1
|
Wen Y, Jiang N, Wang Z, Xiao Y. Versatile whey acidic protein four-disulfide core domain proteins: biology and role in diseases. Front Cell Dev Biol 2024; 12:1459129. [PMID: 39296934 PMCID: PMC11408880 DOI: 10.3389/fcell.2024.1459129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
The Whey acidic protein four-disulfide core (WFDC) protein family consists of proteins with one or more WFDC domains which are ubiquitously expressed throughout the body of human and perform a wide range of functions, including antiprotease, antibacterial, and immunomodulatory functions. Aberrant expression of WFDC proteins is associated with human diseases. However, review on the WFDC protein family is limited and insufficient. Furthermore, a systematic summary of the underlying mechanisms of WFDC protein activity is lacking. In this review, we give a summary of the structural basis and molecular function of these proteins and review the immune regulatory mechanisms and signaling pathways of WFDC proteins in the development of certain diseases. Furthermore, we discuss the diagnostic and prognostic potential of multiple WFDC proteins in the aforementioned conditions, as well as their prospective use. At last, we also discuss the progress of WFDC protein in clinical trials and put forward some research difficulties and the directions of follow-up research. Our review highlights the functional diversity and clinical significance of WFDC proteins family, while providing potential targets for drug development and innovative therapeutic strategies, this review lays the foundation and direction for future research on WFDC proteins.
Collapse
Affiliation(s)
- Yifan Wen
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Nan Jiang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanyuan Xiao
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Screening and characterization of a novel Antibiofilm polypeptide derived from filamentous Fungi. J Proteomics 2020; 233:104075. [PMID: 33309927 DOI: 10.1016/j.jprot.2020.104075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/17/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
In the present study, 120 fungal isolates were locally isolated from soil and selected according to their ability to antimicrobial activity. Then, selected isolates were tested for their ability to prevent biofilm formation and only one isolate (A01) showed an antibiofilm effect. The isolate A01 identified as Aspergillus tubingensis by sequencing of the 18S ITS region and a segment of β-tubulin gene. Then, 5 fractions were prepared from the culture filtrate of A. tubingensis A01 using the ultrafiltration technique to find active polypeptide fraction. The experiments revealed that one of them had an antibiofilm activity. The MALDI-TOF/MS analyses demonstrated that this polypeptide composed of 92 amino acids and had a molecular mass of 10,087 Da. The sequence alignment showed homology with hypothetical protein (OJI81679.1). The gene coding for this polypeptide consisting of 279 nucleotides, herein we called astucin, was cloned and sequenced from A. tubingensis A01 to confirm results. The MIC of the purified polypeptide was 32 m/L and 128 μg/mL and the MBIC was 2 and 8 μg/mL against Staphylococcus aureus and MRSA, respectively. The results demonstrated that the antimicrobial and antibiofilm activity of astucin, together with its lack of cytotoxicity, makes it an alternative for application in medicine. SIGNIFICANCE: Antibiotic resistance is a global problem and the emergence of antibiotic resistant bacteria reduce the effect the current treatment approaches. In this context, antimicrobial peptides stand out as potentional agents to combat bacterial infection especially, biofilm related infections. Importantly, this study have greatly considered our understanding for fungal derived antibiofilm polypeptides. In this study, traditional selection method combined with crystal violet assay is used to investigate antibiofilm polypeptides. We identified antibiofilm polypeptides purified from A. tubingensis A01. This protein shows antimicrobial and antibiofilm activity against S. aureus.
Collapse
|
3
|
Azkargorta M, Bregón-Villahoz M, Escobes I, Ibáñez-Pérez J, Iloro I, Iglesias M, Diez-Zapirain M, Rabanal A, Prieto B, Moragues MD, Matorras R, Elortza F. In-depth proteomics and natural peptidomics analyses reveal antibacterial peptides in human endometrial fluid. J Proteomics 2020; 216:103652. [DOI: 10.1016/j.jprot.2020.103652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
|
4
|
Wu Z, Wu Y, Fischer J, Bartels J, Schröder JM, Meyer-Hoffert U. Skin-Derived SPINK9 Kills Escherichia coli. J Invest Dermatol 2019; 139:1135-1142. [DOI: 10.1016/j.jid.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023]
|
5
|
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci 2018; 13:174-200. [PMID: 33817083 PMCID: PMC7874700 DOI: 10.1515/biol-2018-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
This work describes the current state of research on the potential relationship between protein content in human saliva and dental caries, which remains among the most common oral diseases and causes irreversible damage in the oral cavity. An understanding the whole saliva proteome in the oral cavity could serve as a prerequisite to obtaining insight into the etiology of tooth decay at early stages. To date, however, there is no comprehensive evidence showing that salivary proteins could serve as potential indicators for the early diagnosis of the risk factors causing dental caries. Therefore, proteomics indicates the promising direction of future investigations of such factors, including diagnosis and thus prevention in dental therapy.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Schwartzová
- 1st Department of Stomatology, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Bánovčin
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik in Košice, Rastislavova 43, Košice, 041 90, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
6
|
Small DM, Doherty DF, Dougan CM, Weldon S, Taggart CC. The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease. Biol Chem 2017; 398:425-440. [PMID: 27930359 DOI: 10.1515/hsz-2016-0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022]
Abstract
Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.
Collapse
|
7
|
Yu Y, Prassas I, Muytjens CM, Diamandis EP. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J Proteomics 2017; 155:40-48. [DOI: 10.1016/j.jprot.2017.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
8
|
Abstract
Background:Proteases are important enzymes that can degrade proteins and are found in animals, plants, bacteria, fungi and viruses. The action of proteases can be controlled by Protease Inhibitors (PIs), chemical or proteinaceous in nature that can block the active site of protease. Since the step catalyzed by proteases may play important role in life cycle of microbes, hindering the action of proteases by PIs may act as therapeutic intervention for microbial infection.Material and Methods:A thorough study was performed and wide range of literature was surveyed to confirm our results of PIs showing antibacterial activity.Results:PIs have shown to be effective drugs against bacterial pathogens, pathogenic viruses- Human Immunodeficiency Virus (HIV), Herpes virus, Hepatitis Virus. PIs have recently been investigated for controlling protozoan parasites. Clinical value of proteases and their inhibitors has been studied inHelicobacter pyloriwhich is the etiologic agent of gastritis.Conclusion:This review is intended to highlight the role of PIs in the Battle against Microbial Pathogens.
Collapse
|
9
|
Nuding S, Gersemann M, Hosaka Y, Konietzny S, Schaefer C, Beisner J, Schroeder BO, Ostaff MJ, Saigenji K, Ott G, Schaller M, Stange EF, Wehkamp J. Gastric antimicrobial peptides fail to eradicate Helicobacter pylori infection due to selective induction and resistance. PLoS One 2013; 8:e73867. [PMID: 24040100 PMCID: PMC3770654 DOI: 10.1371/journal.pone.0073867] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 07/31/2013] [Indexed: 12/16/2022] Open
Abstract
Background Although antimicrobial peptides protect mucus and mucosa from bacteria, Helicobacter pylori is able to colonize the gastric mucus. To clarify in which extend Helicobacter escapes the antimicrobial defense, we systematically assessed susceptibility and expression levels of different antimicrobial host factors in gastric mucosa with and without H. pylori infection. Materials and Methods We investigated the expression levels of HBD1 (gene name DEFB1), HBD2 (DEFB4A), HBD3 (DEFB103A), HBD4 (DEFB104A), LL37 (CAMP) and elafin (PI3) by real time PCR in gastric biopsy samples in a total of 20 controls versus 12 patients colonized with H. pylori. Immunostaining was performed for HBD2 and HBD3. We assessed antimicrobial susceptibility by flow cytometry, growth on blood agar, radial diffusion assay and electron microscopy. Results H. pylori infection was associated with increased gastric levels of the inducible defensin HBD2 and of the antiprotease elafin, whereas the expression levels of the constitutive defensin HBD1, inducible HBD3 and LL37 remained unchanged. HBD4 was not expressed in significant levels in gastric mucosa. H. pylori strains were resistant to the defensins HBD1 as well as to elafin, and strain specific minimally susceptible to HBD2, whereas HBD3 and LL37 killed all H. pylori strains effectively. We demonstrated the binding of HBD2 and LL37 on the surface of H. pylori cells. Comparing the antibacterial activity of extracts from H. pylori negative and positive biopsies, we found only a minimal killing against H. pylori that was not increased by the induction of HBD2 in H. pylori positive samples. Conclusion These data support the hypothesis that gastric H. pylori evades the host defense shield to allow colonization.
Collapse
Affiliation(s)
- Sabine Nuding
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
- * E-mail:
| | - Michael Gersemann
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Yoshio Hosaka
- Department of Internal Medicine, Isuzu Hospital, Tokyo, Japan
| | - Sabrina Konietzny
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Christian Schaefer
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Julia Beisner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Bjoern O. Schroeder
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Maureen J. Ostaff
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Katunori Saigenji
- Department of Gastroenterology, Kitasato University, Kanagawa, Japan
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch Hospital, Stuttgart, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Tübingen, Germany
| | - Eduard F. Stange
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Jan Wehkamp
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| |
Collapse
|
10
|
Abstract
SLPI (secretory leucoprotease inhibitor) and elafin represent the archetypal members of the WFDC [WAP (whey acidic protein) four disulfide core] family of proteins, and were originally characterized as protease inhibitors but have since been shown to possess a wider repertoire of activities. These functions include antimicrobial and immunomodulatory properties, suggesting that these proteins may play key roles in the innate immune response, and indicate the potential to develop some of these proteins as novel therapeutics. Susceptibility to host and bacterial protease cleavage may, however, limit the efficacy of recombinant protein therapies in diseases with a high protease burden such as CF (cystic fibrosis) lung disease. To overcome this problem, further refinement of the native proteins will be required to provide effective treatment strategies.
Collapse
|
11
|
Abstract
Almost 90 years have passed since Alexander Fleming discovered the antimicrobial activity of lysozyme, the first natural antibiotic isolated from our body. Since then, various types of molecules with antibiotic activity have been isolated from animals, insects, plants, and bacteria, and their use has revolutionized clinical medicine. So far, more than 1,200 types of peptides with antimicrobial activity have been isolated from various cells and tissues, and it appears that all living organisms use these antimicrobial peptides (AMPs) in their host defense. In the past decade, innate AMPs produced by mammals have been shown to be essential for the protection of skin and other organs. Their importance is because of their pleiotrophic functions to not only kill microbes but also control host physiological functions such as inflammation, angiogenesis, and wound healing. Recent advances in our understanding of the function of AMPs have associated their altered production with various human diseases such as psoriasis, atopic dermatitis, and rosacea. In this review, we summarize the history of AMP biology and provide an overview of recent research progress in this field.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Division of Dermatology, Department of Medicine, University of California, San Diego, San Diego, California 92121, USA
| | | |
Collapse
|
12
|
Wong HEE, Li MS, Kroll JS, Hibberd ML, Langford PR. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica. PLoS One 2011; 6:e26130. [PMID: 22028815 PMCID: PMC3197596 DOI: 10.1371/journal.pone.0026130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/20/2011] [Indexed: 11/22/2022] Open
Abstract
Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants) and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria.
Collapse
Affiliation(s)
- Hazel En En Wong
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Martin L. Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Paul R. Langford
- Section of Paediatrics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Pan CY, Peng KC, Lin CH, Chen JY. Transgenic expression of tilapia hepcidin 1-5 and shrimp chelonianin in zebrafish and their resistance to bacterial pathogens. FISH & SHELLFISH IMMUNOLOGY 2011; 31:275-285. [PMID: 21642002 DOI: 10.1016/j.fsi.2011.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 05/30/2023]
Abstract
Recently, tilapia hepcidin (TH)1-5 was characterized, and its antimicrobial functions against several pathogens were reported. The antimicrobial functions of another shrimp antimicrobial peptide (AMP), chelonianin, were also characterized using a recombinant chelonianin protein (rcf) that was expressed by a stably transfected Chinese hamster ovary (CHO) cell line against pathogen infections in fish. The function of the overexpression of both AMPs in zebrafish muscles was not examined in previous studies. Herein, we investigated the antimicrobial functions of TH1-5 and chelonianin against Vibrio vulnificus (204) and Streptococcus agalactiae (SA48) in transgenic TH1-5 zebrafish and transgenic chelonianin zebrafish. The presence of TH1-5 and chelonianin enhanced the inhibitory ability in transgenic AMP zebrafish against the two different bacterial infections. The bacterial number of either V. vulnificus (204) or S. agalactiae (SA48) had decreased at 96 h after injection into transgenic AMP zebrafish muscle compared to non-transgenic zebrafish muscle. Additionally, immune-related gene expressions analyzed by real-time PCR studies showed the modulation of several genes including interleukin (IL)-10, IL-22, IL-26, MyD88, Toll-like receptor (TLR)-1, TLR-3, TLR-4, nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, and lysozyme, and significant differences were found between transgenic AMP zebrafish and wild-type zebrafish injected with PBS at 1-24 h. These results suggest that several immune-related gene expressions were induced in transgenic TH1-5 and chelonianin zebrafish which effectively inhibited bacterial growth. The survival rate dropped to 86.6% in transgenic chelonianin zebrafish after 28 days of infection compared of the 50% survival rate in transgenic TH1-5 zebrafish after 28 days of infection. Overall, these results indicate that TH1-5 and chelonianin possess the potential to be novel candidate genes for aquaculture applications to treat fish diseases.
Collapse
Affiliation(s)
- Chieh-Yu Pan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | | | | | | |
Collapse
|
14
|
Bernard JJ, Gallo RL. Protecting the boundary: the sentinel role of host defense peptides in the skin. Cell Mol Life Sci 2011; 68:2189-99. [PMID: 21573782 DOI: 10.1007/s00018-011-0712-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The skin is our primary shield against microbial pathogens and has evolved innate and adaptive strategies to enhance immunity in response to injury or microbial insult. The study of antimicrobial peptide (AMP) production in mammalian skin has revealed several of the elegant strategies that AMPs use to prevent infection. AMPs are inducible by both infection and injury and protect the host by directly killing pathogens and/or acting as multifunctional effector molecules that trigger cellular responses to aid in the anti-infective and repair response. Depending on the specific AMP, these molecules can influence cytokine production, cell migration, cell proliferation, differentiation, angiogenesis and wound healing. Abnormal production of AMPs has been associated with the pathogenesis of several cutaneous diseases and plays a role in determining a patient's susceptibility to pathogens. This review will discuss current research on the regulation and function of AMPs in the skin and in skin disorders.
Collapse
Affiliation(s)
- Jamie J Bernard
- Division of Dermatology, Department of Medicine, University of California, San Diego, San Diego, CA 92126, USA
| | | |
Collapse
|
15
|
Haq SK, Rabbani G, Ahmad E, Atif SM, Khan RH. Protease inhibitors: a panacea? J Biochem Mol Toxicol 2010; 24:270-7. [PMID: 20135636 DOI: 10.1002/jbt.20335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing evidence of protease involvement in several diseases, novel strategies for drug development involve the use of protease inhibitors (PIs). The local balance between protease inhibitors and proteases is an important determinant of the occurrence and progression of a particular disease. Hence, enzymes and their cognate inhibitors are finding their applications as diagnostic and prognostic markers. PIs are widely implicated for their use in host defense against infection, tissue repair and matrix production, blood coagulation, cancer, and they are, therefore, the current focus as therapeutic alternatives for major diseases such as AIDS and Alzheimer's diseases. This review is a brief summary of the varied role of protein protease inhibitors in controlling the activity of aberrant enzymes in several diseases afflicting mankind today.
Collapse
Affiliation(s)
- Soghra Khatun Haq
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | | | | | | |
Collapse
|
16
|
Lung protease/anti-protease network and modulation of mucus production and surfactant activity. Biochimie 2010; 92:1608-17. [DOI: 10.1016/j.biochi.2010.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/14/2010] [Indexed: 12/27/2022]
|
17
|
Bellemare A, Vernoux N, Morin S, Gagné SM, Bourbonnais Y. Structural and antimicrobial properties of human pre-elafin/trappin-2 and derived peptides against Pseudomonas aeruginosa. BMC Microbiol 2010; 10:253. [PMID: 20932308 PMCID: PMC2958999 DOI: 10.1186/1471-2180-10-253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Pre-elafin/trappin-2 is a human innate defense molecule initially described as a potent inhibitor of neutrophil elastase. The full-length protein as well as the N-terminal "cementoin" and C-terminal "elafin" domains were also shown to possess broad antimicrobial activity, namely against the opportunistic pathogen P. aeruginosa. The mode of action of these peptides has, however, yet to be fully elucidated. Both domains of pre-elafin/trappin-2 are polycationic, but only the structure of the elafin domain is currently known. The aim of the present study was to determine the secondary structures of the cementoin domain and to characterize the antibacterial properties of these peptides against P. aeruginosa. Results We show here that the cementoin domain adopts an α-helical conformation both by circular dichroism and nuclear magnetic resonance analyses in the presence of membrane mimetics, a characteristic shared with a large number of linear polycationic antimicrobial peptides. However, pre-elafin/trappin-2 and its domains display only weak lytic properties, as assessed by scanning electron micrography, outer and inner membrane depolarization studies with P. aeruginosa and leakage of liposome-entrapped calcein. Confocal microscopy of fluorescein-labeled pre-elafin/trappin-2 suggests that this protein possesses the ability to translocate across membranes. This correlates with the finding that pre-elafin/trappin-2 and elafin bind to DNA in vitro and attenuate the expression of some P. aeruginosa virulence factors, namely the biofilm formation and the secretion of pyoverdine. Conclusions The N-terminal cementoin domain adopts α-helical secondary structures in a membrane mimetic environment, which is common in antimicrobial peptides. However, unlike numerous linear polycationic antimicrobial peptides, membrane disruption does not appear to be the main function of either cementoin, elafin or full-length pre-elafin/trappin-2 against P. aeruginosa. Our results rather suggest that pre-elafin/trappin-2 and elafin, but not cementoin, possess the ability to modulate the expression of some P.aeruginosa virulence factors, possibly through acting on intracellular targets.
Collapse
Affiliation(s)
- Audrey Bellemare
- Département de Biochimie, Microbiologie et Bio-informatique, Institut de Biologie Intégrative et des Systèmes and Regroupement PROTEO, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
18
|
Guyot N, Bergsson G, Butler MW, Greene CM, Weldon S, Kessler E, Levine RL, O'Neill SJ, Taggart CC, McElvaney NG. Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases. Biol Chem 2010; 391:705-16. [PMID: 20370321 DOI: 10.1515/bc.2010.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Elafin is a 6-kDa innate immune protein present at several epithelial surfaces including the pulmonary epithelium. It is a canonical protease inhibitor of two neutrophil serine proteases [neutrophil elastase (NE) and proteinase 3] with the capacity to covalently bind extracellular matrix proteins by transglutamination. In addition to these properties, elafin also possesses antimicrobial and immunomodulatory activities. The aim of the present study was to investigate the effect of Pseudomonas aeruginosa proteases on elafin function. We found that P. aeruginosa PAO1-conditioned medium and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and aeruginolysin (alkaline protease), are able to cleave recombinant elafin. Pseudolysin was shown to inactivate the anti-NE activity of elafin by cleaving its protease-binding loop. Interestingly, antibacterial properties of elafin against PAO1 were found to be unaffected after pseudolysin treatment. In contrast to pseudolysin, aeruginolysin failed to inactivate the inhibitory properties of elafin against NE. Aeruginolysin cleaves elafin at the amino-terminal Lys6-Gly7 peptide bond, resulting in a decreased ability to covalently bind purified fibronectin following transglutaminase activity. In conclusion, this study provides evidence that elafin is susceptible to proteolytic cleavage at alternative sites by P. aeruginosa metalloproteinases, which can affect different biological functions of elafin.
Collapse
Affiliation(s)
- Nicolas Guyot
- Department of Medicine, Pulmonary Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yin L, Swanson B, An J, Hacker BM, Silverman GA, Dale BA, Chung WO. Differential effects of periopathogens on host protease inhibitors SLPI, elafin, SCCA1, and SCCA2. J Oral Microbiol 2010; 2. [PMID: 21523231 PMCID: PMC3084571 DOI: 10.3402/jom.v2i0.5070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/02/2010] [Accepted: 04/07/2010] [Indexed: 11/16/2022] Open
Abstract
Objective Secretory leukocyte peptidase inhibitors (SLPI), elafin, squamous cell carcinoma antigen 1 and 2 (SCCA1 and SCCA2) are specific endogenous serine protease inhibitors expressed by epithelial cells that prevent tissue damage from excessive proteolytic enzyme activity due to inflammation. To determine the effects of various periopathogens on these protease inhibitors, we utilized human gingival epithelial cells (GECs) challenged with cell-free bacteria supernatants of various periopathogens Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. Design The gene expression and secretion of SLPI, elafin, SCCA1, and SCCA2 were determined using real-time PCR and ELISA, respectively. The direct effects of periopathogens and P. gingivalis gingipain mutants on these inhibitors were examined in vitro by Western Blot. The effect on the innate immune response of GECs was measured by expression of antimicrobial peptides: human beta-defenisin-2 (hBD2) and chemokine (C-C motif) ligand 20 (CCL20). Results We found that SLPI, SCCA2, elafin, hBD2, and CCL20 gene expression levels were significantly induced (p<0.001) in response to P. gingivalis, whose virulence factors include cysteine proteases, but not in response to stimulation by other bacteria. P. gingivalis reduced the secretion of SLPI and elafin significantly in GECs, and degraded recombinant SLPI, elafin, SCCA1, and SCCA2. Differential degradation patterns of SLPI, elafin, SCCA1, and SCCA2 were observed with different bacteria as well as P. gingivalis mutants associated with the loss of specific gingipains secreted by P. gingivalis. In addition, pretreatment of GECs with SLPI, SCCA1, or SCCA2 partially blocked hBD2 and CCL20 mRNA expression in response to P. gingivalis, suggesting a protective effect. Conclusion Our results suggest that different periopathogens affect the host protease inhibitors in a different manner, suggesting host susceptibility may differ in the presence of these pathogens. The balance between cellular protease inhibitors and their degradation may be an important factor in susceptibility to periodontal infection.
Collapse
Affiliation(s)
- Lei Yin
- Department of Oral Biology, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|
21
|
Marischen L, Wesch D, Schröder JM, Wiedow O, Kabelitz D. Human gammadelta T cells produce the protease inhibitor and antimicrobial peptide elafin. Scand J Immunol 2009; 70:547-52. [PMID: 19906197 DOI: 10.1111/j.1365-3083.2009.02337.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human gammadelta T cells rapidly secrete pro-inflammatory cytokines in response to T cell receptor-dependent recognition of pyrophosphates produced by many bacteria and parasites. In further support of an important role of gammadelta T cells in the immune defence against infection, human gammadelta T cells have been shown to produce the antimicrobial peptide LL37/cathelicidin. In this study, we have investigated whether gammadelta T cells can produce additional antimicrobial peptides. To this end, we have screened human gammadelta T cell clones by RT-PCR for mRNA expression of a broad range of antimicrobial peptides. While alpha-defensins were absent and beta-defensins (HBD1) present only in rare gammadelta T cell clones, elafin mRNA was induced by supernatant of Pseudomonas aeruginosa grown under static conditions. Elafin is a protease inhibitor that also displays antimicrobial activity. Constitutive intracellular expression of elafin was demonstrated by flow cytometry and Western blot analysis. Furthermore, trappin-2 (pre-elafin) could be immunoprecipitated in cell lysates but also in the supernatant of gammadelta T cells stimulated by Ps. aeruginosa supernatant. Taken together, our studies reveal a novel effector function of gammadelta T cells which might be important for local immune defence.
Collapse
Affiliation(s)
- L Marischen
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
22
|
Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. Arch Immunol Ther Exp (Warsz) 2009; 57:345-54. [DOI: 10.1007/s00005-009-0045-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
|
23
|
Eberhard J, Pietschmann R, Falk W, Jepsen S, Dommisch H. The immune response of oral epithelial cells induced by single-species and complex naturally formed biofilms. ACTA ACUST UNITED AC 2009; 24:325-30. [DOI: 10.1111/j.1399-302x.2009.00518.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
24
|
Wilkinson TS, Dhaliwal K, Hamilton TW, Lipka AF, Farrell L, Davidson DJ, Duffin R, Morris AC, Haslett C, Govan JRW, Gregory CD, Sallenave JM, Simpson AJ. Trappin-2 promotes early clearance of Pseudomonas aeruginosa through CD14-dependent macrophage activation and neutrophil recruitment. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1338-46. [PMID: 19264904 DOI: 10.2353/ajpath.2009.080746] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microaspiration of Pseudomonas aeruginosa contributes to the pathogenesis of nosocomial pneumonia. Trappin-2 is a host defense peptide that assists with the clearance of P. aeruginosa through undefined mechanisms. A model of macrophage interactions with replicating P. aeruginosa (strain PA01) in serum-free conditions was developed, and the influence of subantimicrobial concentrations of trappin-2 was subsequently studied. PA01 that was pre-incubated with trappin-2 (at concentrations that have no direct antimicrobial effects), but not control PA01, was cleared by alveolar and bone marrow-derived macrophages. However, trappin-2-enhanced clearance of PA01 was completely abrogated by CD14- null macrophages. Fluorescence microscopy demonstrated the presence of trappin-2 on the bacterial cell surface of trappin-2-treated PA01. In a murine model of early lung infection, trappin-2-treated PA01 was cleared more efficiently than control PA01 2 hours of intratracheal instillation. Furthermore, trappin-2-treated PA01 up-regulated the murine chemokine CXCL1/KC after 2 hours with a corresponding increase in neutrophil recruitment 1 hour later. These in vivo trappin-2-treated PA01 effects were absent in CD14-deficient mice. Trappin-2 appears to opsonize P. aeruginosa for more efficient, CD14-dependent clearance by macrophages and contributes to the induction of chemokines that promote neutrophil recruitment. Trappin-2 may therefore play an important role in innate recognition and clearance of pathogens during the very earliest stages of pulmonary infection.
Collapse
Affiliation(s)
- Thomas S Wilkinson
- MRC Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guyot N, Butler MW, McNally P, Weldon S, Greene CM, Levine RL, O'Neill SJ, Taggart CC, McElvaney NG. Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis. J Biol Chem 2008; 283:32377-85. [PMID: 18799464 PMCID: PMC2583315 DOI: 10.1074/jbc.m803707200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/19/2008] [Indexed: 12/15/2022] Open
Abstract
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5-Lys-6 and Val-9-Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6-Gln-57 and Ser-10-Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.
Collapse
Affiliation(s)
- Nicolas Guyot
- Pulmonary Research Division, Department of Medicine, The Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Roghanian A, Sallenave JM. Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J Aerosol Med Pulm Drug Deliv 2008; 21:125-44. [PMID: 18518838 DOI: 10.1089/jamp.2007.0653] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteases and antiproteases have multiple important roles both in normal homeostasis and during inflammation. Antiprotease molecules may have developed in a parallel network, consisting of "alarm" and "systemic" inhibitors. Their primary function was thought until recently to mainly prevent the potential injurious effects of excess release of proteolytic enzymes, such as neutrophil elastase (NE), from inflammatory cells. However, recently, new potential roles have been ascribed to these antiproteases. We will review "canonical" and new "noncanonical" functions for these molecules, and more particularly, those pertaining to their role in innate and adaptive immunity (antibacterial activity and biasing of the adaptive immune response).
Collapse
Affiliation(s)
- Ali Roghanian
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh University Medical School, Edinburgh, United Kingdom
| | | |
Collapse
|
27
|
Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 2008; 122:261-6. [PMID: 18439663 DOI: 10.1016/j.jaci.2008.03.027] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 03/24/2008] [Accepted: 03/27/2008] [Indexed: 12/19/2022]
Abstract
Our skin is constantly challenged by microbes but is rarely infected. Cutaneous production of antimicrobial peptides (AMPs) is a primary system for protection, and expression of some AMPs further increases in response to microbial invasion. Cathelicidins are unique AMPs that protect the skin through 2 distinct pathways: (1) direct antimicrobial activity and (2) initiation of a host response resulting in cytokine release, inflammation, angiogenesis, and reepithelialization. Cathelicidin dysfunction emerges as a central factor in the pathogenesis of several cutaneous diseases, including atopic dermatitis, in which cathelicidin is suppressed; rosacea, in which cathelicidin peptides are abnormally processed to forms that induce inflammation; and psoriasis, in which cathelicidin peptide converts self-DNA to a potent stimulus in an autoinflammatory cascade. Recent work identified vitamin D3 as a major factor involved in the regulation of cathelicidin. Therapies targeting control of cathelicidin and other AMPs might provide new approaches in the management of infectious and inflammatory skin diseases.
Collapse
|
28
|
Baranger K, Zani ML, Chandenier J, Dallet-Choisy S, Moreau T. The antibacterial and antifungal properties of trappin-2 (pre-elafin) do not depend on its protease inhibitory function. FEBS J 2008; 275:2008-20. [PMID: 18341586 DOI: 10.1111/j.1742-4658.2008.06355.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trappin-2 (also known as pre-elafin) is an endogenous inhibitor of neutrophil serine proteases and is involved in the control of excess proteolysis, especially in inflammatory events, along with the structurally related secretory leucocyte proteinase inhibitor. Secretory leucocyte proteinase inhibitor has been shown to have antibacterial and antifungal properties, whereas recent data indicate that trappin-2 has antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In the present study, we tested the antibacterial properties of trappin-2 towards other respiratory pathogens. We found that trappin-2, at concentrations of 5-20 microm, has significant activity against Klebsiella pneumoniae, Haemophilus influenzae, Streptococcus pneumoniae, Branhamella catarrhalis and the pathogenic fungi Aspergillus fumigatus and Candida albicans, in addition to P. aeruginosa and S. aureus. A similar antimicrobial activity was observed with trappin-2 A62D/M63L, a trappin-2 variant that has lost its antiprotease properties, indicating that trappin-2 exerts its antibacterial effects through mechanisms independent from its intrinsic antiprotease capacity. Furthermore, the antibacterial and antifungal activities of trappin-2 were sensitive to NaCl and heparin, demonstrating that its mechanism of action is most probably dependent on its cationic nature. This enables trappin-2 to interact with the membranes of target organisms and disrupt them, as shown by our scanning electron microscopy analyses. Thus, trappin-2 not only provides an antiprotease shield, but also may play an important role in the innate defense of the human lungs and mucosae against pathogenic microorganisms.
Collapse
Affiliation(s)
- Kévin Baranger
- INSERM U618, Université François Rabelais, Tours, France
| | | | | | | | | |
Collapse
|
29
|
Eberhard J, Menzel N, Dommisch H, Winter J, Jepsen S, Mutters R. The stage of native biofilm formation determines the gene expression of human β-defensin-2, psoriasin, ribonuclease 7 and inflammatory mediators: a novel approach for stimulation of keratinocytes with in situ formed biofilms. ACTA ACUST UNITED AC 2007; 23:21-8. [DOI: 10.1111/j.1399-302x.2007.00385.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Human pre-elafin inhibits a Pseudomonas aeruginosa-secreted peptidase and prevents its proliferation in complex media. Antimicrob Agents Chemother 2007; 52:483-90. [PMID: 18025118 DOI: 10.1128/aac.00585-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a life-threatening opportunist human pathogen frequently associated with lung inflammatory diseases, namely, cystic fibrosis. Like other species, this gram-negative bacteria is increasingly drug resistant. During the past decade, intensive research efforts have been focused on the identification of natural innate defense molecules with broad antimicrobial activities, collectively known as antimicrobial peptides. Human pre-elafin, best characterized as a potent inhibitor of neutrophil elastase with anti-inflammatory properties, was also shown to possess antimicrobial activity against both gram-positive and gram-negative bacteria, including P. aeruginosa. Its mode of action was, however, not known. Using full-length pre-elafin, each domain separately, and mutated variants of pre-elafin with attenuated antipeptidase activity toward neutrophil elastase, we report here that both pre-elafin domains contribute, through distinct mechanisms, to its antibacterial activity against Pseudomonas aeruginosa. Most importantly, we demonstrate that the whey acidic protein (WAP) domain specifically inhibits a secreted peptidase with the characteristics of arginyl peptidase (protease IV). This is the first demonstration that a human WAP-motif protein inhibits a secreted peptidase to prevent bacterial growth in vitro. Since several WAP-motif proteins from various species demonstrate antimicrobial function with variable activities toward bacterial species, we suggest that this mechanism may be more common than initially anticipated.
Collapse
|
31
|
Moreau T, Baranger K, Dadé S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie 2007; 90:284-95. [PMID: 17964057 DOI: 10.1016/j.biochi.2007.09.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/07/2007] [Indexed: 12/31/2022]
Abstract
Elafin and SLPI are low-molecular weight proteins that were first identified as protease inhibitors in mucous fluids including lung secretions, where they help control excessive proteolysis due to neutrophil serine proteases (elastase, proteinase 3 and cathepsin G). Elafin and SLPI are structurally related in that both have a fold with a four-disulfide core or whey acidic protein (WAP) domain responsible for inhibiting proteases. Elafin is derived from a precursor, trappin-2 or pre-elafin, by proteolysis. Trappin-2, which is itself a protease inhibitor, has a unique N-terminal domain that enables it to become cross-linked to extracellular matrix proteins by transglutaminase(s). SLPI and elafin/trappin-2 are attractive candidates as therapeutic molecules for inhibiting neutrophil serine proteases in inflammatory lung diseases. Hence, they have become the WAP proteins most studied over the last decade. This review focuses on recent findings revealing that SLPI and elafin/trappin-2 have many biological functions as diverse as anti-bacterial, anti-fungal, anti-viral, anti-inflammatory and immuno-modulatory functions, in addition to their well-recognized role as protease inhibitors.
Collapse
Affiliation(s)
- Thierry Moreau
- INSERM U618 Protéases et Vectorisation Pulmonaires, IFR 135 Imagerie fonctionnelle, Université François Rabelais, Tours, France.
| | | | | | | | | | | |
Collapse
|
32
|
Doucet A, Bouchard D, Janelle M, Bellemare A, Gagné S, Tremblay G, Bourbonnais Y. Characterization of human pre-elafin mutants: full antipeptidase activity is essential to preserve lung tissue integrity in experimental emphysema. Biochem J 2007; 405:455-63. [PMID: 17489739 PMCID: PMC2267300 DOI: 10.1042/bj20070020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pre-elafin is a tight-binding inhibitor of neutrophil elastase and myeloblastin; two enzymes thought to contribute to tissue damage in lung emphysema. Previous studies have established that pre-elafin is also an effective anti-inflammatory molecule. However, it is not clear whether both functions are linked to the antipeptidase activity of pre-elafin. As a first step toward elucidating the structure/function relationship of this protein, we describe here the construction and characterization of pre-elafin variants with attenuated antipeptidase potential. In these mutants, the P1' methionine residue of the inhibitory loop is replaced by either a lysine (pre-elafinM25K) or a glycine (pre-elafinM25G) residue. Both mutated variants are stable and display biochemical properties undistinguishable from WT (wild-type) pre-elafin. However, compared with WT pre-elafin, their inhibitory constants are increased by one to four orders of magnitude toward neutrophil elastase, myeloblastin and pancreatic elastase, depending on the variants and enzymes tested. As suggested by molecular modelling, this attenuated inhibitory potential correlates with decreased van der Waals interactions between the variants and the enzymes S1' subsite. In elastase-induced experimental emphysema in mice, only WT pre-elafin protected against tissue destruction, as assessed by the relative airspace enlargement measured using lung histopathological sections. Pre-elafin and both mutants prevented transient neutrophil alveolitis. However, even the modestly affected pre-elafinM25K mutant, as assayed in vitro with small synthetic substrates, was a poor inhibitor of the neutrophil elastase and myeloblastin elastolytic activity measured with insoluble elastin. We therefore conclude that full antipeptidase activity of pre-elafin is essential to protect against lung tissue lesions in this experimental model.
Collapse
Affiliation(s)
- Alain Doucet
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Dominique Bouchard
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Marie France Janelle
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Audrey Bellemare
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Stéphane Gagné
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
| | - Guy M. Tremblay
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- ‡Unité de recherche, Hôpital Laval, Institut de cardiologie et de pneumologie de l'Université Laval, Quebec, Qc, Canada 61V 465
| | - Yves Bourbonnais
- *Département de biochimie et de microbiologie, Université Laval, Québec, Qc, Canada
- †Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (CREFSIP), Université Laval, Québec, Qc, Canada 61K 7P4
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Eberhard J, Drosos Z, Tiemann M, Jepsen S, Schröder JM. Immunolocalization of lactoferrin in healthy and inflamed gingival tissues. J Periodontol 2006; 77:472-8. [PMID: 16512762 DOI: 10.1902/jop.2006.050186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND It has been reported that lactoferrin prevents biofilm formation and exerts antimicrobial activity. The aim of the present study was to evaluate the cellular source of lactoferrin in healthy and inflamed gingiva. METHODS Lactoferrin synthesis was examined in relation to disease manifestation in biopsies of the marginal gingiva by immunohistochemistry. The expression of lactoferrin in cell cultures was studied by immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Healthy gingiva demonstrated no immunoreactivity to lactoferrin in epithelial and connective tissue cells. In inflamed specimens, lactoferrin staining was related to inflammatory cells. These results were confirmed by cell cultures of keratinocytes that did not show any immunoreactivity against lactoferrin. No mRNA message for lactoferrin was detected by RT-PCR in keratinocytes. CONCLUSIONS These data provide evidence that lactoferrin is not synthesized in healthy gingival tissues. Therefore, elevated lactoferrin levels in the crevicular fluid of inflamed tissues originate from invading cells of the inflammatory reaction.
Collapse
Affiliation(s)
- Jörg Eberhard
- Department of Operative Dentistry and Periodontology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.
Collapse
Affiliation(s)
- Steven E Williams
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
35
|
Roghanian A, Williams SE, Sheldrake TA, Brown TI, Oberheim K, Xing Z, Howie SEM, Sallenave JM. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity. Am J Respir Cell Mol Biol 2006; 34:634-42. [PMID: 16424380 DOI: 10.1165/rcmb.2005-0405oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies.
Collapse
Affiliation(s)
- Ali Roghanian
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh University, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The skin actively contributes to host defense by mounting an innate immune response that includes the production of antimicrobial peptides. These peptides, which include but are not limited to the cathelicidin and defensin gene families, provide rapid, broad-spectrum defense against infection by acting as natural antibiotics and by participating in host cell processes involved in immune defense. This review discusses the biology and clinical relevance of antimicrobial peptides expressed in the skin. The importance of the epithelial contribution to host immunity is evident, as alterations in antimicrobial peptide expression have been associated with various pathologic processes.
Collapse
Affiliation(s)
- Marissa H Braff
- Department of Medicine, University of California San Diego, and VA San Diego Healthcare System, San Diego, California, USA
| | | | | | | |
Collapse
|
37
|
McMichael JW, Maxwell AI, Hayashi K, Taylor K, Wallace WA, Govan JR, Dorin JR, Sallenave JM. Antimicrobial activity of murine lung cells against Staphylococcus aureus is increased in vitro and in vivo after elafin gene transfer. Infect Immun 2005; 73:3609-17. [PMID: 15908390 PMCID: PMC1111862 DOI: 10.1128/iai.73.6.3609-3617.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a pathogen often found in pneumonia and sepsis. In the context of the resistance of this organism to conventional antibiotics, an understanding of the regulation of natural endogenous antimicrobial molecules is of paramount importance. Previous studies have shown that both human and mouse airways express a variety of these molecules, including defensins, cathelicidins, and the four-disulfide core protein secretory leukocyte protease inhibitor. We demonstrate here by culturing mouse tracheal epithelial cells at an air-liquid interface that, despite the production of Defb1, Defb14, and Defr1 in this system, these cells are unable to clear S. aureus when exposed to this respiratory pathogen. Using an adenovirus (Ad)-mediated gene transfer strategy, we show that overexpression of elafin, an anti-elastase/antimicrobial molecule (also a member of the four-disulfide core protein family), dramatically improves the clearance of S. aureus. In addition, we also demonstrate that this overexpression is efficient in vivo and that intratracheal instillation of Ad-elafin significantly reduced the lung bacterial load and demonstrates concomitant anti-inflammatory activity by reducing neutrophil numbers and markers of lung inflammation, such as bronchoalveolar lavage levels of tumor necrosis factor and myeloperoxidase. These findings show that an increased antimicrobial activity phenotype is provided by the elafin molecule and have implications for its use in S. aureus-associated local and systemic infections.
Collapse
Affiliation(s)
- J W McMichael
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9AG, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McMichael JW, Roghanian A, Jiang L, Ramage R, Sallenave JM. The antimicrobial antiproteinase elafin binds to lipopolysaccharide and modulates macrophage responses. Am J Respir Cell Mol Biol 2005; 32:443-52. [PMID: 15668324 DOI: 10.1165/rcmb.2004-0250oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lipopolysaccharides (LPS) of the outer membrane of Gram-negative bacteria represent a primary target for innate immune responses. We demonstrate here that the antimicrobial/anti-neutrophil elastase full-length elafin (FL-EL) is able to bind both smooth and rough forms of LPS. The N-terminus was shown to bind both forms of LPS more avidly. We demonstrate that the lipid A core-binding proteins polymyxin B (PB) and LPS-binding protein (LBP) compete with elafin for binding, and that LBP is able to displace prebound elafin from LPS. When PB, FL-EL, N-EL, and C-EL were pre-incubated with LPS before addition to immobilized LBP, PB was the most potent inhibitor of LPS transfer to LBP. These data prompted us to examine the biological consequences of elafin binding to LPS, using tumor necrosis factor (TNF)-alpha release by murine macrophages. In serum-containing conditions, N-EL had no effect, whereas both C-EL and FL-EL inhibited TNF-alpha production. In serum-free conditions, however, all moieties had a stimulatory activity on TNF-alpha release, with C-EL being the most potent at the highest concentration. The differential biological activity of elafin in different conditions suggests a role for this molecule in either LPS detoxification or activation of innate immune responses, depending on the external cellular environment.
Collapse
Affiliation(s)
- Jonathan W McMichael
- Rayne Laboratory, MRC Centre for Inflammation Research, Edinburgh University Medical School, Teviot Place, Edinburgh EH8 9AG, Scotland, UK
| | | | | | | | | |
Collapse
|
39
|
Harder J, Schröder JM. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J Leukoc Biol 2005; 77:476-86. [PMID: 15629886 DOI: 10.1189/jlb.0704409] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with psoriasis, a chronic, hyperproliferative and noninfectious skin disease, suffer surprisingly fewer cutaneous infections than would be expected. This observation led us to the hypothesis that a local "chemical shield" in the form of antimicrobial proteins provides psoriatic skin with resistance against infection. We subsequently began a systematic analysis of in vitro antimicrobially active proteins in psoriatic-scale extracts. A biochemical approach with rigorous purification and characterization combined with antimicrobial testing identified a number of mostly new human antibiotic peptides and proteins. In this review, we will focus on the most prominent antimicrobial proteins in psoriatic-scale extracts, which we identified as the S100-protein psoriasin, human beta-defensin 2 (hBD-2), RNase 7, lysozyme, and human neutrophil defensin 1-3. Apart from these cutaneous, antimicrobial proteins, only a few others, including hBD-3, have been characterized. A great number of minor antimicrobial proteins await further structural characterization.
Collapse
Affiliation(s)
- Jürgen Harder
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstr. 7, D-24105 Kiel, Germany.
| | | |
Collapse
|