical wound studies with reproducible methods that may support future wound research and aid in the development of new treatments.
Collapse
Affiliation(s)
- Karl Wallblom
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Dermatology, Skane University Hospital, Lund, Sweden
| | - Sigrid Lundgren
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Dermatology, Skane University Hospital, Lund, Sweden
| | - Karim Saleh
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Dermatology, Skane University Hospital, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Dermatology, Skane University Hospital, Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Lin DW, Yang TM, Ho C, Shih YH, Lin CL, Hsu YC. Targeting Macrophages: Therapeutic Approaches in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:4350. [PMID: 38673935 PMCID: PMC11050450 DOI: 10.3390/ijms25084350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes is not solely a metabolic disorder but also involves inflammatory processes. The immune response it incites is a primary contributor to damage in target organs. Research indicates that during the initial phases of diabetic nephropathy, macrophages infiltrate the kidneys alongside lymphocytes, initiating a cascade of inflammatory reactions. The interplay between macrophages and other renal cells is pivotal in the advancement of kidney disease within a hyperglycemic milieu. While M1 macrophages react to the inflammatory stimuli induced by elevated glucose levels early in the disease progression, their subsequent transition to M2 macrophages, which possess anti-inflammatory and tissue repair properties, also contributes to fibrosis in the later stages of nephropathy by transforming into myofibroblasts. Comprehending the diverse functions of macrophages in diabetic kidney disease and regulating their activity could offer therapeutic benefits for managing this condition.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi City 60069, Taiwan;
| | - Tsung-Ming Yang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Cheng Ho
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
| | - Chun-Liang Lin
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan;
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi County 61363, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| |
Collapse
|
4
|
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-Mesenchymal Plasticity and Endothelial-Mesenchymal Transition in Cutaneous Wound Healing. Cold Spring Harb Perspect Biol 2023; 15:a041237. [PMID: 36617638 PMCID: PMC10411868 DOI: 10.1101/cshperspect.a041237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.
Collapse
Affiliation(s)
- Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, 8093 ETH Zurich, Switzerland
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
5
|
Ågren MS, Litman T, Eriksen JO, Schjerling P, Bzorek M, Gjerdrum LMR. Gene Expression Linked to Reepithelialization of Human Skin Wounds. Int J Mol Sci 2022; 23:ijms232415746. [PMID: 36555389 PMCID: PMC9779194 DOI: 10.3390/ijms232415746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the regulatory processes of reepithelialization during wound healing is incomplete. In an attempt to map the genes involved in epidermal regeneration and differentiation, we measured gene expression in formalin-fixed, paraffin-embedded standardized epidermal wounds induced by the suction-blister technique with associated nonwounded skin using NanoString technology. The transcripts of 139 selected genes involved in clotting, immune response to tissue injury, signaling pathways, cell adhesion and proliferation, extracellular matrix remodeling, zinc transport and keratinocyte differentiation were evaluated. We identified 22 upregulated differentially expressed genes (DEGs) in descending order of fold change (MMP1, MMP3, IL6, CXCL8, SERPINE1, IL1B, PTGS2, HBEGF, CXCL5, CXCL2, TIMP1, CYR61, CXCL1, MMP12, MMP9, HGF, CTGF, ITGB3, MT2A, FGF7, COL4A1 and PLAUR). The expression of the most upregulated gene, MMP1, correlated strongly with MMP3 followed by IL6 and IL1B. rhIL-1β, but not rhIL-6, exposure of cultured normal human epidermal keratinocytes and normal human dermal fibroblasts increased both MMP1 mRNA and MMP-1 protein levels, as well as TIMP1 mRNA levels. The increased TIMP1 in wounds was validated by immunohistochemistry. The six downregulated DEGs (COL7A1, MMP28, SLC39A2, FLG1, KRT10 and FLG2) were associated with epidermal maturation. KLK8 showed the strongest correlation with MKI67 mRNA levels and is a potential biomarker for keratinocyte proliferation. The observed gene expression changes correlate well with the current knowledge of physiological reepithelialization. Thus, the gene expression panel described in this paper could be used in patients with impaired healing to identify possible therapeutic targets.
Collapse
Affiliation(s)
- Magnus S. Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Thomas Litman
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital—Bispebjerg-Frederiksberg, 2400 Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
| |
Collapse
|
6
|
Fu K, Zheng X, Chen Y, Wu L, Yang Z, Chen X, Song W. Role of matrix metalloproteinases in diabetic foot ulcers: Potential therapeutic targets. Front Pharmacol 2022; 13:1050630. [PMID: 36339630 PMCID: PMC9631429 DOI: 10.3389/fphar.2022.1050630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are pathological states of tissue destruction of the foot or lower extremity in diabetic patients and are one of the serious chronic complications of diabetes mellitus. Matrix metalloproteinases (MMPs) serve crucial roles in both pathogenesis and wound healing. The primary functions of MMPs are degradation, which involves removing the disrupted extracellular matrix (ECM) during the inflammatory phase, facilitating angiogenesis and cell migration during the proliferation phase, and contracting and rebuilding the tissue during the remodeling phase. Overexpression of MMPs is a feature of DFUs. The upregulated MMPs in DFUs can cause excessive tissue degradation and impaired wound healing. Regulation of MMP levels in wounds could promote wound healing in DFUs. In this review, we talk about the roles of MMPs in DFUs and list potential methods to prevent MMPs from behaving in a manner detrimental to wound healing in DFUs.
Collapse
Affiliation(s)
- Kang Fu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Xueyao Zheng
- School of Life Sciences, Hubei University, Wuhan, China
| | - Yuhan Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Liuying Wu
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Zhiming Yang
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Xu Chen
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
| | - Wei Song
- School of Life Sciences, Hubei University, Wuhan, China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, China
- *Correspondence: Wei Song,
| |
Collapse
|
7
|
Kirketerp-Møller K, Doerfler P, Schoefmann N, Wolff-Winiski B, Niazi O, Pless V, Karlsmark T, Ågren MS. Biomarkers of Skin Graft Healing in Venous Leg Ulcers. Acta Derm Venereol 2022; 102:adv00749. [PMID: 35604238 PMCID: PMC9574695 DOI: 10.2340/actadv.v102.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is a need for biomarkers that predict the success of transplantation of venous leg ulcers (with autologous split-thickness skin grafts). The primary objective of this exploratory study was to investigate the association between split-thickness skin graft healing in venous leg ulcers and candidate wound fluid biomarkers representing inflammatory cell and endogenous proteinase activities, and bioactivity. A secondary objective was to compare biomarker levels of the 17 venous leg ulcers with sterile split-thickness skin graft donor-site wounds in another 10 patients with venous leg ulcers. Wound fluids were collected for 24 h using a validated method. The concentration of pre-operative matrix metalloproteinase-9 in wound fluid was higher in venous leg ulcers showing good healing (n = 10) than in venous leg ulcers showing poor healing (n = 7) 12 weeks after transplantation with meshed split-thickness skin grafts. The diagnostic value of matrix metalloproteinase-9 was good according to receiver-operating characteristic curve analysis. Matrix metalloproteinase activity in wound fluids from split-thickness skin graft donor-site wounds increased as a function of time and healing, but was still lower than matrix metalloproteinase activity in venous leg ulcer wound fluids, which showed increased levels of most biomarkers except for matrix metalloproteinase-9 and matrix metalloproteinase-2. In conclusion, wound fluid matrix metalloproteinase-9 concentration is a potential predictive biomarker of split-thickness skin graft healing in venous leg ulcers.
Collapse
Affiliation(s)
- Klaus Kirketerp-Møller
- Copenhagen Wound Healing Center and Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Peng Z, Nguyen TT, Wang M, Anderson B, Konai MM, Schroeder VA, Wolter WR, Page-Mayberry T, Peterson CE, Mobashery S, Chang M. Proteomics Identification of Targets for Intervention in Pressure Ulcers. ACS Chem Biol 2022; 17:1357-1363. [PMID: 35670779 DOI: 10.1021/acschembio.2c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pressure ulcers (PUs) are chronic wounds that lead to amputations and death. Little is known about why PUs are recalcitrant to healing. Wound healing is mediated by matrix metalloproteinases (MMPs). The 24 MMPs in humans each exist in three forms, of which only one is catalytically competent. We analyzed human PU samples using an affinity resin that exclusively binds to the catalytically competent MMPs. We identified by mass spectrometry the active forms of MMP-1, MMP-8, MMP-9, and MMP-14. Concentrations of MMP-8, MMP-9, and MMP-14 were higher in human PUs compared to the healthy tissue, whereas those for MMP-1 did not change. Decreasing levels of active MMP-9 as the PU improved argued for a detrimental role for this enzyme. In a mouse model of PUs, a highly selective inhibitor for MMP-9 and MMP-14, (R)-ND-336, accelerated wound closure in parallel with significant amelioration of ulcer stage. (R)-ND-336 holds promise as a first-in-class treatment for PUs.
Collapse
Affiliation(s)
- Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Trung T Nguyen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Man Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bowen Anderson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mohini Mohan Konai
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Valerie A Schroeder
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William R Wolter
- Freimann Life Sciences Center, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Toni Page-Mayberry
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Burian EA, Sabah L, Kirketerp-Møller K, Gundersen G, Ågren MS. Effect of Stabilized Hypochlorous Acid on Re-epithelialization and Bacterial Bioburden in Acute Wounds: A Randomized Controlled Trial in Healthy Volunteers. Acta Derm Venereol 2022; 102:adv00727. [PMID: 35578822 PMCID: PMC9558337 DOI: 10.2340/actadv.v102.1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this randomized controlled trial was to evaluate the wound-healing effect and antimicrobial properties of a novel stabilized hypochlorous acid solution on acute wounds, using a suction blister wound model. One suction blister was raised and de-roofed on each forearm in 20 healthy volunteers. Stabilized hypochlorous acid/control (sterile 0.9% NaCl) solutions were assigned to either wound by randomization. Wounds were irrigated and treated on days 0, 2 and 4. Re-epithelialization was assessed blindly by digital planimetry, and bacterial growth was assessed as the number of colony-forming units cultured from surface swabs. Hypochlorous acid solution increased the degree of re-epithelialization on day 4 by 14% compared with the control solution (95% confidence interval (CI) 6.8–20%, p = 0.00051) and was not inferior (p < 0.0001) to the control solution on day 10 (0.3%, 95% CI –1.3–1.9%). Median bacterial counts were lower with stabilized hypochlorous acid compared with control and were further reduced after irrigation and treatment of both groups on day 4, but remained lower in the stabilized hypochlorous acid group compared with the control group. This study demonstrates immediate and durable antimicrobial action and a beneficial effect on acute wound healing after irrigation and treatment with a stabilized hypochlorous acid formulation.
Collapse
Affiliation(s)
| | | | | | | | - Magnus S Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Nielsine Nielsens Vej 11, DK-2400 Copenhagen, Denmark.
| |
Collapse
|
10
|
Ke J, Ye J, Li M, Zhu Z. The Role of Matrix Metalloproteinases in Endometriosis: A Potential Target. Biomolecules 2021; 11:1739. [PMID: 34827737 PMCID: PMC8615881 DOI: 10.3390/biom11111739] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Endometriosis is a condition that is influenced by hormones and involves stroma and glands being found outside the uterus; there are increases in proliferation, invasion, internal bleeding, and fibrosis. Matrix metalloproteinases (MMPs) have been suggested to be crucial in the progression of invasion. The MMP family includes calcium-dependent zinc-containing endopeptidases, some of which not only affect the process of cell invasion but also participate in other physiological and pathological processes, such as angiogenesis and fibrosis. MMPs act as downstream-targeted molecules and their expression can be regulated by numerous factors such as estrogen, oxidative stress, cytokines, and environmental contaminants. Given their unique roles in endometriosis, MMPs may become effective biomarkers of endometriosis in the future. In the present review, we summarize the current literature on MMPs regarding their classification, function, and potential value for endometriosis, which may contribute to our knowledge of MMPs and MMP-targeted interventions.
Collapse
Affiliation(s)
- Junya Ke
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jiangfeng Ye
- Division of Obstetrics and Gynecology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Institute of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China;
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
11
|
Abstract
Diabetic foot ulcers (DFUs) are chronic wounds that develop in 30% of diabetic patients. In DFUs, the normal wound healing process consisting of inflammation, angiogenesis, and extracellular matrix (ECM) remodeling is dysregulated and stalled. Upon injury, neutrophils and monocytes arrive at the wound and secrete matrix metalloproteinase (MMP)-8 and reactive oxygen species (ROS). ROS activates nuclear factor kappa beta (NF-κB), which upregulates MMP-9. Monocytes become macrophages, secreting tumor growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) for angiogenesis, resulting in remodeling of the ECM. MMP-9 cleaves laminin for keratinocyte migration. MMP-8 is beneficial for remodeling the ECM and healing the wound. In DFUs, the excess unregulated MMP-9 is detrimental, destroying the ECM and preventing the wound from healing. DFUs are typically infected, many with biofilm-producing bacteria that are resistant to antibiotics. Infection increases the time for wound healing and the likelihood for a lower-limb amputation. Despite the use of antibiotics, amputations occur in 24.5% of patients with DFUs. Clearly, new strategies for treatment of DFUs are needed. With the use of an affinity resin that binds exclusively to the active forms of MMPs and proteomics, we identified two proteinases, MMP-8 and MMP-9, in wounds of diabetic mice and diabetic humans. With the use of selective inhibitors, gene ablation of MMP-9, and exogenous application of MMP-8, we demonstrated that MMP-8 is beneficial to wound repair and that MMP-9 prevents the diabetic wound from healing. Our research has shown that infection increases active MMP-9, increasing inflammation and decreasing angiogenesis. As a result, infected diabetic wounds take a longer time to heal than uninfected ones. We found that active MMP-9 and NF-κB increased in human DFUs with wound severity and infection. The best strategy for treatment of DFUs is to selectively inhibit the detrimental proteinase MMP-9 without affecting the beneficial MMP-8 so that the body can repair the wound. Lead optimization of the thiirane class of inhibitors led to the discovery of (R)-ND-336, a potent (19 nM) and selective (450-fold) MMP-9 inhibitor. (R)-ND-336 accelerated wound healing in diabetic mice by decreasing ROS and NF-κB, lowering inflammation, and increasing angiogenesis. (R)-ND-336 in combination with the antibiotic linezolid improved wound healing in infected diabetic mice by inhibiting MMP-9, which mitigated macrophage infiltration and increased angiogenesis, thereby restoring the normal wound healing process.
Collapse
Affiliation(s)
- Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Trung T. Nguyen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
12
|
Ågren MS, Chafranska L, Eriksen JO, Forman JL, Bjerrum MJ, Schjerling P, Larsen HF, Cottarelli E, Jorgensen LN, Gjerdrum LMR. Spatial expression of metallothionein, matrix metalloproteinase-1 and Ki-67 in human epidermal wounds treated with zinc and determined by quantitative immunohistochemistry: A randomised double-blind trial. Eur J Cell Biol 2020; 100:151147. [PMID: 33485703 DOI: 10.1016/j.ejcb.2020.151147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
Reepithelialisation is fundamental to wound healing, but our current understanding largely relies on cellular and animal studies. The aim of the present randomised double-blind three-arm controlled trial was to correlate genuine epidermal wound healing with key proteins and topical zinc treatment in humans. Sixty wounds were produced using deroofed suction blisters in 30 healthy volunteers and randomised to topical zinc sulphate (n = 20), placebo (n = 20), or control (n = 20) treatment for 4 days. All wounds with perilesional skin were processed for automatic immunostaining of paraffin tissue sections with monoclonal antibodies against Ki-67, metallothionein (MT) and matrix metalloproteinase (MMP)-1. Protein expression was quantified by automated digital image analysis. Epidermal Ki-67 and MT labelling indices were increased in keratinocytes in the neoepidermis (∼1.1 mm) and at the wound edge (0.5 mm) compared to normal skin. Increased MMP-1 immunostaining was restricted to the neoepidermis. MT was robustly upregulated in the upper dermis of the wounds. Zinc treatment enhanced MMP-1 expression beneath the neoepidermis via paracrine mechanisms and MT under the neoepidermis and in the nonepithelialised wound bed via direct actions of zinc as indicated by the induction of MT2A mRNA but not MMP-1 mRNA in cultured normal human dermal fibroblasts by zinc sulphate. The present human study demonstrates that quantitative immunohistochemistry can identify proteins involved in reepithelialisation and actions of external compounds. Increased dermal MT expression may contribute to the anti-inflammatory activities of zinc and increased MMP-1 levels to promote keratinocyte migration.
Collapse
Affiliation(s)
- Magnus S Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lana Chafranska
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen and Department of Biomedical Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Heidi F Larsen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Elena Cottarelli
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pharmaceutical Science, University of Pavia, Pavia, Italy
| | - Lars N Jorgensen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
13
|
Baidya SK, Amin SA, Jha T. Outline of gelatinase inhibitors as anti-cancer agents: A patent mini-review for 2010-present. Eur J Med Chem 2020; 213:113044. [PMID: 33279289 DOI: 10.1016/j.ejmech.2020.113044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in several pathological and physiological functions. Gelatinases (MMP-2 and -9) have significant attention as therapeutic targets against cancer. Gelatinase inhibitors have demonstrated their effectiveness in several diseases including cancer. However, it is quite a challenging task to develop inhibitors as a therapeutic agent. This review summarizes the patent dedicated to the medicinal chemistry of gelatinase inhibitor reported over last decades. We examine the patent being pursued for gelatinase inhibitor development to highlight the key issues. The main aim is to provide the scientific community with an overview of the patented gelatinase inhibitors to allow further development. During early 2000s, some MMP inhibitors failed to pass the clinical trials. Hence, the lessons learned from early evidence and recent knowledge in that field will rejuvenate the development of selective inhibitors. Various studies and patents have continued in the recent years to expand knowledge. Continuously, our research team has been involved in the design of potent and selective gelatinase inhibitors for the past few years. This study is a part of our efforts. This study may be beneficial in the design and development of better gelatinase inhibitors in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
14
|
Specht M, Kelm S, Mirastschijski U. [Suitability of biological acellular dermal matrices as a skin replacement]. HANDCHIR MIKROCHIR P 2020; 52:533-544. [PMID: 32731271 DOI: 10.1055/a-1200-1189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION Tissue defects are associated with loss of epidermal and dermal components of the skin. For full-thickness tissue defects, dermal equivalents are useful to enable rapid wound closure. Split-thickness skin grafts are associated with loss of tissue elasticity resulting in scar contractures that can impair joint mobility. Synthetic collagen matrices and allogeneic acellular dermal matrices (ADM) are commercially available and could serve as skin tissue replacement. The aim of this study was to investigate whether ADM of different dermal layers or bioartificial matrices can serve as cutaneous replacement. For this purpose, cellular migration, differentiation and the inflammatory reaction were studied in an established ex vivo skin organ model. MATERIALS AND METHODS Human split-thickness skin grafts were transplanted onto ADM (Epiflex, DIZG, Berlin, Germany), de-epidermized dermis (DED) or an artificial collagen-elastin matrix (Matriderm, Dr. Suwelack, Billerbeck, Germany). Epithelial migration was studied using an established skin culture model at the air-liquid interface. In addition, the effect of tissue from different dermal compartments, e. g. papillar and reticular dermis, on epithelial migration was compared. Epithelial resurfacing and differentiation of matrices as well as the inflammatory reaction were studied using histological, immunohistochemical and biochemical analyses. RESULTS AND CONCLUSION Significantly more epithelial outgrowth area was found on DED (2.54 mm ± 0.43 mm, mean ± SEM) compared to papillary ADM (1.32 mm ± 0.44 mm, p = 0.039), to reticular ADM (no horizontal growth, p < 0.0001) and collagen-elastin matrix (0.78 mm ± 0.11 mm, p = 0.0056) measured by fluorescence microscopy over 10 days presumably due to the presence of pro-migratory basement membrane residues on DED. Reepithelialization was significantly higher (p < 0.002) on papillary dermis compared to ADM of reticular origin. In contrast to the biological matrices, a complete horizontal penetration was found in the macroporous collagen-elastin matrix. Pro-inflammatory mediators varied depending on the human skin donor and matrix. In summary, the biochemical structure of the matrix' surface and its origin influenced the epithelial behaviour with regard to migration, differentiation and inflammatory response.
Collapse
Affiliation(s)
- Marcin Specht
- Klinikum Bremen-Mitte gGmbH Plastisc, Reconstructive and Aesthetic Surgery
| | - Sorge Kelm
- University of Bremen CBIB, Faculty of Biology and Biochemistry
| | - Ursula Mirastschijski
- University of Bremen CBIB, Faculty of Biology and Biochemistry.,Mira-Beau gender esthetics, Berlin
| |
Collapse
|
15
|
Ågren MS, auf dem Keller U. Matrix Metalloproteinases: How Much Can They Do? Int J Mol Sci 2020; 21:ijms21082678. [PMID: 32290531 PMCID: PMC7215854 DOI: 10.3390/ijms21082678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc-dependent matrix metalloproteinases (MMPs) belong to metzincins that comprise not only 23 human MMPs but also other metalloproteinases, such as 21 human ADAMs (a disintegrin and metalloproteinase domain) and 19 secreted ADAMTSs (a disintegrin and metalloproteinase thrombospondin domain). The many setbacks from the clinical trials of broad-spectrum MMP inhibitors for cancer indications in the late 1990s emphasized the extreme complexity of the participation of these proteolytic enzymes in biology. This editorial mini-review summarizes the Special Issue, which includes four review articles and 10 original articles that highlight the versatile roles of MMPs, ADAMs, and ADAMTSs, in normal physiology as well as in neoplastic and destructive processes in tissue. In addition, we briefly discuss the unambiguous involvement of MMPs in wound healing.
Collapse
Affiliation(s)
- Magnus S. Ågren
- Digestive Disease Center and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2400 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-3863-5954
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
16
|
Mirastschijski U, Schwab I, Coger V, Zier U, Rianna C, He W, Maedler K, Kelm S, Radtke A, Belge G, Lindner P, Stahl F, Scharpenberg M, Lasota L, Timm J. Lung Surfactant Accelerates Skin Wound Healing: A Translational Study with a Randomized Clinical Phase I Study. Sci Rep 2020; 10:2581. [PMID: 32054903 PMCID: PMC7018835 DOI: 10.1038/s41598-020-59394-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Lung surfactants are used for reducing alveolar surface tension in preterm infants to ease breathing. Phospholipid films with surfactant proteins regulate the activity of alveolar macrophages and reduce inflammation. Aberrant skin wound healing is characterized by persistent inflammation. The aim of the study was to investigate if lung surfactant can promote wound healing. Preclinical wound models, e.g. cell scratch assays and full-thickness excisional wounds in mice, and a randomized, phase I clinical trial in healthy human volunteers using a suction blister model were used to study the effect of the commercially available bovine lung surfactant on skin wound repair. Lung surfactant increased migration of keratinocytes in a concentration-dependent manner with no effect on fibroblasts. Significantly reduced expression levels were found for pro-inflammatory and pro-fibrotic genes in murine wounds. Because of these beneficial effects in preclinical experiments, a clinical phase I study was initiated to monitor safety and tolerability of surfactant when applied topically onto human wounds and normal skin. No adverse effects were observed. Subepidermal wounds healed significantly faster with surfactant compared to control. Our study provides lung surfactant as a strong candidate for innovative treatment of chronic skin wounds and as additive for treatment of burn wounds to reduce inflammation and prevent excessive scarring.
Collapse
Affiliation(s)
- Ursula Mirastschijski
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany.
| | - Igor Schwab
- Department of Plastic, Reconstructive and Aesthetic Surgery, Klinikum Bremen-Mitte, Bremen, Germany
| | - Vincent Coger
- Department of Experimental Plastic Surgery, Kerstin Reimers Laboratory for Regeneration Biology, Hannover Medical School, Hannover, Germany
| | - Ulrich Zier
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | - Wei He
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Kathrin Maedler
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Arlo Radtke
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Gazanfer Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Patrick Lindner
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Frank Stahl
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Martin Scharpenberg
- University of Bremen, Competence Center for Clinical Trials Bremen, Bremen, Germany
| | - Lukas Lasota
- University of Bremen, Competence Center for Clinical Trials Bremen, Bremen, Germany
| | - Jürgen Timm
- University of Bremen, Competence Center for Clinical Trials Bremen, Bremen, Germany
| |
Collapse
|
17
|
Jones JI, Nguyen TT, Peng Z, Chang M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals (Basel) 2019; 12:E79. [PMID: 31121851 PMCID: PMC6630664 DOI: 10.3390/ph12020079] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are significant complications of diabetes and an unmet medical need. Matrix metalloproteinases (MMPs) play important roles in the pathology of wounds and in the wound healing process. However, because of the challenge in distinguishing active MMPs from the two catalytically inactive forms of MMPs and the clinical failure of broad-spectrum MMP inhibitors in cancer, MMPs have not been a target for treatment of DFUs until recently. This review covers the discovery of active MMP-9 as the biochemical culprit in the recalcitrance of diabetic wounds to healing and targeting this proteinase as a novel approach for the treatment of DFUs. Active MMP-8 and MMP-9 were observed in mouse and human diabetic wounds using a batimastat affinity resin and proteomics. MMP-9 was shown to play a detrimental role in diabetic wound healing, whereas MMP-8 was beneficial. A new class of selective MMP-9 inhibitors shows clinical promise for the treatment of DFUs.
Collapse
Affiliation(s)
- Jeffrey I Jones
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Trung T Nguyen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
18
|
Larsen HF, Ahlström MG, Gjerdrum LMR, Mogensen M, Ghathian K, Calum H, Sørensen AL, Forman JL, Vandeven M, Holerca MN, Du-Thumm L, Jorgensen LN, Ågren MS. Noninvasive measurement of reepithelialization and microvascularity of suction-blister wounds with benchmarking to histology. Wound Repair Regen 2018; 25:984-993. [DOI: 10.1111/wrr.12605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Heidi F. Larsen
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Malin G. Ahlström
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | | | - Mette Mogensen
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Khaled Ghathian
- Department of Clinical Microbiology, Hvidovre Hospital; University of Copenhagen; Copenhagen Denmark
| | - Henrik Calum
- Department of Clinical Microbiology, Hvidovre Hospital; University of Copenhagen; Copenhagen Denmark
| | - Anne L. Sørensen
- Section of Biostatistics, Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Julie L. Forman
- Section of Biostatistics, Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | | | | | | | - Lars N. Jorgensen
- Digestive Disease Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - Magnus S. Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
- Digestive Disease Center, Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
19
|
Dwivedi MK, Bhagat AK, Srivastava RN, Jain A, Baghel K, Raj S. Expression of MMP-8 in Pressure Injuries in Spinal Cord Injury Patients Managed by Negative Pressure Wound Therapy or Conventional Wound Care: A Randomized Controlled Trial. J Wound Ostomy Continence Nurs 2017; 44:343-349. [PMID: 28459717 DOI: 10.1097/won.0000000000000333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to assess the level of matrix metalloproteinase-8 (MMP-8) and wound-healing outcome measures (length, width, and depth, exudate amount, and tissue type) in pressure injuries (PIs) of spinal cord-injured patients treated with negative pressure wound therapy (NPWT) using a novel negative pressure device versus PI treated with wet to moist gauze (conventional wound care). DESIGN Randomized controlled trial. SUBJECTS AND SETTING Forty-four spinal cord-injured patients with stage 3 and 4 sacral PI participated in the study. The study setting was the Department of Orthopedic Surgery at King George's Medical University, in Lucknow, India. METHODS Twenty two subjects were randomly allocated to undergo NPWT via a novel negative pressure device, and 22 participants received conventional wound dressing (wet to moist gauze dressings). Pressure injuries were treated for 9 weeks or until wound closure. Levels of MMP-8 were analyzed in the tissues of PIs at weeks 0, 3, 6, and 9 by enzyme-linked immunosorbent assay. RESULTS Significantly lower levels of MMP-8 were observed in the NPWT group at week 6 and week 9. There were no significant changes in the length and width of PIs between the groups till week 3. Significant reduced length and width were observed in PIs of patients in the NPWT group at week 6 (P = .04) and week 9 (P = .001). Similarly, significant reduction in the depth of PIs was observed in the NPWT group at week 9 (P < .05). At the end of 9 week, levels of MMP-8 showed a positive correlation with reduction in the length, width, and depth of PIs in the NPWT group while in the conventional dressing group, negative correlation was observed in association with MMP-8 and the length, width, and depth of PIs. Exudate levels were significantly lower in the NPWT group compared with the conventional dressing group from week 3 (2.96 ± 0.21 vs 2.62 ± 0.49); this difference persisted through week 9 (1.35 ± 0.75 vs 0.14 ± 0.35). Conversion of slough into red granulation tissue was significantly higher in the NPWT group after week 6 (P = .001). CONCLUSION Reduced levels of MMP-8 and an increased rate of healing were found in patients allocated to treatment with a novel negative pressure device as compared to wet to moist gauze conventional dressing. The novel NPWT device used in this study reduced exudate production and enhanced the rate of formation of red granulation tissue.
Collapse
Affiliation(s)
- Mukesh Kumar Dwivedi
- Mukesh Kumar Dwivedi, MSc, Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India. Amit Kumar Bhagat, MSc, Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India. Rajeshwar Nath Srivastava, MS, Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India. Amita Jain, MD, Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India. Kavita Baghel, PhD, Department of Orthopaedic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India. Saloni Raj, MBBS, MS Ramaiah Medical College, Bangalore, India
| | | | | | | | | | | |
Collapse
|
20
|
Krishnaswamy VR, Mintz D, Sagi I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2220-2227. [PMID: 28797647 DOI: 10.1016/j.bbamcr.2017.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Cutaneous wound healing is a complex mechanism with multiple processes orchestrating harmoniously for structural and functional restoration of the damaged tissue. Chronic non-healing wounds plagued with infection create a major healthcare burden and is one of the most frustrating clinical problems. Chronic wounds are manifested by prolonged inflammation, defective re-epithelialization and haphazard remodeling. Matrix metalloproteinases (MMPs) are zinc dependent enzymes that play cardinal functions in wound healing. Understanding the pathological events mediated by MMPs during wound healing may pave way in identifying novel drug targets for chronic wounds. Here, we discuss the functions and skewed regulation of different MMPs during infection and chronic tissue repair. This review also points out the potential of MMPs and their inhibitors as therapeutic agents in treating chronic wounds during distinct phases of the wound healing. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
| | - Dvir Mintz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
21
|
Ahlström M, Gjerdrum L, Larsen H, Fuchs C, Sørensen A, Forman J, Ågren M, Mogensen M. Suction blister lesions and epithelialization monitored by optical coherence tomography. Skin Res Technol 2017; 24:65-72. [DOI: 10.1111/srt.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2017] [Indexed: 12/17/2022]
Affiliation(s)
- M.G. Ahlström
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - L.M.R. Gjerdrum
- Department of Pathology; Zealand University Hospital; Roskilde Denmark
| | - H.F. Larsen
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - C. Fuchs
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - A.L. Sørensen
- Section of Biostatistics; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - J.L. Forman
- Section of Biostatistics; Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - M.S. Ågren
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
- Digestive Disease Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| | - M. Mogensen
- Department of Dermatology and Copenhagen Wound Healing Center; Bispebjerg Hospital; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
22
|
Mahasenan KV, Bastian M, Gao M, Frost E, Ding D, Zorina-Lichtenwalter K, Jacobs J, Suckow MA, Schroeder VA, Wolter WR, Chang M, Mobashery S. Exploitation of Conformational Dynamics in Imparting Selective Inhibition for Related Matrix Metalloproteinases. ACS Med Chem Lett 2017. [PMID: 28626528 DOI: 10.1021/acsmedchemlett.7b00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have numerous physiological functions and share a highly similar catalytic domain. Differential dynamical information on the closely related human MMP-8, -13, and -14 was integrated onto the benzoxazinone molecular template. An in silico library of 28,099 benzoxazinones was generated and evaluated in the context of the molecular-dynamics information. This led to experimental evaluation of 19 synthesized compounds and identification of selective inhibitors, which have potential utility in delineating the physiological functions of MMPs. Moreover, the approach serves as an example of how dynamics of closely related active sites may be exploited to achieve selective inhibition by small molecules and should find applications in other enzyme families with similar active sites.
Collapse
Affiliation(s)
- Kiran V. Mahasenan
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Maria Bastian
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ming Gao
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Emma Frost
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Derong Ding
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | - John Jacobs
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mark A. Suckow
- Freimann
Life Science Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Valerie A. Schroeder
- Freimann
Life Science Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William R. Wolter
- Freimann
Life Science Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mayland Chang
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shahriar Mobashery
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
23
|
Scientific and Clinical Abstracts From the WOCN® Society's 49th Annual Conference. J Wound Ostomy Continence Nurs 2017. [DOI: 10.1097/won.0000000000000331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Characterization and evaluation of siderophore-loaded gelatin microspheres: a potent tool for wound-dressing material. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1840-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Séguin O, Descoteaux A. Leishmania, the phagosome, and host responses: The journey of a parasite. Cell Immunol 2016; 309:1-6. [PMID: 27531526 DOI: 10.1016/j.cellimm.2016.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/25/2016] [Accepted: 08/07/2016] [Indexed: 10/21/2022]
Abstract
Leishmania is the eukaryotic parasite responsible for leishmaniases, a spectrum of diseases that puts at risk roughly 350millions of people in 98 countries according to the Drugs for Neglected Diseases initiative (DNDi). This parasite has a complex life cycle composed of two distinct stages, the promastigote form found in the female sand-fly vector and the amastigote form that replicates in the mammalian host (Teixeira et al., 2013) [1]. To survive, the parasite interacts with its host immune system at multiple levels. In this review, we discuss the nature of those interactions, how they affect the host immune system, and how they affect parasite survival from the very beginning of the life cycle in the vector to its dissemination within the mammalian host.
Collapse
Affiliation(s)
- Olivier Séguin
- INRS-Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier and the Center for Host-Parasite Interactions, Laval, Canada.
| |
Collapse
|
26
|
Eren G, Gürkan A, Atmaca H, Dönmez A, Atilla G. Effect of centrifugation time on growth factor and MMP release of an experimental platelet-rich fibrin-type product. Platelets 2016; 27:427-32. [DOI: 10.3109/09537104.2015.1131253] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gülnihal Eren
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| | - Ali Gürkan
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| | - Harika Atmaca
- Department of Biology, Celal Bayar University, School of Science, Manisa, Turkey
| | - Ayhan Dönmez
- Department of Hematology, Ege University, Medical School, Izmir, Turkey
| | - Gül Atilla
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| |
Collapse
|
27
|
Eren G, Tervahartiala T, Sorsa T, Atilla G. Cytokine (interleukin-1beta) and MMP levels in gingival crevicular fluid after use of platelet-rich fibrin or connective tissue graft in the treatment of localized gingival recessions. J Periodontal Res 2015; 51:481-8. [DOI: 10.1111/jre.12325] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
Affiliation(s)
- G. Eren
- Department of Periodontology; School of Dentistry; Ege University; Bornova-İzmir Turkey
| | - T. Tervahartiala
- Department of Oral and Maxillofacial Diseases; Helsinki University and Helsinki University Hospital; Helsinki Finland
| | - T. Sorsa
- Department of Oral and Maxillofacial Diseases; Helsinki University and Helsinki University Hospital; Helsinki Finland
- Division of Periodontology; Department of Dental Medicine; Karolinska Institute; Huddinge Sweden
| | - G. Atilla
- Department of Periodontology; School of Dentistry; Ege University; Bornova-İzmir Turkey
| |
Collapse
|
28
|
Xue M, Jackson CJ. Novel Functions of the Anticoagulant Activated Protein C in Maintaining Skin Barrier Integrity to Impact on Skin Disease. Pathobiology 2015; 82:100-6. [PMID: 26160431 DOI: 10.1159/000430957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022] Open
Abstract
The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. When the barrier is disrupted any of a number of diseases, such as chronic wounds, psoriasis, pemphigus, atopic dermatitis or toxic epidermal necrolysis, can take hold. Activated protein C (APC) or its precursor, protein C, is abundantly expressed by skin epidermal keratinocytes and stimulates their proliferation and migration, and inhibits apoptosis and inflammation, leading to a healing phenotype. Importantly, APC also increases the barrier function of keratinocytes by promoting expression and cell-cell contact redistribution of tight junction proteins. These cytoprotective properties of APC on epidermal keratinocytes place it as an exciting new therapy for skin disorders associated with the disruption of barrier function and inflammation.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Royal North Shore Hospital, St Leonards, N.S.W., Australia
| | | |
Collapse
|
29
|
Biomarkers for infection: enzymes, microbes, and metabolites. Appl Microbiol Biotechnol 2015; 99:4595-614. [DOI: 10.1007/s00253-015-6637-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 02/02/2023]
|
30
|
Switch from αvβ5 to αvβ6 integrin is required for CD9-regulated keratinocyte migration and MMP-9 activation. FEBS Lett 2014; 588:4044-52. [PMID: 25265322 DOI: 10.1016/j.febslet.2014.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023]
Abstract
Our previous research found that tetraspanin CD9 is downregulated in migrating epidermis during wound healing, and CD9 downregulation contributes to keratinocyte migration via matrix metalloproteinase-9 (MMP-9) activation. However, little is known about the mechanisms involved in CD9-regulated keratinocyte migration and MMP-9 activation. In this study, we revealed that the expressions of integrin subunits β5 and β6 were regulated by CD9. Furthermore, CD9 silencing triggered the switch from αvβ5 to αvβ6 integrin in HaCaT keratinocytes and CD9 overexpression reversed the switch. Importantly, integrin αvβ6 functional blocking antibody 10D5 significantly inhibited CD9 silencing-induced keratinocyte migration and MMP-9 activation, suggesting that the switch from αvβ5 to αvβ6 integrin plays a key role in CD9-regulated cell migration and MMP-9 activation in keratinocytes.
Collapse
|
31
|
Jetten N, Roumans N, Gijbels MJ, Romano A, Post MJ, de Winther MPJ, van der Hulst RRWJ, Xanthoulea S. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One 2014; 9:e102994. [PMID: 25068282 PMCID: PMC4113363 DOI: 10.1371/journal.pone.0102994] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/25/2014] [Indexed: 12/16/2022] Open
Abstract
Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds.
Collapse
Affiliation(s)
- Nadine Jetten
- Department of Molecular Genetics, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Nadia Roumans
- Department of Plastic Surgery, NUTRIM, School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marion J. Gijbels
- Department of Molecular Genetics, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Department of Pathology, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Gynecology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mark J. Post
- Department of Physiology, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Menno P. J. de Winther
- Department of Molecular Genetics, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rene R. W. J. van der Hulst
- Department of Plastic Surgery, NUTRIM, School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Sofia Xanthoulea
- Department of Plastic Surgery, NUTRIM, School for Nutrition, Toxicology & Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
32
|
Gooyit M, Peng Z, Wolter WR, Ping H, Ding D, Hesek D, Lee M, Boggess B, Champion MM, Suckow MA, Mobashery S, Chang M. A chemical biological strategy to facilitate diabetic wound healing. ACS Chem Biol 2014; 9:105-10. [PMID: 24053680 PMCID: PMC3947039 DOI: 10.1021/cb4005468] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A complication of diabetes is the inability of wounds to heal in diabetic patients. Diabetic wounds are refractory to healing due to the involvement of activated matrix metalloproteinases (MMPs), which remodel the tissue resulting in apoptosis. There are no readily available methods that identify active unregulated MMPs. With the use of a novel inhibitor-tethered resin that binds exclusively to the active forms of MMPs, coupled with proteomics, we quantified MMP-8 and MMP-9 in a mouse model of diabetic wounds. Topical treatment with a selective MMP-9 inhibitor led to acceleration of wound healing, re-epithelialization, and significantly attenuated apoptosis. In contrast, selective pharmacological inhibition of MMP-8 delayed wound healing, decreased re-epithelialization, and exhibited high apoptosis. The MMP-9 activity makes the wounds refractory to healing, whereas that of MMP-8 is beneficial. The treatment of diabetic wounds with a selective MMP-9 inhibitor holds great promise in providing heretofore-unavailable opportunities for intervention of this disease.
Collapse
Affiliation(s)
- Major Gooyit
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - William R. Wolter
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Hualiang Ping
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Derong Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Bill Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Mark A. Suckow
- Freimann Life Sciences Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA 46556
| |
Collapse
|
33
|
Synergistic protection of MLC 1 against cardiac ischemia/reperfusion-induced degradation: a novel therapeutic concept for the future. Future Med Chem 2013; 5:389-98. [PMID: 23495687 DOI: 10.4155/fmc.13.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular diseases are a major burden to society and a leading cause of morbidity and mortality in the developed world. Despite clinical and scientific advances in understanding the molecular mechanisms and treatment of heart injury, novel therapeutic strategies are needed to prevent morbidity and mortality due to cardiac events. Growing evidence reported over the last decade has focused on the intracellular targets for proteolytic degradation by MMP-2. Of particular interest is the establishment of MMP-2-dependent degradation of cardiac contractile proteins in response to increased oxidative stress conditions, such as ischemia/reperfusion. The authors' laboratory has identified a promising preventive therapeutic target using the classical pharmacological concept of synergy to target MMP-2 activity and its proteolytic action on a cardiac contractile protein. This manuscript provides an overview of the body of evidence that supports the importance of cardiac contractile protein degradation in ischemia/reperfusion injury and the use of synergy to protect against it.
Collapse
|
34
|
Legerstee R. Proteases in wounds: food(s) for thought. J Wound Care 2013; 22:227-8. [PMID: 23702726 DOI: 10.12968/jowc.2013.22.5.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
|
36
|
Hashmi F, Richards BS, Forghany S, Hatton AL, Nester CJ. The formation of friction blisters on the foot: the development of a laboratory-based blister creation model. Skin Res Technol 2012; 19:e479-89. [DOI: 10.1111/j.1600-0846.2012.00669.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Farina Hashmi
- Centre for Health Sciences Research; University of Salford; Manchester; UK
| | - Barry S Richards
- Centre for Health Sciences Research; University of Salford; Manchester; UK
| | | | | | | |
Collapse
|
37
|
Silva-Almeida M, Pereira BAS, Ribeiro-Guimarães ML, Alves CR. Proteinases as virulence factors in Leishmania spp. infection in mammals. Parasit Vectors 2012; 5:160. [PMID: 22871236 PMCID: PMC3436776 DOI: 10.1186/1756-3305-5-160] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/12/2012] [Indexed: 11/10/2022] Open
Abstract
Leishmania parasites cause human tegumentary and visceral infections that are commonly referred to as leishmaniasis. Despite the high incidence and prevalence of cases, leishmaniasis has been a neglected disease because it mainly affects developing countries. The data obtained from the analysis of patients' biological samples and from assays with animal models confirm the involvement of an array of the parasite's components in its survival inside the mammalian host. These components are classified as virulence factors. In this review, we focus on studies that have explored the role of proteinases as virulence factors that promote parasite survival and immune modulation in the mammalian host. Additionally, the direct involvement of proteinases from the host in lesion evolution is analyzed. The gathered data shows that both parasite and host proteinases are involved in the clinical manifestation of leishmaniasis. It is interesting to note that although the majority of the classes of proteinases are present in Leishmania spp., only cysteine-proteinases, metalloproteinases and, to a lesser scale, serine-proteinases have been adequately studied. Members from these classes have been implicated in tissue invasion, survival in macrophages and immune modulation by parasites. This review reinforces the importance of the parasite proteinases, which are interesting candidates for new chemo or immunotherapies, in the clinical manifestations of leishmaniasis.
Collapse
Affiliation(s)
- Mariana Silva-Almeida
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC, Fiocruz, Avenida Brasil, 4365 Manguinhos Pavilhão Leônidas Deane-Sala 209, CEP: 21040-900, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
38
|
Frost J, Ramsay M, Mia R, Moosa L, Musenge E, Tikly M. Differential gene expression of MMP-1, TIMP-1 and HGF in clinically involved and uninvolved skin in South Africans with SSc. Rheumatology (Oxford) 2012; 51:1049-52. [DOI: 10.1093/rheumatology/ker367] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Simonetti O, Cirioni O, Lucarini G, Orlando F, Ghiselli R, Silvestri C, Brescini L, Rocchi M, Provinciali M, Guerrieri M, Di Primio R, Giacometti A, Offidani A. Tigecycline accelerates staphylococcal-infected burn wound healing through matrix metalloproteinase-9 modulation. J Antimicrob Chemother 2011; 67:191-201. [PMID: 22065244 DOI: 10.1093/jac/dkr440] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We investigated the in vivo efficacy of tigecycline, a new glycylcycline (a tetracycline derivative), in the management of methicillin-resistant Staphylococcus aureus (MRSA)-infected experimental surgical wounds in rats. The main outcome measures were quantitative bacterial culture, histological examination and immunohistochemical expression of matrix metalloproteinase-9 (MMP-9) and collagen IV. METHODS An animal model was used to compare the in vivo efficacy of teicoplanin and tigecycline in the treatment of burn wound infections by S. aureus. A copper bar, heated in boiling water, was placed on the paraspinal site of each rat, resulting in full thickness burns. A small gauze was placed over each burn and then inoculated with 5 × 10(7) cfu of S. aureus ATCC 43300. To mimic the clinical situation in burn patients, surgical debridement was performed 48 h after the injury. The wounds were left to heal by secondary intention. The study included an uninfected control group that did not receive any treatment, a contaminated group that did not receive any treatment, and two contaminated groups treated with intraperitoneal tigecycline (2 mg/kg) and teicoplanin (7 mg/kg), respectively. RESULTS All antibiotic treatments were significantly effective. Tigecycline showed the highest antimicrobial activity, with a better impact on histological results. Infected rats treated with tigecycline showed a significant decrease in MMP-9 expression both in epithelium and in dermis compared with rats treated with teicoplanin. CONCLUSIONS Tigecycline, besides its antimicrobial activity, exerts an important modulatory effect on MMP-9, accelerating wound healing in staphylococcal-infected burns.
Collapse
Affiliation(s)
- Oriana Simonetti
- Department of Dermatology, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wright C, Pilkington R, Callaghan M, McClean S. Activation of MMP-9 by human lung epithelial cells in response to the cystic fibrosis-associated pathogen Burkholderia cenocepacia reduced wound healing in vitro. Am J Physiol Lung Cell Mol Physiol 2011; 301:L575-86. [PMID: 21743026 DOI: 10.1152/ajplung.00226.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burkholderia cepacia complex is a group of bacterial pathogens that cause opportunistic infections in cystic fibrosis (CF). The most virulent of these is Burkholderia cenocepacia. Matrix metalloproteinases (MMPs) are upregulated in CF patients. The aim of this work was to examine the role of MMPs in the pathogenesis of B. cepacia complex, which has not been explored to date. Real-time PCR analysis showed that B. cenocepacia infection upregulated MMP-2 and MMP-9 genes in the CF lung cell line CFBE41o- within 1 h, whereas MMP-2, -7, and -9 genes were upregulated in the non-CF lung cell line 16HBE14o-. Conditioned media from both cell lines showed increased MMP-9 activation following B. cenocepacia infection. Conditioned media from B. cenocepacia-infected cells significantly reduced the rate of wound healing in confluent lung epithelia (P < 0.05), in contrast to conditioned media from Pseudomonas aeruginosa-infected cells, which showed predominant MMP-2 activation. Treatment of control conditioned media from both cell lines with the MMP activator 4-aminophenylmercuric acetate (APMA) also resulted in clear activation of MMP-9 and to a much lesser extent MMP-2. APMA treatment of control media also delayed the repair of wound healing in confluent epithelial cells. Furthermore, specific inhibition of MMP-9 in medium from cells exposed to B. cenocepacia completely reversed the delay in wound repair. These data suggest that MMP-9 plays a role in the reduced epithelial repair observed in response to B. cenocepacia infection and that its activation following B. cenocepacia infection contributes to the pathogenesis of this virulent pathogen.
Collapse
Affiliation(s)
- Ciara Wright
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin, Ireland
| | | | | | | |
Collapse
|
41
|
Amphiregulin exosomes increase cancer cell invasion. Curr Biol 2011; 21:779-86. [PMID: 21514161 DOI: 10.1016/j.cub.2011.03.043] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 02/16/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
Autocrine, paracrine, and juxtacrine are recognized modes of action for mammalian EGFR ligands including EGF, TGF-α (TGFα), amphiregulin (AREG), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epiregulin, and epigen. We identify a new mode of EGFR ligand signaling via exosomes. Human breast and colorectal cancer cells release exosomes containing full-length, signaling-competent EGFR ligands. Exosomes isolated from MDCK cells expressing individual full-length EGFR ligands displayed differential activities; AREG exosomes increased invasiveness of recipient breast cancer cells 4-fold over TGFα or HB-EGF exosomes and 5-fold over equivalent amounts of recombinant AREG. Exosomal AREG displayed significantly greater membrane stability than TGFα or HB-EGF. An average of 24 AREG molecules are packaged within an individual exosome, and AREG exosomes are rapidly internalized by recipient cells. Whether the composition and behavior of exosomes differ between nontransformed and transformed cells is unknown. Exosomes from DLD-1 colon cancer cells with a mutant KRAS allele exhibited both higher AREG levels and greater invasive potential than exosomes from isogenically matched, nontransformed cells in which mutant KRAS was eliminated by homologous recombination. We speculate that EGFR ligand signaling via exosomes might contribute to diverse cancer phenomena such as field effect and priming of the metastatic niche.
Collapse
|
42
|
Differential in vivo zymography: a method for observing matrix metalloproteinase activity in the zebrafish embryo. Matrix Biol 2011; 30:169-77. [PMID: 21292002 DOI: 10.1016/j.matbio.2011.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/19/2011] [Accepted: 01/25/2011] [Indexed: 12/20/2022]
Abstract
Investigations into the molecular mechanisms of, and cellular signaling pathways modulating ECM remodeling are especially challenging due to the complex post-translational regulation of the primary effectors of ECM catabolism - the matrix metalloproteinases (MMPs). Recently a variety of approaches to the detection of MMP activity have been developed, and the prospect of visualizing ECM remodeling activity in living tissues is now opening exciting avenues of research for matrix biologists. In particular the use of FRET-quenched MMP substrates, which generate a fluorescent signal upon hydrolysis, is becoming increasingly popular, especially because linkers with defined and/or restricted proteolytic sensitivity can be used to bind fluorophore-quencher pairs, making these probes useful in characterizing the activity of specific proteases. We have taken advantage of the transparency and amenability to reverse genetics of the zebrafish embryo, in combination with these fluorogenic MMP substrates, to develop a multiplex in vivo assay for MMP activity that we dub "differential in vivo zymography."
Collapse
|
43
|
Maretti-Mira AC, de Oliveira-Neto MP, Da-Cruz AM, de Oliveira MP, Craft N, Pirmez C. Therapeutic failure in American cutaneous leishmaniasis is associated with gelatinase activity and cytokine expression. Clin Exp Immunol 2010; 163:207-14. [PMID: 21091666 DOI: 10.1111/j.1365-2249.2010.04285.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cutaneous lesions caused by Leishmania braziliensis infection occasionally heal spontaneously, but with antimonials therapy heal rapidly in approximately 3 weeks. However, about 15% of the cases require several courses of therapy. Matrix metalloproteinase-2 (MMP-2) and MMP-9 are gelatinases that have been implicated in other chronic cutaneous diseases and skin re-epithelialization. These enzymes are controlled by their natural inhibitors [tissue inhibitors of metalloproteinase (TIMPs)] and by some cytokines. Uncontrolled gelatinase activity may result in intense tissue degradation and, consequently, poorly healing wounds. The present study correlates gelatinase activity to therapeutic failure of cutaneous leishmaniasis (CL) lesions. Our results demonstrate an association between gelatinase activity and increased numbers of cells making interferon (IFN)-γ, interleukin (IL)-10 and transforming growth factor (TGF)-β in lesions from poor responders. Conversely, high levels of MMP-2 mRNA and enhanced MMP-2 : TIMP-2 ratios were associated with a satisfactory response to antimonials treatment. Additionally, high gelatinolytic activity was found in the wound beds, necrotic areas in the dermis and within some granulomatous infiltrates. These results indicate the importance of gelatinase activity in the skin lesions caused by CL. Thus, we hypothesize that the immune response profile may be responsible for the gelatinase activity pattern and may ultimately influence the persistence or cure of CL lesions.
Collapse
|
44
|
Widgerow AD. Nanocrystalline silver, gelatinases and the clinical implications. Burns 2010; 36:965-74. [DOI: 10.1016/j.burns.2010.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/18/2009] [Accepted: 01/25/2010] [Indexed: 11/17/2022]
|
45
|
Elastin-derived peptides enhance melanoma growth in vivo by upregulating the activation of Mcol-A (MMP-1) collagenase. Br J Cancer 2010; 103:1562-70. [PMID: 20959825 PMCID: PMC2990576 DOI: 10.1038/sj.bjc.6605926] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Elastin peptides possess several biological activities and in vitro data suggest they could be involved in the early phase of melanoma growth. Methods: Using diverse in vitro and in vivo techniques (cell proliferation, invasion and migration assays, zymography, western blots, collagen degradation assay, reverse transcription PCR, melanoma allographs and immunohistochemistry), we analysed the effect of elastin-derived peptides (EDPs) on B16F1 melanoma growth and invasion, as well as on the proteolytic systems involved. Results: We found that EDPs dramatically promote in vivo tumour development of B16F1 melanoma, as well as their in vitro migration and invasion. The inhibition of serine proteases and matrix metalloproteinases (MMPs) activities, by aprotinin and galardin, respectively, demonstrated that these enzymes were involved in these processes. However, we found that EDPs did not increase urokinase-type plasminogen activator, tissue-type plasminogen activator or MMP-2 expression and/or activation, neither in vitro nor in vivo. Nevertheless, we observed a strong increase of pro-MMP-9 secretion in EDPs-treated tumours and, more importantly, an increase in the expression and activation of the murine counterpart of MMP-1, named murine collagenase-A (Mcol-A). Moreover, we show that plasminogen system inhibition decreases collagen degradation by this enzyme. Finally, the use of a specific blocking antibody against Mcol-A abolished EDP-induced B16F1 invasion in vitro, showing that this MMP was directly involved in this process. Conclusion: Our data show that in vivo, EDPs are involved in melanoma growth and invasion and reinforced the concept of elastin fragmentation as a predictive factor.
Collapse
|
46
|
The anti-invasive activity of synthetic alkaloid ethoxyfagaronine on L1210 leukemia cells is mediated by down-regulation of plasminogen activators and MT1-MMP expression and activity. Invest New Drugs 2010; 29:730-41. [PMID: 20349265 DOI: 10.1007/s10637-010-9410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 02/17/2010] [Indexed: 10/25/2022]
Abstract
Quaternary benzo[c]phenanthridines such as fagaronine are natural substances which have been reported to exhibit anticancer and anti-leukemic properties. However, the therapeutic use of these molecules is limited due to the high dose required to exhibit anti-tumor activity and subsequent toxicity. In this study, we describe the therapeutic potential of a new derivative of fagaronine, Ethoxyfagaronine (N-methyl-12-ethoxy-2hydroxy-3, 8, 9-trimethoxybenzo[c]-phenanthridiniumchlorhydrate) as an anti-leukemic agent. Cytotoxic activity and cell growth inhibition of Ethoxyfagaronine (Etxfag) was tested on murine L1210 leukemia cells using trypan blue assay and MTT assay. At the concentration of 10(-7) M, Etxfag induced less than 10% of cell death. Etxfag (10(-7) M) was tested on L1210 cell invasiveness using matrigel™ precoated transwell chambers and efficiently reduces the invasive potential of L1210 cells by more than 50% as compared with untreated cells. Western blot and immunofluorescence experiments showed that Etxfag decreased both MT1-MMP expression and activation at the cell surface, decreased plasmin activity by down-regulating u-PAR and uPA expression at the cell surface and increasing PAI-1 secretion in conditioned media. The set of our findings underscore the therapeutic potential of ethoxyfagaronine as a new potential anticancer agent able to prevent leukemic cell dissemination.
Collapse
|
47
|
Mirastschijski U, Schnabel R, Claes J, Schneider W, Agren MS, Haaksma C, Tomasek JJ. Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-beta1-promoted myofibroblast formation and function. Wound Repair Regen 2010; 18:223-34. [PMID: 20409148 DOI: 10.1111/j.1524-475x.2010.00574.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to regulate wound contraction is critical for wound healing as well as for pathological contractures. Matrix metalloproteinases (MMPs) have been demonstrated to be obligatory for normal wound healing. This study examined the effect that the broad-spectrum MMP inhibitor BB-94 has when applied topically to full-thickness skin excisional wounds in rats and its ability to inhibit the promotion of myofibroblast formation and function by the latent transforming-growth factor-beta1 (TGF-beta1). BB-94 delayed wound contraction, as well as all other associated aspects of wound healing examined, including myofibroblast formation, stromal cell proliferation, blood vessel formation, and epithelial wound coverage. Interestingly, BB-94 dramatically increased the level of latent and active MMP-9. The increased levels of active MMP-9 may eventually overcome the ability of BB-94 to inhibit this MMP and may explain why wound contraction and other associated events of wound healing were only delayed and not completely inhibited. BB-94 was also found to inhibit the ability of latent TGF-beta1 to promote the formation and function of myofibroblasts. These results suggest that BB-94 could delay wound closure through a twofold mechanism; by blocking keratinocyte migration and thereby blocking the necessary keratinocyte-fibroblast interactions needed for myofibroblast formation and by inhibiting the activation of latent TGF-beta1.
Collapse
Affiliation(s)
- Ursula Mirastschijski
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Reiss MJ, Han YP, Garner WL. Alpha1-antichymotrypsin activity correlates with and may modulate matrix metalloproteinase-9 in human acute wounds. Wound Repair Regen 2009; 17:418-26. [PMID: 19660051 DOI: 10.1111/j.1524-475x.2009.00476.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a central role in many physiologic processes including acute and the chronic wounds. MMP-9 is not routinely expressed in healthy tissues but is promptly expressed as a proenzyme and converted into active enzyme after tissue injury. The mechanisms involved, including the activators and inhibitors for this enzyme in human tissue remain largely obscure. We recently identified alpha1-antichymotrypsin (alpha1-ACT), an acute phase factor, as a potent inhibitor controlling activation of pro-MMP-9 by human skin. The aim of this study is to establish the clinical relevance of the inhibitor in cutaneous wound healing. Fluids from acute burn blisters and conditioned media from skin explants of burn patients were analyzed. We observed that the presence pro-MMP-9 and its activation correlated with the proximity to and degree of injury. Early after trauma, massive levels of wound alpha1-ACT were associated with an absence of pro-MMP-9 activation. Conversely, the active MMP-9 occurs simultaneously with inactivation of alpha1-ACT. Our results suggest a role for alpha1-ACT as a physiologic inhibitor of MMP-9 activation in human wound healing.
Collapse
Affiliation(s)
- Matthew J Reiss
- Division of Plastic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
49
|
Sørensen LT, Zillmer R, Ågren M, Ladelund S, Karlsmark T, Gottrup F. Effect of smoking, abstention, and nicotine patch on epidermal healing and collagenase in skin transudate. Wound Repair Regen 2009; 17:347-53. [DOI: 10.1111/j.1524-475x.2009.00479.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Lan CCE, Liu IH, Fang AH, Wen CH, Wu CS. Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes. Br J Dermatol 2009; 159:1103-15. [PMID: 18717678 DOI: 10.1111/j.1365-2133.2008.08789.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Elevated blood glucose in patients with diabetes mellitus (DM) leads to complications including poor wound healing. Proper keratinocyte migration and proliferation are the crucial steps during re-epithelialization. We hypothesize that the impaired wound healing in patients with DM is due to the disruption of proper re-epithelialization. OBJECTIVES We aimed to explore the effects of high glucose on keratinocytes in terms of cell migration and proliferation. METHODS Keratinocytes were cultivated in normal and high glucose conditions. Their viability was evaluated by MTS assay. Transwell migration and in vitro scratch assays were used to evaluate their mobility. The mRNA expressions and activities of matrix metalloproteinase (MMP)-2 and MMP-9 were determined. The mRNA of their respective physiological inhibitors, tissue inhibitor of MMP (TIMP)-1 and TIMP-2, was also evaluated. Immunofluorescent staining and Western blotting were used to examine the expression of phosphorylated focal adhesion kinase (pp125(FAK)). The impacts of high glucose on keratinocyte proliferation were assessed by 5-bromo-2'-deoxyuridine incorporation assay. RESULTS High glucose treatment did not affect keratinocyte viability up to 3 days. In contrast, the mobility of keratinocytes, the activities and gene expressions of MMP-2 and MMP-9, the expression of pp125(FAK), and the cell proliferation after 5 days were significantly downregulated after hyperglycaemic treatments while the mRNA expression of TIMP-1 increased. CONCLUSIONS Under hyperglycaemic conditions, keratinocytes demonstrate reduced migration and decreased proliferation capacities. These impairments of keratinocyte functions are likely to result in inadequate re-epithelialization. These defective physiological events provide a reasonable explanation for the poor wound healing commonly observed in patients with DM.
Collapse
Affiliation(s)
- C-C E Lan
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|