1
|
Mokmued K, Obeng G, Kawamoto E, Caidengbate S, Leangpanich S, Akama Y, Gaowa A, Shimaoka M, Park EJ. miR-200c-3p regulates α4 integrin-mediated T cell adhesion and migration. Exp Cell Res 2024; 440:114146. [PMID: 38936759 DOI: 10.1016/j.yexcr.2024.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
A microRNA miR-200c-3p is a regulator of epithelial-mesenchymal transition to control adhesion and migration of epithelial and mesenchymal cells. However, little is known about whether miR-200c-3p affects lymphocyte adhesion and migration mediated by integrins. Using TK-1 (a T lymphoblast cell) as a model of T cell, here we show that repressed expression of miR-200c-3p upregulated α4 integrin-mediated adhesion to and migration across mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Conversely, overexpression of miR-200c-3p downregulated α4 integrin-mediated adhesion and migration. Unlike in epithelial cells, miR-200c-3p did not target talin, a conformation activator of integrin, but, targeted E26-transformation-specific sequence 1 (ETS1), a transcriptional activator of α4 integrin, in T cells. Treatment of the miR-200c-3p-low-expressing TK-1 cells that possessed elevated α4 integrin with ETS1 small interfering RNA (siRNA) resulted in the reversion of the α4 integrin expression, supporting that ETS1 is a target of miR-200c-3p. A potential proinflammatory immune-modulator retinoic acid (RA) treatment of TK-1 cells elicited a significant reduction of miR-200c-3p and simultaneously a marked increase in ETS1 and α4 integrin expression. An anti-inflammatory cytokine TGF-β1 treatment elevated miR-200c-3p, thereby downregulating ETS1 and α4 integrin expression. These results suggest that miR-200c-3p is an important regulator of α4 integrin expression and functions and may be controlled by RA and TGF-β1 in an opposite way. Overexpression of miR-200c-3p could be a novel therapeutic option for treatment of gut inflammation through suppressing α4 integrin-mediated T cell migration.
Collapse
Affiliation(s)
- Khwanchanok Mokmued
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Gideon Obeng
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Siqingaowa Caidengbate
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Supasuta Leangpanich
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
2
|
Komatsu K, Matsuura T, Suzumura T, Ogawa T. Genome-wide transcriptional responses of osteoblasts to different titanium surface topographies. Mater Today Bio 2023; 23:100852. [PMID: 38024842 PMCID: PMC10663851 DOI: 10.1016/j.mtbio.2023.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
This is the first genome-wide transcriptional profiling study using RNA-sequencing to investigate osteoblast responses to different titanium surface topographies, specifically between machined, smooth and acid-etched, microrough surfaces. Rat femoral osteoblasts were cultured on machine-smooth and acid-etched microrough titanium disks. The culture system was validated through a series of assays confirming reduced osteoblast attachment, slower proliferation, and faster differentiation on microrough surfaces. RNA-sequencing analysis of osteoblasts at an early stage of culture revealed that gene expression was highly correlated (r = 0.975) between the two topographies, but 1.38 % genes were upregulated and 0.37 % were downregulated on microrough surfaces. Upregulated transcripts were enriched for immune system, plasma membrane, response to external stimulus, and positive regulation to stimulus processes. Structural mapping confirmed microrough surface-promoted gene sharing and networking in signaling pathways and immune system/responses. Target-specific pathway analysis revealed that Rho family G-protein signaling pathways and actin genes, responsible for the formation of stress fibers, cytoplasmic projections, and focal adhesion, were upregulated on microrough surfaces without upregulation of core genes triggered by cell-to-cell interactions. Furthermore, disulfide-linked or -targeted extracellular matrix (ECM) or membranous glycoproteins such as laminin, fibronectin, CD36, and thrombospondin were highly expressed on microrough surfaces. Finally, proliferating cell nuclear antigen (PCNA) and cyclin D1, whose co-expression reduces cell proliferation, were upregulated on microrough surfaces. Thus, osteoblasts on microrough surfaces were characterized by upregulation of genes related to a wide range of functions associated with the immune system, stress/stimulus responses, proliferation control, skeletal and cytoplasmic signaling, ECM-integrin receptor interactions, and ECM-membranous glycoprotein interactions, furthering our knowledge of the surface-dependent expression of osteoblastic biomarkers on titanium.
Collapse
Affiliation(s)
- Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology and the Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Gottlieb A, Dev S, DeVine L, Gabrielson KL, Cole RN, Hamilton JP, Lutsenko S. Hepatic Steatosis in the Mouse Model of Wilson Disease Coincides with a Muted Inflammatory Response. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:146-159. [PMID: 34627751 PMCID: PMC8759043 DOI: 10.1016/j.ajpath.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
Wilson disease (WND) is caused by inactivation of the copper transporter ATP7B and copper accumulation in tissues. WND presentations vary from liver steatosis to inflammation, fibrosis, and liver failure. Diets influence the liver phenotype in WND, but findings are inconsistent. To better understand the impact of excess calories on liver phenotype in WND, the study compared C57BL/6J Atp7b-/- and C57BL/6J mice fed for 12 weeks with Western diet or normal chow. Serum and liver metabolites, body fat content, liver histology, hepatic proteome, and copper content were analyzed. Wild-type and Atp7b-/- livers showed striking similarities in their responses to Western diet, most notably down-regulation of cholesterol biosynthesis, altered nuclear receptor signaling, and changes in cytoskeleton. Western diet increased body fat content and induced liver steatosis in males and females regardless of genotype; however, the effects were less pronounced in Atp7b-/- mice compared with those in the wild type mice. Although hepatic copper remained elevated in Atp7b-/- mice, liver inflammation was reduced. The diet diminished signaling by Rho GTPases, integrin, IL8, and reversed changes in cell cycle machinery and cytoskeleton. Overall, high calories decreased inflammatory response in favor of steatosis without improving markers of cell viability. Similar changes of cellular pathways during steatosis development in wild-type and Atp7b-/- mice explain histologic overlap between WND and non-alcoholic fatty liver disease despite opposite copper changes in these disorders.
Collapse
Affiliation(s)
- Aline Gottlieb
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Som Dev
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren DeVine
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert N Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James P Hamilton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
4
|
Cleves AE, Johnson SR, Jain AN. Synergy and Complementarity between Focused Machine Learning and Physics-Based Simulation in Affinity Prediction. J Chem Inf Model 2021; 61:5948-5966. [PMID: 34890185 DOI: 10.1021/acs.jcim.1c01382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present results on the extent to which physics-based simulation (exemplified by FEP+) and focused machine learning (exemplified by QuanSA) are complementary for ligand affinity prediction. For both methods, predictions of activity for LFA-1 inhibitors from a medicinal chemistry lead optimization project were accurate within the applicable domain of each approach. A hybrid model that combined predictions by both approaches by simple averaging performed better than either method, with respect to both ranking and absolute pKi values. Two publicly available FEP+ benchmarks, covering 16 diverse biological targets, were used to test the generality of the synergy. By identifying training data specifically focused on relevant ligands, accurate QuanSA models were derived using ligand activity data known at the time of the original series publications. Results across the 16 benchmark targets demonstrated significant improvements both for ranking and for absolute pKi values using hybrid predictions that combined the FEP+ and QuanSA predicted affinity values. The results argue for a combined approach for affinity prediction that makes use of physics-driven methods as well as those driven by machine learning, each applied carefully on appropriate compounds, with hybrid prediction strategies being employed where possible.
Collapse
Affiliation(s)
- Ann E Cleves
- Applied Science, BioPharmics LLC, Santa Rosa, California 95404, United States
| | - Stephen R Johnson
- Computer-Assisted Drug-Design, Bristol-Myers Squibb Company, Princeton, New Jersey 08648, United States
| | - Ajay N Jain
- Research and Development, BioPharmics LLC, Santa Rosa, California 95404, United States
| |
Collapse
|
5
|
Zuchtriegel G, Uhl B, Pick R, Ramsauer M, Dominik J, Mittmann LA, Canis M, Kanse S, Sperandio M, Krombach F, Reichel CA. Vitronectin stabilizes intravascular adhesion of neutrophils by coordinating β2 integrin clustering. Haematologica 2021; 106:2641-2653. [PMID: 32703799 PMCID: PMC8485676 DOI: 10.3324/haematol.2019.226241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 11/09/2022] Open
Abstract
The recruitment of neutrophils from the microvasculature to the site of injury or infection represents a key event in the inflammatory response. Vitronectin (VN) is a multifunctional macromolecule abundantly present in blood and extracellular matrix. The role of this glycoprotein in the extravasation process of circulating neutrophils remains elusive. Employing advanced in vivo/ex vivo imaging techniques in different mouse models as well as in vitro methods, we uncovered a previously unrecognized function of VN in the transition of dynamic to static intravascular interactions of neutrophils with microvascular endothelial cells. These distinct properties of VN require the heteromerization of this glycoprotein with plasminogen activator inhibitor-1 (PAI- 1) on the activated venular endothelium and subsequent interactions of this protein complex with the scavenger receptor low-density lipoprotein receptor-related protein-1 on intravascularly adhering neutrophils. This induces p38 mitogen-activated protein kinases-dependent intracellular signaling events which, in turn, regulates the proper clustering of the b2 integrin lymphocyte function associated antigen-1 on the surface of these immune cells. As a consequence of this molecular interplay, neutrophils become able to stabilize their adhesion to the microvascular endothelium and, subsequently, to extravasate to the perivascular tissue. Hence, endothelial-bound VN-PAI-1 heteromers stabilize intravascular adhesion of neutrophils by coordinating b2 integrin clustering on the surface of these immune cells, thereby effectively controlling neutrophil trafficking to inflamed tissue. Targeting this protein complex might be beneficial for the prevention and treatment of inflammatory pathologies.
Collapse
Affiliation(s)
- Gabriele Zuchtriegel
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität München, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität München, Germany
| | - Robert Pick
- Dept. of Otorhinolaryngology, Klinikum der Universität Munchen, Munich, Germany
| | - Michaela Ramsauer
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität Munchen, Germany
| | - Julian Dominik
- Dept. of Otorhinolaryngology, Klinikum der Universität Munchen, Munich, Germany
| | - Laura A Mittmann
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität Munchen, Germany
| | | | - Sandip Kanse
- Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Markus Sperandio
- Dept. of Otorhinolaryngology, Klinikum der Universität Munchen, Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine and Klinikum der Universität Munchen, Germany
| |
Collapse
|
6
|
RNA-seq reveals correlations between cytoskeleton-related genes and the osteogenic activity of mesenchymal stem cells on strontium loaded titania nanotube arrays. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111939. [PMID: 33641927 DOI: 10.1016/j.msec.2021.111939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 01/31/2023]
Abstract
Strontium loaded titania nanotube arrays (NTSr), as well as titania nanotube arrays (NT), have been regarded as effective coatings to promote bone regeneration on titanium implants, but an understanding of the full extent of early processes affected by such surface modifications is absent. To address this limitation, we performed RNA sequencing (RNA-seq) of Sprague-Dawley rat bone marrow mesenchymal stem cells (rBMMSCs) cultured on unmodified titanium sheets (Con), NT and NTSr specimens. By pairwise comparisons we found that NT and NTSr shared a majority of differentially expressed genes. The Gene Ontology (GO) analysis revealed that NT and NTSr up-regulated a bunch of genes that are annotated to the cytoskeleton. The results were supported by immunofluorescent, transmission electron microscopy (TEM) and western blotting assays. By inhibiting the cytoskeleton through pharmacological agents, the activities of alkaline phosphatase (ALP) on NT and NTSr were also suppressed. Informed by these results, we concluded that NT and NTSr specimens reorganized the cytoskeleton of cultured cells that may play a crucial role in osteogenic lineage commitment.
Collapse
|
7
|
New Pieces in the Puzzle of uPAR Role in Cell Migration Mechanisms. Cells 2020; 9:cells9122531. [PMID: 33255171 PMCID: PMC7761155 DOI: 10.3390/cells9122531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
The urokinase (uPA) receptor (uPAR) plays a key role in cell migration. We previously showed that uPAR-negative HEK-293 cells efficiently migrate toward serum but, after uPAR ectopic expression, migrate only in a uPAR-dependent manner. In fact, migration of uPAR-transfected HEK-293 (uPAR-293) cells is impaired by anti-uPAR antibodies, without recovery of the uPAR-independent migration mechanisms formerly active. Prostate carcinoma PC3 cells, which express high endogenous uPAR levels, migrated only through a uPAR-dependent mechanism; in fact, the silencing of uPAR expression inhibited their migration. We hypothesize a crucial role of the uPAR glycosyl-phosphatidyl-inositol (GPI) tail, which promotes uPAR partitioning to lipid rafts, in uPAR-controlled cell migration. Here, we show that removal of the uPAR GPI-tail, or lipid rafts disruption by methyl-beta-cyclodextrin impairs migration of PC3 cells, incapable of uPAR-independent migration, whereas it restores uPAR-independent migration in uPAR-293 cells. We then show that, in PC3 cells, both uPAR signaling partners, β1 integrins and receptors for formylated peptides (FPRs), partly associate with lipid rafts. Inhibition of their interaction with uPAR impairs this association and impairs cell migration. Interestingly, blocking uPAR association with FPRs also impairs β1 integrin partitioning to lipid rafts, whereas blocking its association with β1 integrins has no effect on FPRs partitioning. On these bases, we propose that uPAR controls cell migration by connecting β1 integrins and FPRs and, through its GPI tail, by driving them into lipid rafts, thus promoting pro-migratory signals. uPAR-mediated partitioning of integrins to lipid rafts is strictly dependent on uPAR association with FPRs.
Collapse
|
8
|
Grosche L, Mühl-Zürbes P, Ciblis B, Krawczyk A, Kuhnt C, Kamm L, Steinkasserer A, Heilingloh CS. Herpes Simplex Virus Type-2 Paralyzes the Function of Monocyte-Derived Dendritic Cells. Viruses 2020; 12:E112. [PMID: 31963276 PMCID: PMC7019625 DOI: 10.3390/v12010112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex viruses not only infect a variety of different cell types, including dendritic cells (DCs), but also modulate important cellular functions in benefit of the virus. Given the relevance of directed immune cell migration during the initiation of potent antiviral immune responses, interference with DC migration constitutes a sophisticated strategy to hamper antiviral immunity. Notably, recent reports revealed that HSV-1 significantly inhibits DC migration in vitro. Thus, we aimed to investigate whether HSV-2 also modulates distinct hallmarks of DC biology. Here, we demonstrate that HSV-2 negatively interferes with chemokine-dependent in vitro migration capacity of mature DCs (mDCs). Interestingly, rather than mediating the reduction of the cognate chemokine receptor expression early during infection, HSV-2 rapidly induces β2 integrin (LFA-1)-mediated mDC adhesion and thereby blocks mDC migration. Mechanistically, HSV-2 triggers the proteasomal degradation of the negative regulator of β2 integrin activity, CYTIP, which causes the constitutive activation of LFA-1 and thus mDC adhesion. In conclusion, our data extend and strengthen recent findings reporting the reduction of mDC migration in the context of a herpesviral infection. We thus hypothesize that hampering antigen delivery to secondary lymphoid organs by inhibition of mDC migration is an evolutionary conserved strategy among distinct members of Herpesviridae.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Barbara Ciblis
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Christine Kuhnt
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Lisa Kamm
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
| | - Christiane Silke Heilingloh
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
9
|
Chen Q, Chen Y, Sun Y, He W, Han X, Lu E, Sha X. Leukocyte-mimicking Pluronic-lipid nanovesicle hybrids inhibit the growth and metastasis of breast cancer. NANOSCALE 2019; 11:5377-5394. [PMID: 30849160 DOI: 10.1039/c8nr08936a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Breast cancer is a severe threat to the health of women, and the metastasis of tumor cells leads to high mortality in female patients. Evidence shows that leukocytes are recruited by breast tumors through adhesion to inflammatory endothelial cells as well as tumor cells. Moreover, it is known that Pluronic P123 is effective in the reduction of matrix metalloproteinases (MMPs), which play a key role in the degradation of the extracellular matrix (ECM), therefore helping tumor cells to escape from the primary site. Inspired by these mechanisms, we established a leukocyte-mimicking Pluronic-lipid nanovesicle hybrid (LPL) through integrating the membrane proteins extracted from leukocytes with membrane-like vesicles, with Pluronic P123 hybridized in the lipid bilayer, while paclitaxel (PTX) was selected as the model drug. The hybrid vesicles were perfectly incorporated with the leukocyte membrane proteins, and no disruption to the lipid membrane was caused by P123, with the bio-targeting ability of leukocytes and the MMP-9-downregulation effect of P123 fully preserved in LPL. LPL exhibited enhanced cellular uptake and anti-metastasis efficacy in in vitro assays, while significant tumor targeting capabilities were also found through biodistribution assays. Moreover, the in vivo therapeutic effects of PTX-loaded LPL (PTX-LPL) were observed, with an 80.84% inhibition rate of tumor growth and a 10.62% metastatic rate of tumor foci in lung tissue. Furthermore, the amounts of MMP-9 and neutrophils in the tumor as well as in the lung were greatly reduced with PTX-LPL. In summary, LPL may have potential applications in metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Qinyue Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim HE, Kim DH, Chung SH, Bae CW, Choi YS. Leukocyte Adhesion Deficiency Associated with Neonatal Septic Hip in a Late Preterm Infant. NEONATAL MEDICINE 2018. [DOI: 10.5385/nm.2018.25.4.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
11
|
López-Mejías R, Castañeda S, Genre F, Remuzgo-Martínez S, Carmona FD, Llorca J, Blanco R, Martín J, González-Gay MA. Genetics of immunoglobulin-A vasculitis (Henoch-Schönlein purpura): An updated review. Autoimmun Rev 2018; 17:301-315. [DOI: 10.1016/j.autrev.2017.11.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
|
12
|
Grosche L, Draßner C, Mühl-Zürbes P, Kamm L, Le-Trilling VTK, Trilling M, Steinkasserer A, Heilingloh CS. Human Cytomegalovirus-Induced Degradation of CYTIP Modulates Dendritic Cell Adhesion and Migration. Front Immunol 2017; 8:461. [PMID: 28484459 PMCID: PMC5399032 DOI: 10.3389/fimmu.2017.00461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022] Open
Abstract
As potent antigen-presenting cells, dendritic cells (DCs) are essential for the initiation of effective antiviral immune responses. Viruses and especially herpesviruses, which are able to establish lifelong persistence, exploit several immune evasion mechanisms targeting DC biology. Our group has previously shown that the α-herpesvirus herpes simplex virus type 1 inhibits mature DC (mDC) migration by inducing adhesion via degrading the cellular protein CYTIP (cytohesin-1 interacting protein), an important negative regulator of β2-integrin activity. In the present study, we extended our analysis to the β-herpesvirus human cytomegalovirus (HCMV), to investigate whether other herpesviridae also induce such modulations. Indeed, HCMV impairs mDC transwell migration capability following a CCL19-chemokine gradient, despite equivalent expression levels of the cognate chemokine receptor CCR7 at the corresponding time points post-infection. Remarkably, HCMV infection potently induced β2-integrin activity on mDCs. Furthermore, directly HCMV-infected mDCs, exhibiting viral gene expression, strongly adhere to fibronectin and ICAM-1, in contrast to mDCs lacking infection or viral gene expression. Interestingly, HCMV-positive mDCs display a proteasome-dependent degradation of CYTIP. Contrasting the migration toward CCL19, elevated expression levels of the chemokine receptor CXCR4 in HCMV-infected mDCs were associated with functional CXCL12-chemotaxis under the herein used conditions. In summary, our results show that HCMV shapes mDC adhesion to compromise migration toward CCL19, but retaining CXCL12 responsiveness. Thus, we hypothesize that a preferred migration pattern toward the bone marrow, but not to secondary lymphoid organs, could ultimately cause a failure in the induction of potent antiviral immune responses.
Collapse
Affiliation(s)
- Linda Grosche
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | - Christina Draßner
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | - Petra Mühl-Zürbes
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | - Lisa Kamm
- Department of Immunomodulation, University Hospital Erlangen, Erlangen, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, Essen, Germany
| | | | | |
Collapse
|
13
|
Côte M, Fos C, Canonigo-Balancio AJ, Ley K, Bécart S, Altman A. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1. J Cell Sci 2015; 128:4341-52. [PMID: 26483383 DOI: 10.1242/jcs.172742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023] Open
Abstract
SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4(+) T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6(-/-)) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling.
Collapse
Affiliation(s)
- Marjorie Côte
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Camille Fos
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Ann J Canonigo-Balancio
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Jiang S, Niu S, Zhao ZH, Li ZJ, Li Q. Synthesis of a series of novel heteroglycoclusters and homoglycoclusters and the study of their anti-adhesion activities. Carbohydr Res 2015. [PMID: 26226085 DOI: 10.1016/j.carres.2015.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new series of mixed-type heteroglycoclusters containing mannose and lactose were synthesized. In the synthesis of rigid scaffold of heteroglycocluster, we found that trans-isomer could be prepared stereoselectively by means of Grubbs olefin cross-metathesis reactions. Moreover, sequential acylation using cyclic anhydride as scaffold could give cis-isomer. These two methods may provide complementarity of stereochemistry in heteroglycocluster assembling. The anti-adhesion activities of these compounds were assessed by Surface Plasmon Resonance (SPR) and static state cell-based adhesion assay. These results indicated that the rigid scaffold might not affect the anti-adhesion activities.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Shan Niu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road, Haidian District, Beijing 100191, PR China
| | - Zhi-Hui Zhao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Wenyuan Road, Qixia District, Nanjing 210046, PR China
| | - Zhong-Jun Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road, Haidian District, Beijing 100191, PR China.
| | - Qing Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xueyuan Road, Haidian District, Beijing 100191, PR China.
| |
Collapse
|
15
|
The nanoscale organization of signaling domains at the plasma membrane. CURRENT TOPICS IN MEMBRANES 2015; 75:125-65. [PMID: 26015282 DOI: 10.1016/bs.ctm.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter, we present an overview of the role of the nanoscale organization of signaling domains in regulating key cellular processes. In particular, we illustrate the importance of protein and lipid nanodomains as triggers and mediators of cell signaling. As particular examples, we summarize the state of the art of understanding the role of nanodomains in the mounting of an immune response, cellular adhesion, intercellular communication, and cell proliferation. Thus, this chapter underlines the essential role the nanoscale organization of key signaling proteins and lipid domains. We will also see how nanodomains play an important role in the lifecycle of many pathogens relevant to human disease and therefore illustrate how these structures may become future therapeutic targets.
Collapse
|
16
|
Single cell adhesion assay using computer controlled micropipette. PLoS One 2014; 9:e111450. [PMID: 25343359 PMCID: PMC4208850 DOI: 10.1371/journal.pone.0111450] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/04/2014] [Indexed: 01/20/2023] Open
Abstract
Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes.
Collapse
|
17
|
Hartmann N, Giese NA, Giese T, Poschke I, Offringa R, Werner J, Ryschich E. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin Cancer Res 2014; 20:3422-33. [PMID: 24763614 DOI: 10.1158/1078-0432.ccr-13-2972] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive collagen-rich stroma. T cells that infiltrate pancreatic cancers frequently become trapped in the stroma and do not contact tumor cells. Here, we aimed to analyze how chemokines and extracellular matrix (ECM) collagen interact in mediating T-cell infiltration in PDAC. EXPERIMENTAL DESIGN T-cell distribution and ECM structure within tumors were analyzed. Chemokine concentrations in human PDAC were compared with the levels of immune cell infiltration. We assessed the influences of selected chemokines and collagen on directed and random T-cell movement using in vitro migration systems. RESULTS PDAC overproduced several T-cell-active chemokines, but their levels were not correlated with intratumoral T-cell infiltration. In the absence of collagen, directed migration of activated T cells was induced by chemokines. Interestingly, collagen itself promoted high migratory activity of T cells, but completely abolished chemokine-guided movement. This effect was not altered by a β1-integrin blocking antibody. Activated T cells actively migrated in low-density collagen matrices, but migration was inhibited in dense collagen. Accordingly, T cells were heterogeneously distributed in the pancreatic cancer stroma, with the majority residing in areas of low-density collagen far from tumor clusters. CONCLUSION The excessive desmoplasia in PDAC promotes T-cell migration by contact guidance, which abrogates tumor cell-directed movement. Furthermore, dense collagen networks represent a physical barrier, additionally rearranging T-cell distribution to favor tumor stroma. These mechanisms are mainly responsible for intrastromal T-cell trapping in pancreatic cancer and may hinder the development of T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Isabel Poschke
- Department of Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Rienk Offringa
- Department of Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Jens Werner
- Authors' Affiliations: Departments of General Surgery and
| | | |
Collapse
|
18
|
Xu T, Liu W, Luo J, Li C, Ba X, Ampah KK, Wang X, Jiang Y, Zeng X. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1. PLoS One 2013; 8:e81807. [PMID: 24312591 PMCID: PMC3849276 DOI: 10.1371/journal.pone.0081807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD), we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation) to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.
Collapse
Affiliation(s)
- Tingshuang Xu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Wenai Liu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Jixian Luo
- Department of Bioscience, Shanxi University, Taiyuan, China
| | - Chunfeng Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xueqing Ba
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Khamal Kwesi Ampah
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Teachers College, Changchun, China
- * E-mail: (XGW); (XLZ)
| | - Yong Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
- * E-mail: (XGW); (XLZ)
| |
Collapse
|
19
|
Li Q, Yan TT, Niu S, Zhao YT, Meng XB, Zhao ZH, Li ZJ. Synthesis of a series of multivalent homo-, and heteroglycosides and their anti-adhesion activities. Carbohydr Res 2013; 379:78-94. [DOI: 10.1016/j.carres.2013.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/25/2022]
|
20
|
The role of the tumor endothelium in leukocyte recruitment in pancreatic cancer. Surgery 2012; 152:S89-94. [DOI: 10.1016/j.surg.2012.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/13/2022]
|
21
|
Castor MGM, Pinho V, Teixeira MM. The role of chemokines in mediating graft versus host disease: opportunities for novel therapeutics. Front Pharmacol 2012; 3:23. [PMID: 22375119 PMCID: PMC3285883 DOI: 10.3389/fphar.2012.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
Bone marrow transplantation (BMT) is the current therapy of choice for several malignancies and severe autoimmune diseases. Graft versus host disease (GVHD) is the major complication associated with BMT. T lymphocytes and other leukocytes migrate into target organs during GVHD, become activated and mediate tissue damage. Chemokines are well known inducers of leukocyte trafficking and activation and contribute to the pathogenesis of GVHD. Here, we review the major animal models used to study GVHD and the role of chemokines in mediating tissue damage in these models. The role of these molecules in promoting potential beneficial effects of the graft, especially graft versus leukemia, is also discussed. Finally, the various pharmacological strategies to block the chemokine system or downstream signaling events in the context of GVHD are discussed.
Collapse
Affiliation(s)
- Marina G M Castor
- Immunopharmacology, Department of Immunology and Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | |
Collapse
|
22
|
Euphol prevents experimental autoimmune encephalomyelitis in mice: Evidence for the underlying mechanisms. Biochem Pharmacol 2012; 83:531-42. [DOI: 10.1016/j.bcp.2011.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023]
|
23
|
Abstract
Integrins play critical adhesion and signaling roles during development, wound healing, immunity, and cancer. Central to their function is a unique ability to dynamically modulate their adhesiveness and signaling properties through changes in conformation, both homo- and heterotypic protein-protein interactions and cellular distribution. Genetic, biochemical and structural studies have been instrumental in uncovering overall functions, describing ligand and regulatory protein interactions and elucidating the molecular architecture of integrins. However, such approaches alone are inadequate to describe how dynamic integrin behaviors are orchestrated in intact cells. To fill this void, a wide array of distinct light microscopy (largely fluorescence-based) imaging approaches have been developed and employed. Various microscopy technologies, including wide-field, optical sectioning (laser-scanning confocal, spinning-disk confocal, and multiphoton), TIRF and range of novel "Super-Resolution" techniques have been used in combination with diverse imaging modalities (such as IRM, FRET, FRAP, CALI, and fluorescence speckle imaging) to address distinct aspects of integrin function and regulation. This chapter provides an overview of these imaging approaches and how they have advanced our understanding of integrins.
Collapse
Affiliation(s)
- Christopher V Carman
- Center for Vascular Biology Research, Division of Molecular and Vascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Lee SW, Lim JH, Kim MS, Jeong JH, Song GY, Lee WS, Rho MC. Phenolic compounds isolated from Zingiber officinale roots inhibit cell adhesion. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.03.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Phongpradist R, Chittasupho C, Okonogi S, Siahaan T, Anuchapreeda S, Ampasavate C, Berkland C. LFA-1 on leukemic cells as a target for therapy or drug delivery. Curr Pharm Des 2011; 16:2321-30. [PMID: 20618153 DOI: 10.2174/138161210791920450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/31/2010] [Indexed: 01/01/2023]
Abstract
Leukemia therapeutics are aiming for improved efficacy by targeting molecular markers differentially expressed on cancerous cells. Lymphocyte function-associated antigen-1 (LFA-1) expression on various types of leukemia has been well studied. Here, the role and expression of LFA-1 on leukemic cells and the possibility of using this integrin as a target for drug delivery is reviewed. To support this rationale, experimental results were also included where cIBR, a cyclic peptide derived from a binding site of LFA-1, was conjugated to the surface of polymeric nanoparticles and used as a targeting ligand. These studies revealed a correlation of LFA-1 expression level on leukemic cell lines and binding and internalization of cIBR-NPs suggesting a differential binding and internalization of cIBR-NPs to leukemic cells overexpressing LFA-1. Nanoparticles conjugated with a cyclic peptide against an accessible molecular marker of disease hold promise as a selective drug delivery system for leukemia treatment.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | |
Collapse
|
26
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Dennis J, Meehan DT, Delimont D, Zallocchi M, Perry GA, O'Brien S, Tu H, Pihlajaniemi T, Cosgrove D. Collagen XIII induced in vascular endothelium mediates alpha1beta1 integrin-dependent transmigration of monocytes in renal fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2527-40. [PMID: 20864678 DOI: 10.2353/ajpath.2010.100017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alport syndrome is a common hereditary basement membrane disorder caused by mutations in the collagen IV α3, α4, or α5 genes that results in progressive glomerular and interstitial renal disease. Interstitial monocytes that accumulate in the renal cortex from Alport mice are immunopositive for integrin α1β1, while only a small fraction of circulating monocytes are immunopositive for this integrin. We surmised that such a disparity might be due to the selective recruitment of α1β1-positive monocytes. In this study, we report the identification of collagen XIII as a ligand that facilitates this selective recruitment of α1β1 integrin-positive monocytes. Collagen XIII is absent in the vascular endothelium from normal renal cortex and abundant in Alport renal cortex. Neutralizing antibodies against the binding site in collagen XIII for α1β1 integrin selectively block VLA1-positive monocyte migration in transwell assays. Injection of these antibodies into Alport mice slows monocyte recruitment and protects against renal fibrosis. Thus, the induction of collagen XIII in endothelial cells of Alport kidneys mediates the selective recruitment of α1β1 integrin-positive monocytes and may potentially serve as a therapeutic target for inflammatory diseases in which lymphocyte/monocyte recruitment involves the interaction with α1β1 integrin.
Collapse
Affiliation(s)
- Jameel Dennis
- Department of Genetics, Boys Town National Research Hospital, and Department of Immunology, Creighton University, 555 North 30 St., Omaha, NE 68131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li JP, Wu H, Xing W, Yang SG, Lu SH, Du WT, Yu JX, Chen F, Zhang L, Han ZC. Interleukin-27 as a Negative Regulator of Human Neutrophil Function. Scand J Immunol 2010; 72:284-92. [DOI: 10.1111/j.1365-3083.2010.02422.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
CD9 Expression by Human Granulosa Cells and Platelets as a Predictor of Fertilization Success during IVF. Obstet Gynecol Int 2010; 2010. [PMID: 20862371 PMCID: PMC2938453 DOI: 10.1155/2010/192461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/16/2010] [Accepted: 07/28/2010] [Indexed: 11/17/2022] Open
Abstract
Objective. To determine whether CD9 expression on human granulosa cells (GCs) and platelets could predict the success of conventional fertilization of human oocytes during in vitro fertilization (IVF). Methods. Thirty women undergoing IVF for nonmale factor infertility participated. Platelets from venous blood and GCs separated from retrieved oocytes were prepared for immunofluorescence. Flow cytometry quantified the percent of GCs expressing CD9, and CD9 surface density on GCs and platelets. Fertilization rate was determined for the total number of oocytes, and the number of mature oocytes per patient. Correlations tested for significant relationships (P < .05) between fertilization rates and CD9 expression. Results. CD9 surface density on human GCs is inversely correlated with fertilization rate of oocytes (P = .04), but the relationship was weak. Conclusion. More studies are needed to determine if CD9 expression on GCs would be useful for predicting conventional fertilization success during IVF.
Collapse
|
30
|
Rolén U, Freda E, Xie J, Pfirrmann T, Frisan T, Masucci MG. The ubiquitin C-terminal hydrolase UCH-L1 regulates B-cell proliferation and integrin activation. J Cell Mol Med 2010; 13:1666-1678. [PMID: 20187292 DOI: 10.1111/j.1582-4934.2008.00501.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme that catalyses the hydrolysis of polyubiquitin precursors and small ubiquitin adducts. UCH-L1 has been detected in a variety of malignant and metastatic tumours but its biological function in these cells is unknown. We have previously shown that UCH-L1 is highly expressed in Burkitt's lymphoma (BL) and is up-regulated upon infection of B lymphocytes with Epstein-Barr virus (EBV). Here we show that knockdown of UCH-L1 by RNAi inhibits the proliferation of BL cells in suspension and semisolid agar and activates strong LFA-1-dependent homotypic adhesion. Induction of cell adhesion correlated with cation-induced binding to ICAM-1, clustering of LFA-1 into lipid rafts and constitutive activation of the Rap1 and Rac1 GTPases. Expression of a catalytically active UCH-L1 promoted the proliferation of a UCH-L1-negative EBV transformed lymphoblastoid cell line (LCL) and inhibited cell adhesion, whereas a catalytic mutant had no effect, confirming the requirement of UCH-L1 enzymatic activity for the regulation of these phenotypes. Our results identify UCH-L1 as a new player in the signalling pathways that promote the proliferation and invasive capacity of malignant B cells.
Collapse
Affiliation(s)
- Ulrika Rolén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elio Freda
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Current address: Department of Pediatrics, University of Rome, Tor Vergata, Rome, Italy
| | - Jianjun Xie
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Current address: Hematology Branch, Heart Lung and Blood Institute, Hatfield Clinical Research Center, NIH, Bethesda, MD, USA
| | - Thorsten Pfirrmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Current address: Wenner-Grens Institute for Cell Biology, Stockholm University, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Watterson SH, Xiao Z, Dodd DS, Tortolani DR, Vaccaro W, Potin D, Launay M, Stetsko DK, Skala S, Davis PM, Lee D, Yang X, McIntyre KW, Balimane P, Patel K, Yang Z, Marathe P, Kadiyala P, Tebben AJ, Sheriff S, Chang CY, Ziemba T, Zhang H, Chen BC, DelMonte AJ, Aranibar N, McKinnon M, Barrish JC, Suchard SJ, Murali Dhar TG. Small molecule antagonist of leukocyte function associated antigen-1 (LFA-1): structure-activity relationships leading to the identification of 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro[4.4]nonan-7-yl)nicotinic acid (BMS-688521). J Med Chem 2010; 53:3814-30. [PMID: 20405922 DOI: 10.1021/jm100348u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leukocyte function-associated antigen-1 (LFA-1), also known as CD11a/CD18 or alpha(L)beta(2), belongs to the beta(2) integrin subfamily and is constitutively expressed on all leukocytes. The major ligands of LFA-1 include three intercellular adhesion molecules 1, 2, and 3 (ICAM 1, 2, and 3). The interactions between LFA-1 and the ICAMs are critical for cell adhesion, and preclinical animal studies and clinical data from the humanized anti-LFA-1 antibody efalizumab have provided proof-of-concept for LFA-1 as an immunological target. This article will detail the structure-activity relationships (SAR) leading to a novel second generation series of highly potent spirocyclic hydantoin antagonists of LFA-1. With significantly enhanced in vitro and ex vivo potency relative to our first clinical compound (1), as well as demonstrated in vivo activity and an acceptable pharmacokinetic and safety profile, 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro-[4.4]nonan-7-yl)nicotinic acid (2e) was selected to advance into clinical trials.
Collapse
Affiliation(s)
- Scott H Watterson
- Bristol-Myers Squibb Research and Development, P.O. Box 4000, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Chittasupho C, Manikwar P, Krise JP, Siahaan TJ, Berkland C. cIBR effectively targets nanoparticles to LFA-1 on acute lymphoblastic T cells. Mol Pharm 2010; 7:146-55. [PMID: 19883077 DOI: 10.1021/mp900185u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leukocyte function associated antigen-1 (LFA-1) is a primary cell adhesion molecule of leukocytes required for mediating cellular transmigration into sites of inflammation via the vascular endothelium. A cyclic peptide, cIBR, possesses high affinity for LFA-1, and conjugation to the surface of poly(DL-lactic-co-glycolic acid) nanoparticles can specifically target and deliver the encapsulated agents to T cells expressing LFA-1. The kinetics of targeted nanoparticle uptake by acute lymphoblastic leukemia T cells was investigated by flow cytometry and microscopy and compared to untargeted nanoparticles. The specificity of targeted nanoparticles binding to the LFA-1 integrin was demonstrated by competitive inhibition using free cIBR peptide or using the I domain of LFA-1 to inhibit the binding of targeted nanoparticles. The uptake of targeted nanoparticles was concentration and energy dependent. The cIBR-conjugated nanoparticles did not appear to localize with lysosomes whereas untargeted nanoparticles were detected in lysosomes in 6 h and steadily accumulated in lysosomes for 24 h. Finally, T-cell adhesion to epithelial cells was inhibited by cIBR nanoparticles. Thus, nanoparticles displaying the cIBR ligand may offer a useful targeted drug delivery system as an alternative treatment of inflammatory diseases involving transmigration of leukocytes.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
33
|
Lee SW, Chang JS, Lim JH, Kim MS, Park SJ, Jeong HJ, Kim MS, Lee WS, Rho MC. Quinolone Alkaloids from Evodiae fructus Inhibit LFA-1/ICAM-1-mediated Cell Adhesion. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Varga G, Nippe N, Balkow S, Peters T, Wild MK, Seeliger S, Beissert S, Krummen M, Roth J, Sunderkötter C, Grabbe S. LFA-1 contributes to signal I of T-cell activation and to the production of T(h)1 cytokines. J Invest Dermatol 2010; 130:1005-12. [PMID: 20072134 DOI: 10.1038/jid.2009.398] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The beta(2) integrins are important for both transendothelial migration of leukocytes and T-cell activation during antigen presentation. In T cells, triggering of leukocyte functional antigen-1 (LFA-1) is required for full activation and T-helper (Th)1/Th2 differentiation. We used CD18-deficient (CD18(-/-)) mice to examine the role of LFA-1 in the activation of T cells. Compared with wild-type controls, CD18(-/-) T cells proliferated normally when stimulated with antibodies against CD3 and CD28, but secreted significantly less IFN-gamma and IL-2 than their wild-type counterparts. However, when T cells were stimulated with dendritic cells (DCs) that provide additional LFA-1 ligation, the proliferation of CD18(-/-) T cells was significantly reduced, whereas cytokine production remained impaired. The diminished proliferative capacity of CD18(-/-) T cells could be fully compensated for by additional triggering of the T-cell receptor, but not by additional stimulation through the costimulatory molecule, CD28. Thus, ligation of LFA-1 on T cells participates in regulation of Th1 cytokines in vivo. In addition, LFA-1 primarily exerts an effect as an enhancer of TCR signalling and does not facilitate classical costimulation.
Collapse
Affiliation(s)
- Georg Varga
- Department of Dermatology, University of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Oliveira LAM, Baker RK, Klewer SE, Kitten GT. Expression of beta 2 integrin (CD18) in embryonic mouse and chicken heart. Braz J Med Biol Res 2010; 43:25-35. [PMID: 20069263 DOI: 10.1590/s0100-879x2010000100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/09/2009] [Indexed: 01/22/2023] Open
Abstract
Integrins are heterodimeric receptors composed of alpha and beta transmembrane subunits that mediate attachment of cells to the extracellular matrix and counter-ligands such as ICAM-1 on adjacent cells. beta2 integrin (CD18) associates with four different alpha (CD11) subunits to form an integrin subfamily, which has been reported to be expressed exclusively on leukocytes. However, recent studies indicate that beta2 integrin is also expressed by other types of cells. Since the gene for beta2 integrin is located in the region of human chromosome 21 associated with congenital heart defects, we postulated that it may be expressed in the developing heart. Here, we show the results from several different techniques used to test this hypothesis. PCR analyses indicated that beta2 integrin and the alphaL, alphaM, and alphaX subunits are expressed during heart development. Immunohistochemical studies in both embryonic mouse and chicken hearts, using antibodies directed against the N- or C-terminal of beta2 integrin or against its alpha subunit partners, showed that beta2 integrin, as well as the alphaL, alphaM, and alphaX subunits, are expressed by the endothelial and mesenchymal cells of the atrioventricular canal and in the epicardium and myocardium during cardiogenesis. In situ hybridization studies further confirmed the presence of beta2 integrin in these various locations in the embryonic heart. These results indicate that the beta2 integrin subfamily may have other activities in addition to leukocyte adhesion, such as modulating the migration and differentiation of cells during the morphogenesis of the cardiac valves and myocardial walls of the heart.
Collapse
Affiliation(s)
- L A M Oliveira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
36
|
Montresor A, Bolomini-Vittori M, Simon SI, Rigo A, Vinante F, Laudanna C. Comparative analysis of normal versus CLL B-lymphocytes reveals patient-specific variability in signaling mechanisms controlling LFA-1 activation by chemokines. Cancer Res 2010; 69:9281-90. [PMID: 19934331 DOI: 10.1158/0008-5472.can-09-2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of lymphocyte function-associated antigen-1 (LFA-1) by chemokines is fine-tuned by inside-out signaling mechanisms responsible for integrin-mediated adhesion modulation. In the present study, we investigated the possibility of qualitative variability of signaling mechanisms controlling LFA-1 activation in chronic lymphocytic leukemia (CLL) cells. We pursued a multiplexed comparative analysis of the role of the recently described chemokine-triggered rho-signaling module in human normal versus CLL B-lymphocytes. We found that the rho-module of LFA-1 affinity triggering is functionally conserved in normal B-lymphocytes. In contrast, in malignant B-lymphocytes isolated from patients with B-CLL, the role of the rho-module was not maintained, showing remarkable differences and variability. Specifically, RhoA and phospholipase D1 were crucially involved in LFA-1 affinity triggering by CXCL12 in all analyzed patients. In contrast, Rac1 and CDC42 involvement displayed a consistent patient-by-patient variability, with a group of patients showing LFA-1 affinity modulation totally independent of Rac1 and CDC42 signaling activity. Finally, phosphatidylinositol-4-phosphate 5-kinase isoform 1gamma (PIP5KC) was found without any regulatory role in all patients. The data imply that the neoplastic progression may completely bypass the regulatory role of Rac1, CDC42, and PIP5KC, and show a profound divergence in the signaling mechanisms controlling integrin activation in normal versus neoplastic lymphocytes, suggesting that patients with CLL can be more accurately evaluated on the basis of the analysis of signaling mechanisms controlling integrin activation. Our findings could potentially affect the diagnosis, prognosis, and therapy of CLL disorders.
Collapse
|
37
|
Kim K, Wang L, Hwang I. Acute inhibition of selected membrane-proximal mouse T cell receptor signaling by mitochondrial antagonists. PLoS One 2009; 4:e7738. [PMID: 19901985 PMCID: PMC2768903 DOI: 10.1371/journal.pone.0007738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/09/2009] [Indexed: 12/20/2022] Open
Abstract
T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide/major histocompatibility complex (MHC) plus lymphocyte function-associated antigen 1 (LFA-1) with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS) platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour) with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin), resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s). Thus, activation of Akt and PLC-gamma1 and entry of extracellular Ca(2+) following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption) could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours) on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function.
Collapse
Affiliation(s)
- Kwangmi Kim
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lin Wang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Inkyu Hwang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Caputo KE, Hammer DA. Adhesive dynamics simulation of G-protein-mediated chemokine-activated neutrophil adhesion. Biophys J 2009; 96:2989-3004. [PMID: 19383446 DOI: 10.1016/j.bpj.2008.12.3930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 11/07/2008] [Accepted: 12/05/2008] [Indexed: 01/25/2023] Open
Abstract
To reach sites of inflammation, a blood-borne neutrophil first rolls over the vessel wall, becoming firmly adherent on activation, and then transmigrates through the endothelium. In this study, we simulate the transition to firm adhesion via chemokine-induced integrin activation. To recreate the transition from rolling to firm adhesion, we use an integrated signaling adhesive dynamics simulation that includes selectin, integrin, and chemokine interactions between the cell and an adhesive substrate. Integrin bonds are of low affinity until activated by chemokine binding to G-protein coupled receptors on the model cell. The signal propagates within the cell through probabilistic diffusion and reaction of the signaling elements to induce the high-affinity integrins required for firm adhesion. This model showed that integrins become progressively active as cells roll and interact with chemokines, leading to a slight slowing before firm adhesion on a timescale similar to that observed in experiments. Increasing the density of chemokine resulted in decreases in the rolling time before stopping, consistent with experimental observations. However, a limit is reached where further increases in chemokine density do not increase adhesion. We found that the timescale for integrin activation correlated with the time to stop. Further, altering parameters within the intracellular signaling cascade that changed the speed of integrin activation, such as effector activation and dissociation rates, correspondingly affected the time to firm adhesion. For all conditions tested, the number of active integrin bonds at the point of firm adhesion was relatively constant. The model predicts that the time to stop would be relatively independent of selectin or integrin density, but strongly dependent on the shear rate because higher shear rates limit the intrinsic activation rate of integrins and require more integrins for adhesion.
Collapse
Affiliation(s)
- Kelly E Caputo
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
39
|
Kim K, Wang L, Hwang I. A novel flow cytometric high throughput assay for a systematic study on molecular mechanisms underlying T cell receptor-mediated integrin activation. PLoS One 2009; 4:e6044. [PMID: 19557182 PMCID: PMC2698288 DOI: 10.1371/journal.pone.0006044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 06/02/2009] [Indexed: 01/22/2023] Open
Abstract
Lymphocyte function-associated antigen 1 (LFA-1), a member of β2-integrin family, exerts multiple roles in host T cell immunity and has been identified as a useful drug-development target for inflammatory and autoimmune diseases. Applying the findings that primary resting T cells absorb nanometric membrane vesicles derived from antigen presenting cells (APC) via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide-major histocompatibility complex (MHC) complex (pMHC) and LFA-1 with its ligand, intercellular adhesion molecule-1 (ICAM-1), and that signaling cascades triggered by TCR/pMHC interaction take a part in the vesicle-absorption, we established a cell-based high throughput assay for systematic investigation, via isolation of small molecules modulating the level of vesicle-absorption, of molecular mechanisms underlying the T cell absorption of APC-derived vesicles, i.e., structural basis of TCR/pMHC and LFA-1/ICAM-1 interactions and TCR-mediated LFA-1 activation. As primary T cells along with physiological ligands expressed in biological membrane are used and also individual cells in assay samples are analyzed by flow cytometry, results obtained using the assay system hold superior physiological and therapeutic relevance as well as statistical precision.
Collapse
Affiliation(s)
- Kwangmi Kim
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lin Wang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Inkyu Hwang
- Department of Chemistry and Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
At sites of inflammation, infection or vascular injury local proinflammatory or pathogen-derived stimuli render the luminal vascular endothelial surface attractive for leukocytes. This innate immunity response consists of a well-defined and regulated multi-step cascade involving consecutive steps of adhesive interactions between the leukocytes and the endothelium. During the initial contact with the activated endothelium leukocytes roll along the endothelium via a loose bond which is mediated by selectins. Subsequently, leukocytes are activated by chemokines presented on the luminal endothelial surface, which results in the activation of leukocyte integrins and the firm leukocyte arrest on the endothelium. After their firm adhesion, leukocytes make use of two transmigration processes to pass the endothelial barrier, the transcellular route through the endothelial cell body or the paracellular route through the endothelial junctions. In addition, further circulating cells, such as platelets arrive early at sites of inflammation contributing to both coagulation and to the immune response in parts by facilitating leukocyte-endothelial interactions. Platelets have thereby been implicated in several inflammatory pathologies. This review summarizes the major mechanisms and molecules involved in leukocyte-endothelial and leukocyte-platelet interactions in inflammation.
Collapse
Affiliation(s)
- Harald F Langer
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
41
|
Herroeder S, Reichardt P, Sassmann A, Zimmermann B, Jaeneke D, Hoeckner J, Hollmann MW, Fischer KD, Vogt S, Grosse R, Hogg N, Gunzer M, Offermanns S, Wettschureck N. Guanine Nucleotide-Binding Proteins of the G12 Family Shape Immune Functions by Controlling CD4+ T Cell Adhesiveness and Motility. Immunity 2009; 30:708-20. [DOI: 10.1016/j.immuni.2009.02.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 01/09/2009] [Accepted: 02/23/2009] [Indexed: 12/22/2022]
|
42
|
Wang Y, Li D, Nurieva R, Yang J, Sen M, Carreño R, Lu S, McIntyre BW, Molldrem JJ, Legge GB, Ma Q. LFA-1 affinity regulation is necessary for the activation and proliferation of naive T cells. J Biol Chem 2009; 284:12645-53. [PMID: 19297325 DOI: 10.1074/jbc.m807207200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of LFA-1 (lymphocyte function-associated antigen) is a critical event for T cell co-stimulation. The mechanism of LFA-1 activation involves both affinity and avidity regulation, but the role of each in T cell activation remains unclear. We have identified antibodies that recognize and block different affinity states of the mouse LFA-1 I-domain. Monoclonal antibody 2D7 preferentially binds to the low affinity conformation, and this specific binding is abolished when LFA-1 is locked in the high affinity conformation. In contrast, M17/4 can bind both the locked high and low affinity forms of LFA-1. Although both 2D7 and M17/4 are blocking antibodies, 2D7 is significantly less potent than M17/4 in blocking LFA-1-mediated adhesion; thus, blocking high affinity LFA-1 is critical for preventing LFA-1-mediated adhesion. Using these reagents, we investigated whether LFA-1 affinity regulation affects T cell activation. We found that blocking high affinity LFA-1 prevents interleukin-2 production and T cell proliferation, demonstrated by TCR cross-linking and antigen-specific stimulation. Furthermore, there is a differential requirement of high affinity LFA-1 in the activation of CD4(+) and CD8(+) T cells. Although CD4(+) T cell activation depends on both high and low affinity LFA-1, only high affinity LFA-1 provides co-stimulation for CD8(+) T cell activation. Together, our data demonstrated that the I-domain of LFA-1 changes to the high affinity state in primary T cells, and high affinity LFA-1 is critical for facilitating T cell activation. This implicates LFA-1 activation as a novel regulatory mechanism for the modulation of T cell activation and proliferation.
Collapse
Affiliation(s)
- Yang Wang
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Varghese JC, Kane KP. TCR complex-activated CD8 adhesion function by human T cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:6002-9. [PMID: 18941189 DOI: 10.4049/jimmunol.181.9.6002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.
Collapse
Affiliation(s)
- Jay C Varghese
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
44
|
Konstandin MH, Aksoy H, Wabnitz GH, Volz C, Erbel C, Kirchgessner H, Giannitsis E, Katus HA, Samstag Y, Dengler TJ. Beta2-integrin activation on T cell subsets is an independent prognostic factor in unstable angina pectoris. Basic Res Cardiol 2009; 104:341-51. [DOI: 10.1007/s00395-008-0770-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/03/2008] [Indexed: 01/26/2023]
|
45
|
Chapter 5 Cytoskeletal Interactions with Leukocyte and Endothelial Cell Adhesion Molecules. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells. Infect Immun 2008; 77:517-31. [PMID: 19015254 DOI: 10.1128/iai.00695-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used transfected epithelial CHO-B2 cells as a model to identify the mechanism mediating internalization of Afa/Dr diffusely adhering Escherichia coli. We provide evidence that neither the alpha5 or beta1 integrin subunits nor alpha5beta1 integrin functioned as a receptor mediating the adhesion and/or internalization of Dr or Afa-III fimbria-positive bacteria. We also demonstrated that (i) whether or not the AfaD or DraD invasin subunits were present, there was no difference in the cell association and entry of bacteria and that (ii) DraE or AfaE-III adhesin subunits are necessary and sufficient to promote the receptor-mediated bacterial internalization into epithelial cells expressing human decay-accelerating factor (DAF), CEACAM1, CEA, or CEACAM6. Internalization of Dr fimbria-positive E. coli within CHO-DAF, CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells occurs through a microfilament-independent, microtubule-dependent, and lipid raft-dependent mechanism. Wild-type Dr fimbria-positive bacteria survived better within cells expressing DAF than bacteria internalized within CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells. In DAF-positive cells, internalized Dr fimbria-positive bacteria were located in vacuoles that contained more than one bacterium, displaying some of the features of late endosomes, including the presence of Lamp-1 and Lamp-2, and some of the features of CD63 proteins, but not of cathepsin D, and were acidic. No interaction between Dr fimbria-positive-bacterium-containing vacuoles and the autophagic pathway was observed.
Collapse
|
47
|
Dupuy AG, Caron E. Integrin-dependent phagocytosis: spreading from microadhesion to new concepts. J Cell Sci 2008; 121:1773-83. [PMID: 18492791 DOI: 10.1242/jcs.018036] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By linking actin dynamics to extracellular components, integrins are involved in a wide range of cellular processes that are associated with or require cytoskeletal remodelling and cell-shape changes. One such function is integrin-dependent phagocytosis, a process that several integrins are capable of mediating and that allows the binding and clearance of particles. Integrin-dependent phagocytosis is involved in a wide range of physiological processes, from the clearance of microorganisms and apoptotic-cell removal to extracellular-matrix remodelling. Integrin signalling is also exploited by microbial pathogens for entry into host cells. Far from being a particular property of specific integrins and specialised cells, integrin-dependent uptake is emerging as a general, intrinsic ability of most integrins that is associated with their capacity to signal to the actin cytoskeleton. Integrin-mediated phagocytosis can therefore be used as a robust model in which to study integrin regulation and signalling.
Collapse
Affiliation(s)
- Aurélien G Dupuy
- Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | |
Collapse
|
48
|
Alkamides from the fruits of Piper longum and Piper nigrum displaying potent cell adhesion inhibition. Bioorg Med Chem Lett 2008; 18:4544-6. [DOI: 10.1016/j.bmcl.2008.07.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/01/2008] [Accepted: 07/11/2008] [Indexed: 11/18/2022]
|
49
|
Lokuta MA, Nuzzi PA, Huttenlocher A. Analysis of neutrophil polarization and chemotaxis. Methods Mol Biol 2008; 412:211-29. [PMID: 18453114 DOI: 10.1007/978-1-59745-467-4_14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Neutrophil polarization and directed migration (chemotaxis) are critical for the inflammatory response. Neutrophil chemotaxis is achieved by the sensing of narrow gradients of chemoattractant and the subsequent polarization and directed migration toward the chemotactic source. Despite recent progress, the signaling mechanisms that regulate neutrophil polarization during chemotaxis have not been clearly defined. Here, we describe methods to analyze neutrophil polarization and asymmetric redistribution of signaling components induced by chemoattractant using immunofluorescence. Further, methods are described to dissect the role of specific signaling pathways during chemotaxis by the use of murine neutrophils from transgenic mouse models. Finally, methods for time-lapse microscopy and transwell assay for the analysis of neutrophil chemotaxis will also be discussed.
Collapse
Affiliation(s)
- Mary A Lokuta
- Department of Pediatrics, University of Wisconsin Medical School, Madison, WI, USA
| | | | | |
Collapse
|
50
|
Iskandarsyah, Tejo BA, Tambunan USF, Verkhivker G, Siahaan TJ. Structural modifications of ICAM-1 cyclic peptides to improve the activity to inhibit heterotypic adhesion of T cells. Chem Biol Drug Des 2008; 72:27-33. [PMID: 18554252 DOI: 10.1111/j.1747-0285.2008.00676.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lymphocyte function-associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) interaction plays an important role in the formation of the immunological synapse between T cells and antigen-presenting cells. Blocking of LFA-1/ICAM-1 interactions has been shown to suppress the progression of autoimmune diseases. cIBR peptide (cyclo(1,12)PenPRGGSVLVTGC) inhibits ICAM-1/LFA-1 interaction by binding to the I-domain of LFA-1. To increase the bioactivity of cIBR peptide, we systemically modified the structure of the peptide by (i) replacing the Pen residue at the N-terminus with Cys, (ii) cyclization using amide bond formation between Lys-Glu side chains, and (iii) reducing the peptide size by eliminating the C-terminal residue. We found that the activity of cIBR peptide was not affected by replacing Phe with Cys. Peptide cyclization by forming the Lys-Glu amide bond also increased the activity of cIBR peptide, presumably due to the resistance of the amide bond to the reducing nature of glutathione in plasma. We also found that a reduced derivative of cIBR with eight residues (cyclo(1,8)CPRGGSVC) has a bioactivity similar to that of the larger cIBR peptides. Our findings suggest that, by systemically modifying the structure of cIBR peptide, the biological activity of these derivatives can be optimized for future use to inhibit T-cell adhesion in in vivo models of autoimmune diseases.
Collapse
Affiliation(s)
- Iskandarsyah
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, KS 66047, USA
| | | | | | | | | |
Collapse
|