1
|
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Göttgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes. Genome Res 2024; 34:1089-1105. [PMID: 38951027 PMCID: PMC11368181 DOI: 10.1101/gr.277950.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Collapse
Affiliation(s)
- Guanjue Xiang
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA
| | - Xi He
- Bioinformatics and Genomics Graduate Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kathryn J Isaac
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Dylan J Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Camden Jansen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alexander Q Wixom
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - April Cockburn
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Amber Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Qian Qi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yanghua He
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaìi at Mānoa, Honolulu, Hawaii 96822, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jens Lichtenberg
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Elisabeth F Heuston
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Stacie M Anderson
- Flow Cytometry Core, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Jing Luan
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marit W Vermunt
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60611, USA
| | - Michael E G Sauria
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Berthold Göttgens
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Jim R Hughes
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, United Kingdom
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gerd A Blobel
- Department of Pediatrics, Children's Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David M Bodine
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA
| | - Yu Zhang
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Qunhua Li
- Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Center for Computational Biology and Bioinformatics, Genome Sciences Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Xiang G, He X, Giardine BM, Isaac KJ, Taylor DJ, McCoy RC, Jansen C, Keller CA, Wixom AQ, Cockburn A, Miller A, Qi Q, He Y, Li Y, Lichtenberg J, Heuston EF, Anderson SM, Luan J, Vermunt MW, Yue F, Sauria MEG, Schatz MC, Taylor J, Gottgens B, Hughes JR, Higgs DR, Weiss MJ, Cheng Y, Blobel GA, Bodine DM, Zhang Y, Li Q, Mahony S, Hardison RC. Interspecies regulatory landscapes and elements revealed by novel joint systematic integration of human and mouse blood cell epigenomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.02.535219. [PMID: 37066352 PMCID: PMC10103973 DOI: 10.1101/2023.04.02.535219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Collapse
|
3
|
Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, Cremer M, Cremer T. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenetics Chromatin 2015; 8:47. [PMID: 26579212 PMCID: PMC4647504 DOI: 10.1186/s13072-015-0038-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
Background Previous studies of higher order chromatin organization in nuclei of mammalian species revealed both structural consistency and species-specific differences between cell lines and during early embryonic development. Here, we extended our studies to nuclear landscapes in the human myelopoietic lineage representing a somatic cell differentiation system. Our longterm goal is a search for structural features of nuclei, which are restricted to certain cell types/species, as compared to features, which are evolutionary highly conserved, arguing for their basic functional roles in nuclear organization. Results Common human hematopoietic progenitors, myeloid precursor cells, differentiated monocytes and granulocytes analyzed by super-resolution fluorescence microscopy and electron microscopy revealed profound differences with respect to global chromatin arrangements, the nuclear space occupied by the interchromatin compartment and the distribution of nuclear pores. In contrast, we noted a consistent organization in all cell types with regard to two co-aligned networks, an active (ANC) and an inactive (INC) nuclear compartment delineated by functionally relevant hallmarks. The ANC is enriched in active RNA polymerase II, splicing speckles and histone signatures for transcriptionally competent chromatin (H3K4me3), whereas the INC carries marks for repressed chromatin (H3K9me3). Conclusions Our findings substantiate the conservation of the recently published ANC-INC network model of mammalian nuclear organization during human myelopoiesis irrespective of profound changes of the global nuclear architecture observed during this differentiation process. According to this model, two spatially co-aligned and functionally interacting active and inactive nuclear compartments (ANC and INC) pervade the nuclear space. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Hübner
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany ; School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | - Mariana Lomiento
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Fabiana Mammoli
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Doris Illner
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany ; Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Yolanda Markaki
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Marion Cremer
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| | - Thomas Cremer
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| |
Collapse
|
4
|
Jaso JM, Wang SA, Jorgensen JL, Lin P. Multi-color flow cytometric immunophenotyping for detection of minimal residual disease in AML: past, present and future. Bone Marrow Transplant 2014; 49:1129-38. [PMID: 24842529 DOI: 10.1038/bmt.2014.99] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/15/2014] [Accepted: 03/21/2014] [Indexed: 01/15/2023]
Abstract
Current chemotherapeutic regimens achieve CR in a large percentage of patients with AML. However, relapse after CR remains a significant problem. The presence of leukemic cells at levels too low to be detected by conventional microscopy, termed minimal residual disease (MRD), has been associated with an increased risk of relapse and shortened survival. Detection of MRD requires the use of highly sensitive ancillary techniques. Multi-color flow cytometric immunophenotyping is a sensitive method for quick and accurate detection of MRD. Use of this method in patient management may result in lower rates of relapse and improved survival, and is an effective means of assessing novel therapeutic agents. This method can be used in the vast majority of patients with AML, regardless of the immunophenotypic, cytogenetic and molecular genetic abnormalities present. Unfortunately, conflicting data regarding optimum methods of measurement and reporting, as well as the expertize required to interpret results have limited broad application of this technique. We provide a broad overview of this technique, including its advantages and limitations, and discuss the methods employed at our institution. We also review several possible areas of future investigation.
Collapse
Affiliation(s)
- J M Jaso
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S A Wang
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J L Jorgensen
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Lin
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Yoder MC. Endothelial progenitor cell: a blood cell by many other names may serve similar functions. J Mol Med (Berl) 2013; 91:285-95. [PMID: 23371317 PMCID: PMC3704045 DOI: 10.1007/s00109-013-1002-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/13/2013] [Indexed: 12/15/2022]
Abstract
The first reports of circulating cells that displayed the capacity to repair and regenerate damaged vascular endothelial cells as progenitor cells for the endothelial lineage (EPC) were met with great enthusiasm. However, the cell surface antigens and colony assays used to identify the putative EPC were soon found to overlap with those of the hematopoietic lineage. Over the past decade, it has become clear that specific hematopoietic subsets play important roles in vascular repair and regeneration. This review will provide some overview of the hematopoietic hierarchy and methods to segregate distinct subsets that may provide clarity in identifying the proangiogenic hematopoietic cells. This review will not discuss those circulating viable endothelial cells that play a role as EPC and are called endothelia colony-forming cells. The review will conclude with identification of some roadblocks to progress in the field of identification of circulating cells that participate in vascular repair and regeneration.
Collapse
Affiliation(s)
- Mervin C Yoder
- Hermann B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Lebert-Ghali CE, Fournier M, Dickson GJ, Thompson A, Sauvageau G, Bijl JJ. HoxA cluster is haploinsufficient for activity of hematopoietic stem and progenitor cells. Exp Hematol 2010; 38:1074-1086.e1-5. [DOI: 10.1016/j.exphem.2010.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/05/2010] [Accepted: 07/14/2010] [Indexed: 11/25/2022]
|
7
|
Growth factors and gene expression of stem cells: bone marrow compared with peripheral blood. IMPLANT DENT 2010; 19:229-40. [PMID: 20523179 DOI: 10.1097/id.0b013e3181dc24a9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate and compare the presence of cytokines and growth factors in both bone marrow (BM) and peripheral blood. MATERIAL Samples of autogenous BM aspirate and peripheral blood (PB) from 7 patients ranging in age from 49 to 80 years were analyzed with real-time polymerase chain reaction technology to identify and compare selected gene expression for specific cytokines and growth factors. The genes selected for analysis included those involved in osteogenesis, hematogenesis, angiogenesis, extracellular matrix molecules, and cell-adhesion molecules. A maximum of 4 cc';s BM aspirate was taken from the anterior iliac crest and 0.5 mL of venous blood was drawn from each of 7 patients. RESULTS The results of the analysis indicate that both circulating blood and BM aspirate contain large quantities of a host of growth factors and cytokines. More platelet-derived growth factor is expressed in patient blood (PB) than in BM. Vascular endothelial growth factor alpha is expressed slightly greater in BM and vascular endothelial growth factor beta is slightly more prominent in PB. Transforming growth factors (TGFs) TGFA, TGFB1, and TGFB3 were equally expressed in BM and PB, and TGFB2 had a greater expression in PB. Bone morphogenetic proteins (BMPs) 1, 3, 7, 8B, R1A, and PR2 were almost equally expressed in BM and PB. BMPs 4 and 6 were expressed greater in PB. BMP2 was expressed more in BM. Extracellular matrix factors were equally expressed in PB and BM. Mesenchymal stem cell lineage markers varied in PB and BMA, and hematopoietic stem cell lineage markers were expressed more in PB than BM. Gene expression for angiogenic factors were equally expressed in PB and BM. CONCLUSION In this investigation, specific cytokines and growth factors in BM are compared with those in peripheral blood. Each has similar biologic effects and most expressed equally in BM and PB. However, BMP2 and vascular endothelial growth factor alpha had greater expression in BM.
Collapse
|
8
|
Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 2009; 114:972-82. [PMID: 19491395 DOI: 10.1182/blood-2008-10-187013] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
T-cell development follows a defined set of stage-specific differentiation steps. However, molecular and cellular events occurring at early stages of human T-cell development remain to be fully elucidated. To address this, human umbilical cord blood (UCB) hematopoietic stem cells (HSCs) were induced to differentiate to the T lineage in OP9-DL1 cocultures. A developmental program involving a sequential and temporally discrete expression of key differentiation markers was revealed. Quantitative clonal analyses demonstrated that CD34(+)CD38(-) and CD34(+)CD38(lo) subsets of UCB contain a similarly high T-lineage progenitor frequency, whereas the frequency in CD34(+)CD38(+/hi) cells was 5-fold lower. Delta-like/Notch-induced signals increased the T-cell progenitor frequency of CD34(+)CD38(-/lo) cells differentiated on OP9-DL1, and 2 distinct progenitor subsets, CD34(+)CD45RA(+)CD7(++)CD5(-)CD1a(-) (proT1) and CD34(+)CD45RA(+)CD7(++)CD5(+)CD1a(-) (proT2), were identified and their thymus engrafting capacity was examined, with proT2 cells showing a 3-fold enhanced reconstituting capacity compared with the proT1 subset. Furthermore, in vitro-generated CD34(+)CD7(++) progenitors effectively engrafted the thymus of immunodeficient mice, which was enhanced by the addition of an IL-7/IL-7 antibody complex. Taken together, the identification of T-progenitor subsets readily generated in vitro may offer important avenues to improve cellular-based immune-reconstitution approaches.
Collapse
|
9
|
Edvardsson L, Olofsson T. Real-time PCR analysis for blood cell lineage specific markers. Methods Mol Biol 2009; 496:313-22. [PMID: 18839120 DOI: 10.1007/978-1-59745-553-4_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We here describe the methods for the isolation of distinct hematopoietic subpopulations, as defined by their immune phenotype by fluorescence-activated cell sorting, and how these cells can be analyzed even at a single-cell level for the gene expression of a number of transcription factors and other differentiation markers.
Collapse
Affiliation(s)
- Louise Edvardsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Biomedical Center, Lund University, Lund, Sweden
| | | |
Collapse
|
10
|
Gemelli C, Orlandi C, Zanocco Marani T, Martello A, Vignudelli T, Ferrari F, Montanari M, Parenti S, Testa A, Grande A, Ferrari S. The vitamin D3/Hox-A10 pathway supports MafB function during the monocyte differentiation of human CD34+ hemopoietic progenitors. THE JOURNAL OF IMMUNOLOGY 2008; 181:5660-72. [PMID: 18832725 DOI: 10.4049/jimmunol.181.8.5660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hemopoiesis, the conclusions of such studies are quite controversial given that they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion, whereas in others they implicate this transcription factor in the induction of monocyte-macrophage differentiation. To clarify this issue, we analyzed the biological effects and the transcriptome changes determined in human primary CD34(+) hemopoietic progenitors by retroviral transduction of a full-length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of the MafB gene, recently identified as the master regulator of such a maturation pathway. By using a combined approach based on computational analysis, EMSA experiments, and luciferase assays, we were able to demonstrate the presence of a Hox-A10-binding site in the promoter region of the MafB gene, which suggested the likely molecular mechanism underlying the observed effect. Stimulation of the same cells with the vitamin D(3) monocyte differentiation inducer resulted in a clear increase of Hox-A10 and MafB transcripts, indicating the existence of a precise transactivation cascade involving vitamin D(3) receptor, Hox-A10, and MafB transcription factors. Altogether, these data allow one to conclude that the vitamin D(3)/Hox-A10 pathway supports MafB function during the induction of monocyte differentiation.
Collapse
Affiliation(s)
- Claudia Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ferrari F, Bortoluzzi S, Coppe A, Basso D, Bicciato S, Zini R, Gemelli C, Danieli GA, Ferrari S. Genomic expression during human myelopoiesis. BMC Genomics 2007; 8:264. [PMID: 17683550 PMCID: PMC2045681 DOI: 10.1186/1471-2164-8-264] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 08/03/2007] [Indexed: 01/01/2023] Open
Abstract
Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Collapse
Affiliation(s)
- Francesco Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Stefania Bortoluzzi
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Alessandro Coppe
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Dario Basso
- Department of Chemical Engineering Processes, University of Padova via F. Marzolo 9, 35131, Padova, Italy
| | - Silvio Bicciato
- Department of Chemical Engineering Processes, University of Padova via F. Marzolo 9, 35131, Padova, Italy
| | - Roberta Zini
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Claudia Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Gian Antonio Danieli
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Sergio Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| |
Collapse
|
12
|
Abstract
The lymphocytes, T, B, and NK cells, and a proportion of dendritic cells (DCs) have a common developmental origin. Lymphocytes develop from hematopoietic stem cells via common lymphocyte and various lineage-restricted precursors. This review discusses the current knowledge of human lymphocyte development and the phenotypes and functions of the rare intermediate populations that together form the pathways of development into T, B, and NK cells and DCs. Clearly, development of hematopoietic cells is supported by cytokines. The studies of patients with genetic deficiencies in cytokine receptors that are discussed here have illuminated the importance of cytokines in lymphoid development. Lineage decisions are under control of transcription factors, and studies performed in the past decade have provided insight into transcriptional control of human lymphoid development, the results of which are summarized and discussed in this review.
Collapse
Affiliation(s)
- Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
13
|
Ishii T, Bruno E, Hoffman R, Xu M. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 2006; 108:3128-34. [PMID: 16757685 DOI: 10.1182/blood-2006-04-017392] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The JAK2(V617F) mutation has been shown to occur in the overwhelming majority of patients with polycythemia vera (PV). To study the role of the mutation in the excessive production of differentiated hematopoietic cells in PV, CD19+, CD3+, CD34+, CD33+, and glycophorin A+ cells and granulocytes were isolated from the peripheral blood (PB) of 8 patients with PV and 3 healthy donors mobilized with G-CSF, and the percentage of JAK2(V617F) mutant allele was determined by quantitative real-time polymerase chain reaction (PCR). The JAK2(V617F) mutation was present in cells belonging to each of the myeloid lineages and was also present in B and T lymphocytes in a subpopulation of patients with PV. The proportion of hematopoietic cells expressing the JAK2(V617F) mutation decreased after differentiation of CD34+ cells in vitro in the presence of optimal concentrations of SCF, IL-3, IL-6, and Epo. These data suggest that the JAK2(V617F) mutation may not provide a proliferative and/or survival advantage for the abnormal PV clone. Although the JAK2(V617F) mutation plays an important role in the biologic origins of PV, it is likely not the sole event leading to PV.
Collapse
Affiliation(s)
- Takefumi Ishii
- Section of Hematology/Oncology, University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB, Rm 5035 (M/C 704), Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
14
|
Gemelli C, Montanari M, Tenedini E, Zanocco Marani T, Vignudelli T, Siena M, Zini R, Salati S, Tagliafico E, Manfredini R, Grande A, Ferrari S. Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells. Cell Death Differ 2006; 13:1686-96. [PMID: 16456583 DOI: 10.1038/sj.cdd.4401860] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.
Collapse
Affiliation(s)
- C Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Two different levels of control for bone marrow hematopoiesis are believed to exist. On the one hand, normal blood cell distribution is believed to be maintained in healthy subjects by an "innate" hematopoietic activity, i.e., a basal intrinsic bone marrow activity. On the other hand, an "adaptive" hematopoietic state develops in response to stress-induced stimulation. This adaptive hematopoiesis targets specific lineage amplification depending on the nature of the stimuli. Unexpectedly, recent data have shown that what we call "normal hematopoiesis" is a stress-induced state maintained by activated bone marrow CD4+ T cells. This T cell population includes a large number of recently stimulated cells in normal mice whose priming requires the presence of the cognate antigens. In the absence of CD4+ T cells or their cognate antigens, hematopoiesis is maintained at low levels. In this review, we summarize current knowledge on T cell biology, which could explain how CD4+ T cells can help hematopoiesis, how they are primed in mice that were not intentionally immunized, and what maintains them activated in the bone marrow.
Collapse
Affiliation(s)
- J P Monteiro
- Divisão de Medicina Experimental, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
16
|
Abstract
To study clonal evolution in myeloproliferative disorders, we used stochastic models of hematopoiesis for mouse and cat, species for which the in vivo kinetics of hematopoietic stem cells (HSCs) have been experimentally defined. We determined the consequence if 1 HSC became able to survive without the support of a microenvironmental niche while the rest of its behavior did not change. Neoplastic cells persisted and dominated hematopoiesis in 14% of mice and 17% of cats, requiring mean times of 2.5 +/- 0.5 and 7.0 +/- 1.2 years, respectively (n=1000 simulations/species). In both species, when the number of neoplastic HSCs exceeded 0.5% of all HSCs, clonal dominance was inevitable. Our results can explain the absence of clonal myeloproliferative disorders in mice (lifetime, 2 years), are consistent with clinical observations in cats, and provide insight into the progression of chronic myelogenous leukemia (CML) in humans. They also demonstrate that competition for microenvironmental support can lead to the suppression of normal hematopoiesis as neoplasia evolves. Toxic or immunologic suppression of normal HSCs is not required.
Collapse
Affiliation(s)
- Sandra N Catlin
- Division of Hematology, University of Washington, Box 357710, Seattle, WA 98195-7710, USA
| | | | | |
Collapse
|
17
|
Hou YH, Srour EF, Ramsey H, Dahl R, Broxmeyer HE, Hromas R. Identification of a human B-cell/myeloid common progenitor by the absence of CXCR4. Blood 2005; 105:3488-92. [PMID: 15650059 PMCID: PMC1895023 DOI: 10.1182/blood-2004-07-2839] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 12/18/2004] [Indexed: 11/20/2022] Open
Abstract
CXCR4 is a chemokine receptor required for hematopoietic stem cell engraftment and B-cell development. This study found that a small fraction of primitive CD34(+)/CD19(+) B-cell progenitors do not express CXCR4. These CD34(+)/CD19(+)/CXCR4(-) cells were also remarkable for the relative lack of primitive myeloid or lymphoid surface markers. When placed in B-lymphocyte culture conditions these cells matured to express CXCR4 and other surface antigens characteristic of B cells. Surprisingly, when placed in a myeloid culture environment, the CXCR4(-) B-cell progenitors could differentiate into granulocyte, macrophage, and erythroid cells at a high frequency. These data define a novel B-cell/myeloid common progenitor (termed the BMP) and imply a less restrictive pathway of myeloid versus lymphoid development than previously postulated.
Collapse
Affiliation(s)
- Yong-Hao Hou
- Cancer Research and Treatment Center, University of New Mexico Health Science Center, 900 Camino de Salud, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
18
|
Shepherd BE, Guttorp P, Lansdorp PM, Abkowitz JL. Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths. Exp Hematol 2004; 32:1040-50. [PMID: 15539081 DOI: 10.1016/j.exphem.2004.07.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 07/16/2004] [Accepted: 07/21/2004] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To study in vivo behavior of hematopoietic stem cells (HSC). MATERIALS AND METHODS Behavior of HSC is difficult to study because one cannot observe and track cells within the marrow microenvironment. Therefore, information must be obtained from indirect means, such as competitive repopulation assays or surrogate studies, such as observations of telomere shortening in granulocytes. In this article, we use granulocyte telomere length data and a novel approach, stochastic simulation, to derive replication rates of HSC. The approach is first applied to cats and then to humans. RESULTS Human HSC replicate infrequently, on average once per 45 weeks (range: once per 23 to once per 67 weeks). CONCLUSIONS This rate is substantially slower than the average replication rates estimated for murine (once per 2.5 weeks) and feline (once per 8.3-10 weeks) HSC in vivo.
Collapse
Affiliation(s)
- Bryan E Shepherd
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
19
|
Pick M, Flores-Flores C, Soreq H. From brain to blood: alternative splicing evidence for the cholinergic basis of Mammalian stress responses. Ann N Y Acad Sci 2004; 1018:85-98. [PMID: 15240356 DOI: 10.1196/annals.1296.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three principal features of mammalian stress responses are that they span peripheral and CNS changes, modify blood cell composition and activities, and cover inter-related alterations in a large number of gene products. The finely tuned spatiotemporal regulation of these multiple events suggests the hierarchic involvement of modulatory neurotransmitters and modified process(es) in the pathway of gene expression that together would enable widely diverse stress responses. We report evidence supporting the notion that acetylcholine (ACh) acts as a stress-response-regulating transmitter and that altered ACh levels are variously associated with changes in the alternative splicing of pre-mRNA transcripts in brain neurons and peripheral blood cells. We used acetylcholinesterase (AChE) gene expression as a case study and developed distinct probes for its alternative splice variants at the mRNA and protein levels. In laboratory animals and human-derived cells, we found stress-induced changes in the alternative splicing patterns of AChE pre-mRNA, which attributes to this gene and its different protein products diverse stress responsive functions that are associated with the enzymatic and noncatalytic properties of AChE. Together, these approaches provide a conceptually unified view of the studied pathways for controlling stress responses in brain and blood.
Collapse
Affiliation(s)
- Marjorie Pick
- Department of Biological Chemistry, The Hebrew University of Jerusalem Safra Campus-Givat Ram, Jerusalem 91904, Israel.
| | | | | |
Collapse
|
20
|
Kluger Y, Tuck DP, Chang JT, Nakayama Y, Poddar R, Kohya N, Lian Z, Ben Nasr A, Halaban HR, Krause DS, Zhang X, Newburger PE, Weissman SM. Lineage specificity of gene expression patterns. Proc Natl Acad Sci U S A 2004; 101:6508-13. [PMID: 15096607 PMCID: PMC404075 DOI: 10.1073/pnas.0401136101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hematopoietic system offers many advantages as a model for understanding general aspects of lineage choice and specification. Using oligonucleotide microarrays, we compared gene expression patterns of multiple purified hematopoietic cell populations, including neutrophils, monocytes, macrophages, resting, centrocytic, and centroblastic B lymphocytes, dendritic cells, and hematopoietic stem cells. Some of these cells were studied under both resting and stimulated conditions. We studied the collective behavior of subsets of genes derived from the Biocarta database of functional pathways, hand-tuned groupings of genes into broad functional categories based on the Gene Ontology database, and the metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes database. Principal component analysis revealed strikingly pervasive differences in relative levels of gene expression among cell lineages that involve most of the subsets examined. These results indicate that many processes in these cells behave differently in different lineages. Much of the variation among lineages was captured by the first few principal components. Principal components biplots were found to provide a convenient visual display of the contributions of the various genes within the subsets in lineage discrimination. Moreover, by applying tree-constructing methodologies borrowed from phylogenetics to the expression data from differentiated cells and stem cells, we reconstructed a tree of relationships that resembled the established hematopoietic program of lineage development. Thus, the mRNA expression data implicitly contained information about developmental relationships among cell types.
Collapse
Affiliation(s)
- Yuval Kluger
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
MESH Headings
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/analysis
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, Myelomonocytic/analysis
- Antigens, Differentiation, Myelomonocytic/metabolism
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Cell Lineage/immunology
- Erythroid Cells/cytology
- Erythroid Cells/metabolism
- Flow Cytometry/methods
- Hematopoiesis/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Immune System/cytology
- Immunophenotyping/methods
- Leukocyte Common Antigens/analysis
- Leukocyte Common Antigens/metabolism
- Monocytes/cytology
- Monocytes/metabolism
- Neutrophils/cytology
- Neutrophils/metabolism
Collapse
Affiliation(s)
- Brent Wood
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
22
|
Alcobia I, Quina AS, Neves H, Clode N, Parreira L. The spatial organization of centromeric heterochromatin during normal human lymphopoiesis: evidence for ontogenically determined spatial patterns. Exp Cell Res 2003; 290:358-69. [PMID: 14567993 DOI: 10.1016/s0014-4827(03)00335-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is believed that pericentromeric heterochromatin may play a major role in the epigenetic regulation of gene expression. We have previously shown that centromeres in human peripheral blood cells aggregate into distinct "myeloid" and "lymphoid" spatial patterns, suggesting that the three-dimensional organization of centromeric heterochromatin in interphase may be ontogenically determined during hematopoietic differentiation. To investigate this possibility, the spatial patterns of association of different centromeres were analyzed in hematopoietic progenitors and compared with those in early-B and early-T cells, mature B and T lymphocytes, and, additionally, mature granulocytes and monocytes. We show that those patterns change during lymphoid differentiation, with major spatial arrangements taking place at different stages during T and B cell differentiation. Heritable patterns of centromere association are observed, which can occur either at the level of the common lymphoid progenitor, or in early-T or early-B committed cells. A correlation of the observed patterns of centromere association with the gene content of the respective chromosomes further suggests that the variation in the composition of these heterochromatic structures may contribute to the dynamic relocation of genes in different nuclear compartments during cell differentiation, which might have functional implications for cell-stage-specific gene expression.
Collapse
Affiliation(s)
- Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
23
|
Ghannam G, Takeda A, Camarata T, Moore MA, Viale A, Yaseen NR. The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells. J Biol Chem 2003; 279:866-75. [PMID: 14561764 DOI: 10.1074/jbc.m307280200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleoporin Nup98 gene is frequently rearranged in acute myelogenous leukemia (AML). In most cases this results in fusion of the N terminus of Nup98 to the DNA binding domain of a homeodomain transcription factor. The prototype of these fusions, Nup98-HOXA9, is associated with human AML and induces AML in mouse models. To understand the mechanisms by which Nup98-HOXA9 causes AML, we expressed it in myeloid cells and identified its target genes using high density oligonucleotide microarrays. The analysis was performed in triplicate and was confirmed by quantitative real time PCR. Of the 102 Nup98-HOXA9 target genes identified, 92 were up-regulated, and only 10 were down-regulated, suggesting a transcriptional activation function. A similar analysis of wild-type HOXA9 revealed 13 target genes, 12 of which were up-regulated, and 1 was down-regulated. In contrast, wild-type Nup98 had no effect on gene expression, demonstrating that the HOXA9 DNA binding domain is required for gene regulation. Co-transfection experiments using a luciferase reporter linked to the promoter of one of the Nup98-HOXA9 target genes confirmed up-regulation at the transcriptional level by Nup98-HOXA9 but not by either HOXA9 or Nup98. These data indicate that Nup98-HOXA9 is an aberrant transcription factor whose activity depends on the HOXA9 DNA binding domain but has a stronger and wider transcriptional effect than HOXA9. Several of the genes regulated by Nup98-HOXA9 are associated with increased cell proliferation and survival as well as drug metabolism, providing insights into the pathogenesis and epidemiology of Nup98-HOXA9-induced AML.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Cycle
- Cell Division
- Cell Survival
- Down-Regulation
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Green Fluorescent Proteins
- Homeodomain Proteins/physiology
- Humans
- Image Processing, Computer-Assisted
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Luciferases/metabolism
- Luminescent Proteins/metabolism
- Mice
- Models, Biological
- Myeloid Cells/metabolism
- Nuclear Pore Complex Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/physiology
- Plasmids/metabolism
- Protein Structure, Tertiary
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Ghada Ghannam
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
24
|
Montecino-Rodriguez E, Dorshkind K. To T or not to T: reassessing the common lymphoid progenitor. Nat Immunol 2003; 4:100-1. [PMID: 12555090 DOI: 10.1038/ni0203-100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Abstract
Hematopoiesis is a dynamic process in which eight lineages of mature blood cells are derived from a common stem cell. Great progress has been made in identifying the functionally disparate progenitors that emerge from the stem cell and in elucidating the molecules required for their growth and survival. Further work will be required to understand the molecular mechanisms that regulate commitment of stem and progenitor cells to each stage of progenitor cell development and ultimately into the mature blood cells.
Collapse
Affiliation(s)
- Mervin C Yoder
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| |
Collapse
|