1
|
PM2.5 exposure-induced autophagy is mediated by lncRNA loc146880 which also promotes the migration and invasion of lung cancer cells. Biochim Biophys Acta Gen Subj 2017; 1861:112-125. [DOI: 10.1016/j.bbagen.2016.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/22/2016] [Accepted: 11/07/2016] [Indexed: 01/17/2023]
|
2
|
Singh RS, Kaur N, Kennedy JF. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydr Polym 2015; 123:190-207. [DOI: 10.1016/j.carbpol.2015.01.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/03/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
|
3
|
Depan D, Misra RDK. Structural and physicochemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells. J Biomed Mater Res A 2013; 102:2934-41. [PMID: 24115677 DOI: 10.1002/jbm.a.34963] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 11/06/2022]
Abstract
Photoluminescent semiconductor quantum dots (QDs) are of significant interest for bioimaging and fluorescence labeling. In this regard, we describe here the design of high sensitivity and high specificity non-toxic ZnO QDs (∼5 nm) with long-term stability of up to 12 months. The embedding of ZnO QDs on silica nanospheres led to significant increase in photoluminescence intensity rendering them highly bright QD-based probes. The QDs were characterized in vitro with respect to cancer cells (HeLa) and evaluated in terms of viability, fluorescence and cytoskeletal organization. The immobilization of ZnO QDs on silica nanospheres promoted the internalization and enhanced fluorescence emission of HeLa cells. The fluorescence emission from QDs was stable for 3 days, indicating excellent stability toward photobleaching. Cytoskeletal reorganization was observed after internalization of QDs such that the ZnO QDS on silica nanospheres resulted in broadening of the actin cytoskeleton. The study underscores that ZnO QDs immobilized on Si nanospheres are promising for tracking cancer cells in cell therapy.
Collapse
Affiliation(s)
- D Depan
- Biomaterials and Biomedical Engineering Research Laboratory, Center for Structural and Functional Materials, University of Louisiana at Lafayette, Lafayette, Louisiana, 70504-4130
| | | |
Collapse
|
4
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
5
|
Gene expression profiling associated with treatment of positive charged colloidal silica nanoparticle in human neuroblastoma cells. BIOCHIP JOURNAL 2011. [DOI: 10.1007/s13206-011-5405-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Comparative study on transcriptional responses of human neuronal cells to silica nanoparticles with different stabilizers. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4406-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lee JS, Kim IS, Kim JH, Cho W, Suh PG, Ryu SH. Determination of EGFR endocytosis kinetic by auto-regulatory association of PLD1 with mu2. PLoS One 2009; 4:e7090. [PMID: 19763255 PMCID: PMC2739277 DOI: 10.1371/journal.pone.0007090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 08/18/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors. METHODOLOGY/PRINCIPAL FINDINGS Here we employed the kinetic analysis of endocytosis and adaptor recruitment to show that mu2, a subunit of AP2 interacts directly with phospholipase D (PLD)1, a receptor-associated signaling protein and this facilitates the membrane recruitment of AP2 and the endocytosis of epidermal growth factor receptor (EGFR). We also demonstrate that the PLD1-mu2 interaction requires the binding of PLD1 with phosphatidic acid, its own product. CONCLUSIONS/SIGNIFICANCE These results suggest that the temporal regulation of EGFR endocytosis is achieved by auto-regulatory PLD1 which senses the receptor activation and triggers the translocation of AP2 near to the activated receptor.
Collapse
Affiliation(s)
- Jun Sung Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Il Shin Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Jung Hwan Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pann-Ghill Suh
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Marzolo MP, Bu G. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease. Semin Cell Dev Biol 2008; 20:191-200. [PMID: 19041409 DOI: 10.1016/j.semcdb.2008.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/13/2008] [Indexed: 12/30/2022]
Abstract
Amyloid-beta (Abeta) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Abeta is produced through proteolytic processing of a transmembrane protein, beta-amyloid precursor protein (APP), by beta- and gamma-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Abeta. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy.
Collapse
Affiliation(s)
- Maria-Paz Marzolo
- FONDAP Center for Cell Regulation and Pathology (CRCP), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and MIFAB, Santiago, Chile
| | | |
Collapse
|
9
|
Lutzky VP, Carnevale RP, Alvarez MJ, Maffia PC, Zittermann SI, Podhajcer OL, Issekutz AC, Chuluyan HE. Platelet-endothelial cell adhesion molecule-1 (CD31) recycles and induces cell growth inhibition on human tumor cell lines. J Cell Biochem 2006; 98:1334-50. [PMID: 16518857 DOI: 10.1002/jcb.20769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CD31 (PECAM-1) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, and most leukocytes. This report demonstrates by Western Blot and immunofluorescence that some human melanoma and adenocarcinoma cell lines express CD31 on the cell surface. The surface expression of CD31 was regulated by cell-cell contact, being higher on sparse and spontaneously detached cells. Indeed, fixing and permeabilizing tumor cells revealed a cytoplasmic pool, which was confirmed by confocal microscopy. Some of the plasma surface molecule is endocytosed following mAb binding. Engagement of CD31 on tumor cells via domain-3 inhibited proliferation by inducing cell apoptosis. On the other hand, apoptosis does not increase CD31 expression. Overall, these results indicate that there is an intracellular pool of CD31 on some tumor cells, which modulates CD31 surface expression and its role in cancer cell growth and metastasis. Thus, the expression of CD31 and its role in cell survival in some tumor cells appears to differ from endothelial cells.
Collapse
Affiliation(s)
- Viviana P Lutzky
- Laboratorio de Inmunogenética, Hospital de Clínicas José de San Martín, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
10
|
de la Fuente JM, Berry CC, Riehle MO, Curtis ASG. Nanoparticle targeting at cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:3286-93. [PMID: 16548590 DOI: 10.1021/la053029v] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gold nanoparticles have been used for analytical and biomedical purposes for many years. In fact, the labeling of targeting molecules with nanoparticles has revolutionized the visualization of cellular or tissue components by electron microscopy. We report in this study the derivatization of tiopronin-protected nanoparticles with ethylenediamine and poly(ethylene glycol) bis(3-aminopropyl) terminated and their functionalization with the GRGDSP peptide sequence by a straightforward and economical methodology. The particles were subsequently tested in vitro with a human fibroblast cell line to determine the biocompatibility, and the cell-particle interactions, using fluorescence and scanning electron microscopies. The results indicate that tiopronin gold nanoparticles aggregate due to culture medium proteins, whereas the tiopronin gold nanoparticles derivatized with ethylenediamine induce endocytosis, and the same nanoparticles derivatized with poly(ethylene glycol) derivative promote particle-cell adhesion.
Collapse
Affiliation(s)
- Jesus M de la Fuente
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
11
|
Carlton JG, Bujny MV, Peter BJ, Oorschot VMJ, Rutherford A, Arkell RS, Klumperman J, McMahon HT, Cullen PJ. Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. J Cell Sci 2006; 118:4527-39. [PMID: 16179610 PMCID: PMC1904489 DOI: 10.1242/jcs.02568] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sorting nexins are a large family of phox-homology-domain-containing proteins that have been implicated in the control of endosomal sorting. Sorting nexin-1 is a component of the mammalian retromer complex that regulates retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network. In yeast, retromer is composed of Vps5p (the orthologue of sorting nexin-1), Vps17p (a related sorting nexin) and a cargo selective subcomplex composed of Vps26p, Vps29p and Vps35p. With the exception of Vps17p, mammalian orthologues of all yeast retromer components have been identified. For Vps17p, one potential mammalian orthologue is sorting nexin-2. Here we show that, like sorting nexin-1, sorting nexin-2 binds phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5-bisphosphate, and possesses a Bin/Amphiphysin/Rvs domain that can sense membrane curvature. However, in contrast to sorting nexin-1, sorting nexin-2 could not induce membrane tubulation in vitro or in vivo. Functionally, we show that endogenous sorting nexin-1 and sorting nexin-2 co-localise on high curvature tubular elements of the 3-phosphoinositide-enriched early endosome, and that suppression of sorting nexin-2 does not perturb the degradative sorting of receptors for epidermal growth factor or transferrin, nor the steady-state distribution of the cation-independent mannose 6-phosphate receptor. However, suppression of sorting nexin-2 results in a subtle alteration in the kinetics of cation-independent mannose 6-phosphate receptor retrieval. These data suggest that although sorting nexin-2 may be a component of the retromer complex, its presence is not essential for the regulation of endosome-to-trans Golgi network retrieval of the cation-independent mannose 6-phosphate receptor.
Collapse
Affiliation(s)
- Jez G. Carlton
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Miriam V. Bujny
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Brian J. Peter
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Viola M. J. Oorschot
- Cell Microscopy Center, Department of Cell Biology and Institute for Biomembranes, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anna Rutherford
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Rebecca S. Arkell
- Signalling Programme, The Babraham Institute, Babraham Hall, Cambridge CB2 4AT, UK
| | - Judith Klumperman
- Cell Microscopy Center, Department of Cell Biology and Institute for Biomembranes, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Harvey T. McMahon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | - Peter J. Cullen
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
- Author for correspondence (e-mail: )
| |
Collapse
|
12
|
Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 2005; 26:1565-73. [PMID: 15522758 DOI: 10.1016/j.biomaterials.2004.05.022] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 05/12/2004] [Indexed: 11/20/2022]
Abstract
The aim of this study was to modify the surfaces of superparamagnetic iron oxide nanoparticles (SPION) with pullulan in order to reduce the cytotoxicity and enhance the cellular uptake of the nanoparticles. In this study, we have prepared and characterised the pullulan coated superparamagnetic iron oxide nanoparticles (Pn-SPION) of size around 40-45 nm with magnetite inner core and hydrophilic outer shell of pullulan. We have investigated the effect of cellular uptake of uncoated and Pn-SPION on cell adhesion/viability, cytotoxicity, morphology and cytoskeleton organisation of human fibroblasts. Cell cytotoxicity/adhesion studies of SPIONs on human dermal fibroblasts showed that the particles are toxic and their internalisation resulted in disruption of cytoskeleton organisation of cells. On the other hand, Pn-SPIONs were found to be non-toxic and induced changes in cytoskeleton organisation different from that observed with SPION. Transmission electron microscopy results indicated that the SPION and Pn-SPION were internalised into cells via different mechanisms, thereby suggesting that the particle endocytosis behaviour is dependent on the surface characteristics of the nanoparticles.
Collapse
Affiliation(s)
- Ajay Kumar Gupta
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | |
Collapse
|
13
|
Gupta AK, Gupta M, Yarwood SJ, Curtis ASG. Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Control Release 2004; 95:197-207. [PMID: 14980768 DOI: 10.1016/j.jconrel.2003.11.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 11/18/2003] [Indexed: 10/26/2022]
Abstract
The aim of present study was to prepare nanometer sized particles of gelatin via water-in-oil microemulsion system for drug and gene delivery applications. In this study, cross-linked gelatin nanoparticles encapsulating a fluorescent marker molecule fluorescein isothiocyanate-dextran (FITC-Dex, Mol. Wt. 19.3kDa) have been prepared, characterized and their influence on human fibroblasts has been assessed in terms of cell adhesion, cytotoxicity, light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and observation of cytoskeleton organisation. Gelatin nanoparticles were prepared inside the aqueous cores of sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane reverse micelles. Transmission electron microscopy image showed that the particles are spherical in shape with size of 37+/-0.84 nm diameter. The release of FITC-Dex from the nanoparticles in phosphate buffer saline (pH 7.4) is found to increase with time and about 80% of the encapsulated dye is released in 6 h. Cell adhesion studies with human fibroblasts have shown that gelatin nanoparticles do not affect the number of cells adhered to glass as compared to control cells with no particles. Standard cell viability assay demonstrated that cells incubated with gelatin nanoparticles remained more than 100% viable at concentration as high as 500 microg/ml. From SEM image, it was observed that the nanoparticles were internalised and the fibroblasts exhibited vacuoles in the cell body with cell membrane abnormalities. Endocytosis of nanoparticles was confirmed from TEM studies and it resulted in disruption of F-actin and beta-tubulin cytoskeleton. These studies show that the gelatin nanoparticles prepared by water-in-oil microemulsion systems are endocytosed by the fibroblasts without being toxic to cells even at high concentration of nanoparticles.
Collapse
Affiliation(s)
- Ajay Kumar Gupta
- Centre for Cell Engineering, IBLS, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | |
Collapse
|
14
|
Gupta AK, Berry C, Gupta M, Curtis A. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans Nanobioscience 2004; 2:255-61. [PMID: 15376916 DOI: 10.1109/tnb.2003.820279] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Superparamagnetic iron oxide nanoparticles have been used for many years as magnetic resonance imaging contrast agents or in drug delivery applications. Tissue and cell-specific drug targeting by these nanoparticles can be achieved by employing nanoparticle coatings or carrier-drug conjugates that contain a ligand recognized by a receptor on the target cell. In this study, superparamagnetic iron oxide nanoparticles with specific shape and size have been prepared and coupled to insulin for their targeting to cell expressed surface receptors and thereby preventing the endocytosis. The influence of these nanoparticles on human fibroblasts is studied using various techniques to observe cell-nanoparticle interaction that includes light, scanning, and transmission electron microscopy studies. The derivatization of the nanoparticle surface with insulin-induced alterations in cell behavior that were distinct from the underivatized nanoparticles suggests that cell response can be directed via specifically engineered particle surfaces. The results from cell culture studies showed that the uncoated particles were internalized by the fibroblasts due to endocytosis, which resulted in disruption of the cell membrane. In contradiction, insulin-coated nanoparticles attached to the cell membrane, most likely to the cell-expressed surface receptors, and were not endocytosed. The presence of insulin on the surface of the nanoparticles caused an apparent increase in cell proliferation and viability. One major problem with uncoated nanoparticles has been the endocytosis of particles leading to irreversible entry. These results provide a route to prevent this problem. The derivatized nanoparticles show high affinity for cell membrane and opens up new opportunities for magnetic cell separation and recovery that may be of crucial interest for the development of cellular therapies.
Collapse
Affiliation(s)
- Ajay Kumar Gupta
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
15
|
Gupta AK, Curtis ASG. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004; 25:3029-40. [PMID: 14967536 DOI: 10.1016/j.biomaterials.2003.09.095] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 09/22/2003] [Indexed: 11/28/2022]
Abstract
Tissue and cell-specific drug targeting can be achieved by employing nanoparticle coatings or carrier-drug conjugates that contain a ligand recognized by a receptor on the target cell. Superparamagnetic iron oxide nanoparticles have been used for many years in various biomedical applications. In this study, superparamagnetic nanoparticles with specific shape and size have been prepared and coupled to various proteins. These particles are characterized in vitro and their influence on human dermal fibroblasts is assessed in terms of cell adhesion, viability, morphology and cytoskeleton organization using various techniques to observe cell-nanoparticle interaction, including light, fluorescence, scanning and transmission electron microscopy. The results showed that each nanoparticle type with different surface characteristics caused a distinctly different cell response. The underivatized magnetic particles were internalized by the fibroblasts probably due to endocytosis, which resulted in disruption of the cell membrane and disorganized cell cytoskeleton. In contradiction, lactoferrin or ceruloplasmin coated nanoparticles attached to the cell membrane, most likely to the cell expressed receptors and were not endocytosed. One major problem with uncoated magnetic nanoparticles has been the endocytosis of particles leading to irreversible entry. These experiments provide a route to prevent this problem, suggesting that cell response can be directed via specifically engineered particle surfaces.
Collapse
Affiliation(s)
- Ajay Kumar Gupta
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom.
| | | |
Collapse
|
16
|
Carlton J, Bujny M, Peter BJ, Oorschot VMJ, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ. Sorting Nexin-1 Mediates Tubular Endosome-to-TGN Transport through Coincidence Sensing of High- Curvature Membranes and 3-Phosphoinositides. Curr Biol 2004; 14:1791-800. [PMID: 15498486 DOI: 10.1016/j.cub.2004.09.077] [Citation(s) in RCA: 420] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/27/2004] [Accepted: 08/31/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sorting nexins (SNXs) are phox homology (PX) domain-containing proteins thought to regulate endosomal sorting of internalized receptors. The prototypical SNX is sorting nexin-1 (SNX1), a protein that through its PX domain binds phosphatidylinositol 3-monophosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P(2)]. SNX1 is associated with early endosomes, from where it has been proposed to regulate the degradation of internalized epidermal growth factor (EGF) receptors through modulating endosomal-to-lysosomal sorting. RESULTS We show here that SNX1 contains a BAR (Bin/Amphiphysin/Rvs) domain, a membrane binding domain that endows SNX1 with the ability to form dimers and to sense membrane curvature. We present evidence that through coincidence detection, the BAR and PX domains efficiently target SNX1 to a microdomain of the early endosome defined by high curvature and the presence of 3-phosphoinositides. In addition, we show that the BAR domain endows SNX1 with an ability to tubulate membranes in-vitro and drive the tubulation of the endosomal compartment in-vivo. Using RNA interference (RNAi), we establish that SNX1 does not play a role in EGF or transferrin receptor sorting; rather it specifically perturbs endosome-to-trans Golgi network (TGN) transport of the cation-independent mannose-6-phosphate receptor (CI-MPR). Our data support an evolutionarily conserved function for SNX1 from yeast to mammals and provide functional insight into the molecular mechanisms underlying lipid-mediated protein targeting and tubular-based protein sorting. CONCLUSIONS We conclude that through coincidence detection SNX1 associates with a microdomain of the early endosome-characterized by high membrane curvature and the presence of 3-phosphoinositides-from where it regulates tubular-based endosome-to-TGN retrieval of the CI-MPR.
Collapse
Affiliation(s)
- Jez Carlton
- Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gupta M, Gupta AK. Hydrogel pullulan nanoparticles encapsulating pBUDLacZ plasmid as an efficient gene delivery carrier. J Control Release 2004; 99:157-66. [PMID: 15342188 DOI: 10.1016/j.jconrel.2004.06.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 06/22/2004] [Indexed: 11/30/2022]
Abstract
This study provides a method for enhancing the delivery of nucleic acid molecules to cells by encapsulating it inside the hydrogel pullulan nanoparticles. In this study, pullulan nanoparticles encapsulating pBUDLacZ plasmid has been prepared inside the aqueous droplets of w/o microemulsions. Transmission electron microscopy (TEM) image showed that the particles are spherical in shape with size of 45+/-0.80 nm diameter. Cell cytotoxicity studies as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay demonstrated that cells incubated with nanoparticles remained more than 100% viable at nanoparticle concentration as high as 1000 microg/ml. From scanning electron microscope images, it was observed that the nanoparticles were internalised and the cells exhibited vacuoles in the cell body due to nanoparticle internalisation. Endocytosis of nanoparticles resulted in disruption of F-actin and beta-tubulin cytoskeleton of human fibroblasts. The efficacy of transfection in vitro on HEK293 and COS-7 cells demonstrated cell type dependence, with COS cells having a higher gene expression. The beta-gal expression in COS-7 cells by pullulan nanoparticle was comparable to commercially available Lipofectamine 2000. The results of this study are encouraging for the development of pullulan nanoparticles as an intracellular delivery system for drugs and genes.
Collapse
Affiliation(s)
- Mona Gupta
- Division of Biochemistry and Molecular Biology, IBLS, Davidson Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | |
Collapse
|
18
|
Dalby MJ, Berry CC, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res 2004; 295:387-94. [PMID: 15093738 DOI: 10.1016/j.yexcr.2004.02.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/29/2004] [Accepted: 02/02/2004] [Indexed: 12/23/2022]
Abstract
Control of the cells' nanoenvironment is likely to be important in the future of cell and tissue engineering. Microtopography has been shown to provide cues to cells that elicit a large range of cell responses, including control of adhesion, morphology, apoptosis and gene regulations. Now, researchers are focusing on nanotopography as techniques such as colloidal and electron beam lithography and polymer demixing have become available. In this study, human fibroblast response to nanocolumns (160-nm high, 100-nm diameter, 230-nm centre-centre spacing) produced by colloidal lithography are considered. Using electron microscopy and immunofluorescence to image the cytoskeleton, clathrin and dynamin, it was observed that the cells try to endocytose the nanocolumns. It also appeared that a small population of the cells changed to unusual morphologies with macrophage-like processes and highly disrupted cytoskeleton. These observations could have implications for nanomaterials science in areas such as cell transfection and drug delivery.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Berry CC, Charles S, Wells S, Dalby MJ, Curtis ASG. The influence of transferrin stabilised magnetic nanoparticles on human dermal fibroblasts in culture. Int J Pharm 2004; 269:211-25. [PMID: 14698593 DOI: 10.1016/j.ijpharm.2003.09.042] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic nanoparticles have been used for bio-medical purposes including drug delivery, cell destruction and as MRI contrast agents for several years. A more recent biological application has focused on targeted drug delivery. To this end, a wide variety of iron oxide nanoparticles have been synthesised. This study involves the use of magnetic nanoparticles synthesised and derivatised with human transferrin, compared to identical underivatised particles. Human fibroblasts were used, representative of a tissue cell-type. The influence in vitro was determined using light and fluorescence microscopy, scanning and transmission electron microscopy, and 1718 gene microarray. The results indicate that the transferrin derivatised particles appear to localise to the cell membrane without instigating receptor-mediated endocytosis, and also induce up-regulation in the cells for many genes, particularly in the area of cytoskeleton and cell signalling. The microscopy results further support these findings.
Collapse
Affiliation(s)
- Catherine C Berry
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | | | |
Collapse
|
20
|
Berry CC, Wells S, Charles S, Curtis ASG. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 2003; 24:4551-7. [PMID: 12950997 DOI: 10.1016/s0142-9612(03)00237-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Magnetic nanoparticles have been used for biomedical purposes for several years. In recent years, nanotechnology has developed to a stage that makes it possible to engineer particles to provide opportunities for the site-specific delivery of drugs. To this end a variety of iron oxide particles have been synthesised. The size and surface of the particles are crucial factors in the application of the particles. This study therefore involves the use of magnetic nanoparticles synthesised and derivatised with either dextran or albumin, compared to identical underivatised plain particles. This influence in vitro was assessed using human dermal fibroblasts and various techniques to observe cell-particles interaction, including light and fluorescence microscopy, scanning and transmission electron microscopy. The results indicate that the derivatised particles induce alterations in cell behaviour and morphology distinct from the plain particles, suggesting that cell response can be directed via specifically engineered particle surfaces.
Collapse
Affiliation(s)
- Catherine C Berry
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | |
Collapse
|
21
|
Abstract
The hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, has been implicated in intracellular trafficking and signal transduction. Hrs contains a phosphatidylinositol 3-phosphate-binding FYVE domain that contributes to its endosomal targeting. Here we show that Hrs and EEA1, a FYVE domain protein involved in endocytic membrane fusion, are localized to different regions of early endosomes. We demonstrate that Hrs co-localizes with clathrin, and that the C-terminus of Hrs contains a functional clathrin box motif that interacts directly with the terminal beta-propeller domain of clathrin heavy chain. A massive recruitment of clathrin to early endosomes was observed in cells transfected with Hrs, but not with Hrs lacking the C-terminus. Furthermore, the phosphatidylinositol 3-kinase inhibitor wortmannin caused the dissociation of both Hrs and clathrin from endosomes. While overexpression of Hrs did not affect endocytosis and recycling of transferrin, endocytosed epidermal growth factor and dextran were retained in early endosomes. These results provide a molecular mechanism for the recruitment of clathrin onto early endosomes and suggest a function for Hrs in trafficking from early to late endosomes.
Collapse
Affiliation(s)
| | | | | | - Espen Stang
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo and
Institute of Pathology, The National Hospital, N-0027 Oslo, Norway Corresponding author e-mail:
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo and
Institute of Pathology, The National Hospital, N-0027 Oslo, Norway Corresponding author e-mail:
| |
Collapse
|
22
|
Schmitz G, Orsó E. Intracellular cholesterol and phospholipid trafficking: comparable mechanisms in macrophages and neuronal cells. Neurochem Res 2001; 26:1045-68. [PMID: 11699932 DOI: 10.1023/a:1012357106398] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During the past ten years considerable evidences have accumulated that in addition to monocytes/macrophages, that are implicated in innate immunity and atherogenesis, neuronal cells also exhibit an extensive cellular metabolism. The present study focuses on the major protein players that establish cellular distribution of cholesterol and phospholipids. Evidences are provided that neuronal cells and monocytes/macrophages are equipped with comparable intracellular lipid trafficking mechanisms. Selected examples are presented that trafficking dysfunctions lead to disease development, such as Tangier disease and Niemann-Pick disease type C, or contribute to the pathogenesis of diseases such as Alzheimer disease and atherosclerosis.
Collapse
Affiliation(s)
- G Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.
| | | |
Collapse
|
23
|
Abstract
Cellular membranes act as semipermeable barriers to ions and macromolecules. Specialized mechanisms of transport of proteins across membranes have been developed during evolution. There are common mechanistic themes among protein translocation systems in bacteria and in eukaryotic cells. Here we review current understanding of mechanisms of protein transport across the bacterial plasma membrane as well as across several organelle membranes of yeast and mammalian cells. We consider a variety of organelles including the endoplasmic reticulum, outer and inner membranes of mitochondria, outer, inner, and thylakoid membranes of chloroplasts, peroxisomes, and lysosomes. Several common principles are evident: (a) multiple pathways of protein translocation across membranes exist, (b) molecular chaperones are required in the cytosol, inside the organelle, and often within the organelle membrane, (c) ATP and/or GTP hydrolysis is required, (d) a proton-motive force across the membrane is often required, and (e) protein translocation occurs through gated, aqueous channels. There are exceptions to each of these common principles indicating that our knowledge of how proteins translocate across membranes is not yet complete.
Collapse
Affiliation(s)
- F A Agarraberes
- Department of Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|