1
|
Ma CIJ, Burgess J, Brill JA. Maturing secretory granules: Where secretory and endocytic pathways converge. Adv Biol Regul 2021; 80:100807. [PMID: 33866198 DOI: 10.1016/j.jbior.2021.100807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs.
Collapse
Affiliation(s)
- Cheng-I Jonathan Ma
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Jason Burgess
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, PGCRL Building, Room 15.9716, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Medical Sciences Building, Room 2374, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Medical Sciences Building, Room 4396, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
2
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
Affiliation(s)
- Evelyn Gerth
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
|
4
|
Abstract
Endocytosis can be separated into the categories of phagocytosis and pinocytosis. Phagocytosis can be distinguished from pinocytosis primarily by the size of particle ingested and by its dependence on actin polymerization as a key step in particle ingestion. Several specific forms of pinocytosis have been identified that can be distinguished based on their dependence on clathrin or caveolin. Both clathrin and caveolin-dependent pinocytosis appear to require the participation of dynamin to internalize the plasma membrane. Other, less well-characterized forms of pinocytosis have also been described. Although endocytosis has long been known to affect receptor density, recent studies have demonstrated that endocytosis through clathrin- and caveolin-dependent processes plays a key role in receptor-mediated signal transduction. In some cases, blockade of these processes attenuates, or even prevents, signal transduction from taking place. This information, coupled with a better understanding of endocytosis mechanisms, will help advance the field of cell biology as well as present new targets for drug development and disease treatment.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Medicine, Room 12, Ruppert Center, 3120 Glendale Avenue, Toledo, OH 43614, USA.
| | | |
Collapse
|
5
|
|
6
|
Abstract
Understanding platelet biology has been aided by studies of mice with mutations in key megakaryocytic transcription factors. We have shown that point mutations in the GATA1 cofactor FOG1 that disrupt binding to the nucleosome remodeling and deacetylase (NuRD) complex have erythroid and megakaryocyte lineages defects. Mice that are homozygous for a FOG1 point mutation (ki/ki), which ablates FOG1-NuRD interactions, have platelets that display a gray platelet syndrome (GPS)-like macrothrombocytopenia. These platelets have few α-granules and an increased number of lysosomal-like vacuoles on electron microscopy, reminiscent of the platelet in patients with GATA1-related X-linked GPS. Here we further characterized the platelet defect in ki/ki mice. We found markedly deficient levels of P-selectin protein limited to megakaryocytes and platelets. Other α-granule proteins were expressed at normal levels and were appropriately localized to α-granule-like structures. Treatment of ki/ki platelets with thrombin failed to stimulate Akt phosphorylation, resulting in poor granule secretion and platelet aggregation. These studies show that disruption of the GATA1/FOG1/NuRD transcriptional system results in a complex, pleiotropic platelet defect beyond GPS-like macrothrombocytopenia and suggest that this transcriptional complex regulates not only megakaryopoiesis but also α-granule generation and signaling pathways required for granule secretion.
Collapse
|
7
|
Abstract
The majority of cells of the immune system are specialized secretory cells, whose function depends on regulated exocytosis. The latter is mediated by vesicular transport involving the sorting of specialized cargo into the secretory granules (SGs), thereby generating the transport vesicles; their transport along the microtubules and eventually their signal-dependent fusion with the plasma membrane. Each of these steps is tightly controlled by mechanisms, which involve the participation of specific sorting signals on the cargo proteins and their recognition by cognate adaptor proteins, posttranslational modifications of the cargo proteins and multiple GTPases and SNARE proteins. In some of the cells (i.e. mast cells, T killer cells) an intimate connection exists between the secretory system and the endocytic one, whereby the SGs are lysosome related organelles (LROs) also referred to as secretory lysosomes. Herein, we discuss these mechanisms in health and disease states.
Collapse
Affiliation(s)
- Anat Benado
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
8
|
Abstract
alpha-Granules are essential to normal platelet activity. These unusual secretory granules derive their cargo from both regulated secretory and endocytotic pathways in megakaryocytes. Rare, inheritable defects of alpha-granule formation in mice and man have enabled identification of proteins that mediate cargo trafficking and alpha-granule formation. In platelets, alpha-granules fuse with the plasma membrane upon activation, releasing their cargo and increasing platelet surface area. The mechanisms that control alpha-granule membrane fusion have begun to be elucidated at the molecular level. SNAREs and SNARE accessory proteins that control alpha-granule secretion have been identified. Proteomic studies demonstrate that hundreds of bioactive proteins are released from alpha-granules. This breadth of proteins implies a versatile functionality. While initially known primarily for their participation in thrombosis and hemostasis, the role of alpha-granules in inflammation, atherosclerosis, antimicrobial host defense, wound healing, angiogenesis, and malignancy has become increasingly appreciated as the function of platelets in the pathophysiology of these processes has been defined. This review will consider the formation, release, and physiologic roles of alpha-granules with special emphasis on work performed over the last decade.
Collapse
Affiliation(s)
- Price Blair
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| |
Collapse
|
9
|
Schlüter T, Knauth P, Wald S, Boland S, Bohnensack R. Numb3 is an endocytosis adaptor for the inflammatory marker P-selectin. Biochem Biophys Res Commun 2009; 379:909-13. [PMID: 19138666 DOI: 10.1016/j.bbrc.2008.12.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/25/2008] [Indexed: 11/30/2022]
Abstract
The endocytic protein Numb3 was found to bind to the cytosolic tail of the leukocyte adhesion receptor P-selectin. The N-terminal phosphotyrosine-binding (PTB) domain of Numb3 is responsible for this activity. An alanine scan revealed the FTNAAFD sequence as recognition region in P-selectin. Structural modeling of the interaction between the Numb PTB domain and the P-selectin tail suggests that both phenylalanines within the recognition sequence fit into hydrophobic cavities of the PTB surface. Their exchange for alanine gave Numb-negative mutants detaining the inhibition of P-selectin endocytosis by Numb PTB overexpression. Cells stable expressing P-selectins internalized the negative mutants markedly slower than the wild type. Consistent with other reports on the phosphorylation of Numb, we found that only the dephospho-Numb is able to bind P-selectin. Our observations demonstrate that Numb3 is an endocytic receptor for P-selectin and may be responsible for the rapid internalization of P-selectin when endothelial activation ends.
Collapse
Affiliation(s)
- Thomas Schlüter
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Biogenesis of Dense-Core Secretory Granules. TRAFFICKING INSIDE CELLS 2009. [PMCID: PMC7122546 DOI: 10.1007/978-0-387-93877-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dense core granules (DCGs) are vesicular organelles derived from outbound traffic through the eukaryotic secretory pathway. As DCGs are formed, the secretory pathway can also give rise to other types of vesicles, such as those bound for endosomes, lysosomes, and the cell surface. DCGs differ from these other vesicular carriers in both content and function, storing highly concentrated cores’ of condensed cargo in vesicles that are stably maintained within the cell until a specific extracellular stimulus causes their fusion with the plasma membrane. These unique features are imparted by the activities of membrane and lumenal proteins that are specifically delivered to the vesicles during synthesis. This chapter will describe the DCG biogenesis pathway, beginning with the sorting of DCG proteins from proteins that are destined for other types of vesicle carriers. In the trans-Golgi network (TGN), sorting occurs as DCG proteins aggregate, causing physical separation from non-DCG proteins. Recent work addresses the nature of interactions that produce these aggregates, as well as potentially important interactions with membranes and membrane proteins. DCG proteins are released from the TGN in vesicles called immature secretory granules (ISGs). The mechanism of ISG formation is largely unclear but is not believed to rely on the assembly of vesicle coats like those observed in other secretory pathways. The required cytosolic factors are now beginning to be identified using in vitro systems with purified cellular components. ISG transformation into a mature fusion-competent, stimulus-dependent DCG occurs as endoproteolytic processing of many DCG proteins causes continued condensation of the lumenal contents. At the same time, proteins that fail to be incorporated into the condensing core are removed by a coat-mediated budding mechanism, which also serves to remove excess membrane and membrane proteins from the maturing vesicle. This chapter will summarize the work leading to our current view of granule synthesis, and will discuss questions that need to be addressed in order to gain a more complete understanding of the pathway.
Collapse
|
11
|
Boonen M, Rezende de Castro R, Cuvelier G, Hamer I, Jadot M. A dileucine signal situated in the C-terminal tail of the lysosomal membrane protein p40 is responsible for its targeting to lysosomes. Biochem J 2008; 414:431-40. [PMID: 18479248 DOI: 10.1042/bj20071626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Transport of newly synthesized lysosomal membrane proteins from the TGN (trans-Golgi network) to the lysosomes is due to the presence of specific signals in their cytoplasmic domains that are recognized by cytosolic adaptors. p40, a hypothetical transporter of 372 amino acids localized in the lysosomal membrane, contains four putative lysosomal sorting motifs in its sequence: three of the YXXphi-type (Y(6)QLF, Y(106)VAL, Y(333)NGL) and one of the [D/E]XXXL[L/I]-type (EQERL(360)L(361)). To test the role of these motifs in the biosynthetic transport of p40, we replaced the most critical residues of these consensus sequences, the tyrosine residue or the leucine-leucine pair, by alanine or alanine-valine respectively. We analysed the subcellular localization of the mutated p40 proteins in transfected HeLa cells by confocal microscopy and by biochemical approaches (subcellular fractionation on self-forming Percoll density gradients and cell surface biotinylation). The results of the present study show that p40 is mistargeted to the plasma membrane when its dileucine motif is disrupted. No role of the tyrosine motifs could be put forward. Taken together, our results provide evidence that the sorting of p40 from the TGN to the lysosomes is directed by the dileucine EQERL(360)L(361) motif situated in its C-terminal tail.
Collapse
Affiliation(s)
- Marielle Boonen
- URPhiM, Laboratoire de Chimie Physiologique, FUNDP, B-5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
12
|
Dong H, Yuan H, Jin W, Shen Y, Xu X, Wang H. Involvement of beta3A subunit of adaptor protein-3 in intracellular trafficking of receptor-like protein tyrosine phosphatase PCP-2. Acta Biochim Biophys Sin (Shanghai) 2007; 39:540-6. [PMID: 17622474 DOI: 10.1111/j.1745-7270.2007.00303.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PCP-2 is a human receptor-like protein tyrosine phosphatase and a member of the MAM domain family cloned in human pancreatic adenocarcinoma cells. Previous studies showed that PCP-2 directly interacted with beta-catenin through the juxtamembrane domain, dephosphorylated beta-catenin and played an important role in the regulation of cell adhesion. Recent study showed that PCP-2 was also involved in the repression of beta-catenin-induced transcriptional activity. Here we describe the interactions of PCP-2 with the beta3A subunit of adaptor protein (AP)-3 and sorting nexin (SNX) 3. These protein complexes were detected using the yeast two-hybrid assay with the juxtamembrane and membrane-proximal catalytic domain of PCP-2 as "bait" Both AP-3 and SNX3 are molecules involved in intracellular trafficking of membrane receptors. The association between the beta3A subunit of AP-3 and PCP-2 was further confirmed in mammalian cells. Our results suggested a possible mechanism of intracellular trafficking of PCP-2 mediated by AP-3 and SNX3 which might participate in the regulation of PCP-2 functions.
Collapse
Affiliation(s)
- Hui Dong
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438, China
| | | | | | | | | | | |
Collapse
|
13
|
Harrison-Lavoie KJ, Michaux G, Hewlett L, Kaur J, Hannah MJ, Lui-Roberts WWY, Norman KE, Cutler DF. P-Selectin and CD63 Use Different Mechanisms for Delivery to Weibel-Palade Bodies. Traffic 2006; 7:647-62. [PMID: 16683915 DOI: 10.1111/j.1600-0854.2006.00415.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The biogenesis of endothelial-specific Weibel-Palade bodies (WPB) is poorly understood, despite their key role in both haemostasis and inflammation. Biogenesis of specialized organelles of haemopoietic cells is often adaptor protein complex 3-dependent (AP-3-dependent), and AP-3 has previously been shown to play a role in the trafficking of both WPB membrane proteins, P-selectin and CD63. However, WPB are thought to form at the trans Golgi network (TGN), which is inconsistent with a role for AP-3, which operates in post-Golgi trafficking. We have therefore investigated in detail the mechanisms of delivery of these two membrane proteins to WPB. We find that P-selectin is recruited to forming WPB in the trans-Golgi by AP-3-independent mechanisms that use sorting information within both the cytoplasmic tail and the lumenal domain of the receptor. In contrast, CD63 is recruited to already-budded WPB by an AP-3-dependent route. These different mechanisms of recruitment lead to the presence of distinct immature and mature populations of WPB in human umbilical vein endothelial cells (HUVEC).
Collapse
MESH Headings
- Adaptor Protein Complex 3
- Amino Acid Sequence
- Animals
- Antigens, CD/metabolism
- Base Sequence
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/ultrastructure
- Humans
- Leukocyte Rolling/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Electron
- Models, Biological
- P-Selectin/chemistry
- P-Selectin/genetics
- P-Selectin/metabolism
- Platelet Membrane Glycoproteins/metabolism
- Protein Sorting Signals/genetics
- Protein Structure, Tertiary
- Protein Transport
- RNA, Small Interfering/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Tetraspanin 30
- Transcription Factors/metabolism
- Weibel-Palade Bodies/metabolism
- Weibel-Palade Bodies/ultrastructure
- trans-Golgi Network/metabolism
Collapse
Affiliation(s)
- Kimberly J Harrison-Lavoie
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Torii S, Saito N, Kawano A, Zhao S, Izumi T, Takeuchi T. Cytoplasmic Transport Signal is Involved in Phogrin Targeting and Localization to Secretory Granules. Traffic 2005; 6:1213-24. [PMID: 16262730 DOI: 10.1111/j.1600-0854.2005.00353.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phogrin is an integral glycoprotein primarily expressed in neuroendocrine cells. The predominant localization of phogrin is on dense-core secretory granules, and the lumenal domain has been shown to be involved in its efficient sorting to the regulated secretory pathway. Here, we present data showing that a leucine-based sorting signal [EExxxIL] within the cytoplasmic tail contributes its steady-state localization to secretory granules. Deletion mutants in the tail region failed to represent granular distribution in pancreatic beta-cell line, MIN6, and anterior pituitary cell line, AtT-20. A sorting signal mutant with two glutamic acids substituted into alanines (EE/AA) is primarily accumulated in the Golgi area instead of secretory granules, and another mutant (IL/AA) is trapped at the plasma membrane due to a defect in endocytosis. We further demonstrate that the leucine-based sorting signal of phogrin specifically interacts with both adaptor protein (AP)-1 and AP-2 clathrin adaptor complexes in vitro. These observations, along with previous studies, suggest that distinct domains of phogrin mediate proper localization of this transmembrane protein on secretory granules.
Collapse
Affiliation(s)
- Seiji Torii
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Lui-Roberts WWY, Collinson LM, Hewlett LJ, Michaux G, Cutler DF. An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells. ACTA ACUST UNITED AC 2005; 170:627-36. [PMID: 16087708 PMCID: PMC2171491 DOI: 10.1083/jcb.200503054] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clathrin provides an external scaffold to form small 50-100-nm transport vesicles. In contrast, formation of much larger dense-cored secretory granules is driven by selective aggregation of internal cargo at the trans-Golgi network; the only known role of clathrin in dense-cored secretory granules formation is to remove missorted proteins by small, coated vesicles during maturation of these spherical organelles. The formation of Weibel-Palade bodies (WPBs) is also cargo driven, but these are cigar-shaped organelles up to 5 mum long. We hypothesized that a cytoplasmic coat might be required to make these very different structures, and we found that new and forming WPBs are extensively, sometimes completely, coated. Overexpression of an AP-180 truncation mutant that prevents clathrin coat formation or reduced AP-1 expression by small interfering RNA both block WPB formation. We propose that, in contrast to other secretory granules, cargo aggregation alone is not sufficient to form immature WPBs and that an external scaffold that contains AP-1 and clathrin is essential.
Collapse
Affiliation(s)
- Winnie W Y Lui-Roberts
- Medical Research Council Laboratory of Molecular Cell Biology, Cell Biology Unit and Department of Biochemistry and Molecular Biology, University College London, London, England, UK
| | | | | | | | | |
Collapse
|
16
|
Lawton AP, Prigozy TI, Brossay L, Pei B, Khurana A, Martin D, Zhu T, Späte K, Ozga M, Höning S, Bakke O, Kronenberg M. The mouse CD1d cytoplasmic tail mediates CD1d trafficking and antigen presentation by adaptor protein 3-dependent and -independent mechanisms. THE JOURNAL OF IMMUNOLOGY 2005; 174:3179-86. [PMID: 15749847 DOI: 10.4049/jimmunol.174.6.3179] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The short cytoplasmic tail of mouse CD1d (mCD1d) is required for its endosomal localization, for the presentation of some glycolipid Ags, and for the development of Valpha14i NKT cells. This tail has a four-amino acid Tyr-containing motif, Tyr-Gln-Asp-Ile (YQDI), similar to those sequences known to be important for the interaction with adaptor protein complexes (AP) that mediate the endosomal localization of many different proteins. In fact, mCD1d has been shown previously to interact with the AP-3 adaptor complex. In the present study, we mutated each amino acid in the YQDI motif to determine the importance of the entire motif sequence in influencing mCD1d trafficking, its interaction with adaptors, and its intracellular localization. The results indicate that the Y, D, and I amino acids are significant functionally because mutations at each of these positions altered the intracellular distribution of mCD1d and reduced its ability to present glycosphingolipids to NKT cells. However, the three amino acids are not all acting in the same way because they differ with regard to how they influence the intracellular distribution of CD1d, its rate of internalization, and its ability to interact with the mu subunit of AP-3. Our results emphasize that multiple steps, including interactions with the adaptors AP-2 and AP-3, are required for normal trafficking of mCD1d and that these different steps are mediated by only a few cytoplasmic amino acids.
Collapse
Affiliation(s)
- Anna P Lawton
- Division of Developmental Immunology, Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (microM Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.
Collapse
Affiliation(s)
- David J Owen
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
18
|
Washington AV, Schubert RL, Quigley L, Disipio T, Feltz R, Cho EH, McVicar DW. A TREM family member, TLT-1, is found exclusively in the α-granules of megakaryocytes and platelets. Blood 2004; 104:1042-7. [PMID: 15100151 DOI: 10.1182/blood-2004-01-0315] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AbstractThe triggering receptors expressed on myeloid cells (TREMs) have drawn considerable attention due to their ability to activate multiple cell types within the innate immune system, including neutrophils, monocyte/macrophages, and dendritic cells, via their association with DAP12. TLT-1 (TREM-like transcript-1) lies within the TREM gene cluster and contains the characteristic single V-set immunoglobulin (Ig) domain of the family, but its longer cytoplasmic tail is composed of both a proline-rich region and an immune receptor tyrosine-based inhibitory motif, the latter known to be used for interactions with protein tyrosine phosphatases. Here we report that TLT-1 is expressed exclusively in platelets and megakaryocytes (MKs) and that TLT-1 expression is up-regulated dramatically upon platelet activation. Consistent with this observation, confocal microscopy demonstrates that TLT-1 is prepackaged, along with CD62P, into both MK and platelet α-granules. Differences in thrombin-induced redistribution of CD62P and TLT-1 indicate that TLT-1 is not simply cargo of α-granules but may instead regulate granule construction or dispersal. Together these data show that that TLT-1 does not function to inhibit members of the TREM family but instead may play a role in maintaining vascular hemostasis and regulating coagulation and inflammation at sites of injury.
Collapse
|
19
|
Lawton AP, Kronenberg M. The Third Way: Progress on pathways of antigen processing and presentation by CD1. Immunol Cell Biol 2004; 82:295-306. [PMID: 15186261 DOI: 10.1111/j.0818-9641.2004.01258.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD1 proteins are a third family of antigen presenting molecules that bind bacterial and autologous lipid antigens for presentation to T cells. With the solution of the crystal structures of several complexes of CD1 molecules with lipids, a greater appreciation has been gained of the adaptability of CD1 in binding lipid antigens with diverse structural features. Biochemical studies of the interactions between the TCR and CD1-lipid complexes have revealed striking contrasts with TCR that bind to peptides presented by MHC-encoded class I and class II molecules. The sphingolipid activating proteins (SAP) have recently been found to facilitate the transfer of lipid antigens onto CD1 molecules. This helps to provide an explanation as to how the thermodynamic barrier, caused by loading hydrophobic lipid antigens in a hydrophilic environment, can be overcome. Mechanisms of CD1 endosomal trafficking are being delineated, including the means by which adaptor proteins induce the localization of some types of CD1 molecules to lysosomes, where they bind antigens. Unlike MHC class I and class II proteins, specialized molecules that function solely in chaperoning CD1 molecules, or in facilitating their antigen loading, have not been found. This suggests that the CD1 antigen presenting system, which diverged early in vertebrate evolution from MHC antigen presenting molecules, is a simpler system with a character closer to the primordial antigen presenting function.
Collapse
Affiliation(s)
- Anna P Lawton
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
20
|
Williams R, Schlüter T, Roberts MS, Knauth P, Bohnensack R, Cutler DF. Sorting nexin 17 accelerates internalization yet retards degradation of P-selectin. Mol Biol Cell 2004; 15:3095-105. [PMID: 15121882 PMCID: PMC452567 DOI: 10.1091/mbc.e04-02-0143] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The transient appearance of P-selectin on the surface of endothelial cells helps recruit leukocytes into sites of inflammation. The tight control of cell surface P-selectin on these cells depends on regulated exocytosis of Weibel-Palade bodies where the protein is stored and on its rapid endocytosis. After endocytosis, P-selectin is either sorted via endosomes and the Golgi apparatus for storage in Weibel-Palade bodies or targeted to lysosomes for degradation. A potential player in this complex endocytic itinerary is SNX17, a member of the sorting nexin family, which has been shown in a yeast two-hybrid assay to bind P-selectin. Here, we show that overexpression of SNX17 in mammalian cells can influence two key steps in the endocytic trafficking of P-selectin. First, it promotes the endocytosis of P-selectin from the plasma membrane. Second, it inhibits the movement of P-selectin into lysosomes, thereby reducing its degradation.
Collapse
Affiliation(s)
- Ross Williams
- MRC Laboratory for Molecular Cell Biology, Cell Biology Unit and Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
21
|
Elewaut D, Lawton AP, Nagarajan NA, Maverakis E, Khurana A, Honing S, Benedict CA, Sercarz E, Bakke O, Kronenberg M, Prigozy TI. The adaptor protein AP-3 is required for CD1d-mediated antigen presentation of glycosphingolipids and development of Valpha14i NKT cells. ACTA ACUST UNITED AC 2003; 198:1133-46. [PMID: 14557411 PMCID: PMC2194227 DOI: 10.1084/jem.20030143] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Relatively little is known about the pathway leading to the presentation of glycolipids by CD1 molecules. Here we show that the adaptor protein complex 3 (AP-3) is required for the efficient presentation of glycolipid antigens that require internalization and processing. AP-3 interacts with mouse CD1d, and cells from mice deficient for AP-3 have increased cell surface levels of CD1d and decreased expression in late endosomes. Spleen cells from AP-3-deficient mice have a reduced ability to present glycolipids to natural killer T (NKT) cells. Furthermore, AP-3-deficient mice have a significantly reduced NKT cell population, although this is not caused by self-tolerance that might result from increased CD1d surface levels. These data suggest that the generation of the endogenous ligand that selects NKT cells may also be AP-3 dependent. However, the function of MHC class II-reactive CD4+ T lymphocytes is not altered by AP-3 deficiency. Consistent with this divergence from the class II pathway, NKT cell development and antigen presentation by CD1d are not reduced by invariant chain deficiency. These data demonstrate that the AP-3 requirement is a particular attribute of the CD1d pathway in mice and that, although MHC class II molecules and CD1d are both found in late endosomes or lysosomes, different pathways mediate their intracellular trafficking.
Collapse
Affiliation(s)
- Dirk Elewaut
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Dr., San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hannah MJ, Hume AN, Arribas M, Williams R, Hewlett LJ, Seabra MC, Cutler DF. Weibel-Palade bodies recruit Rab27 by a content-driven, maturation-dependent mechanism that is independent of cell type. J Cell Sci 2003; 116:3939-48. [PMID: 12928333 DOI: 10.1242/jcs.00711] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of organelles is crucial for efficient cellular function, yet the basic underlying mechanisms by which this might occur have not been established. One group of proteins likely to be central to organelle identity is the Rab family of small GTPases. We have thus investigated Rab recruitment to membranes using endothelial cells as a model system. We report that Weibel-Palade bodies, the Von Willebrand Factor storage compartment of human umbilical vein endothelial cells, contain Rab27a. We have also found that Weibel-Palade body-like structures induced in HEK-293 cells by the expression of von Willebrand factor can recruit endogenous Rab27a. In the absence of von Willebrand Factor, Rab27a is not lysosome associated, indicating that it can distinguish between the Weibel-Palade-body-like organelle and a classical lysosome. Finally, a time course of Weibel-Palade-body formation was established using a green-fluorescent version of von Willebrand factor. Newly formed Weibel-Palade bodies lack Rab27a, which is acquired some hours after initial appearance of the cigar-shaped organelle. We conclude that a lumenal cargo protein drives the recruitment of Rab27a to the organelle membrane by a novel mechanism that is indirect, maturation-dependent and cell-type independent.
Collapse
Affiliation(s)
- Matthew J Hannah
- MRC Laboratory of Molecular Cell Biology, Cell Biology Unit, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Phillips JW, Barringhaus KG, Sanders JM, Hesselbacher SE, Czarnik AC, Manka D, Vestweber D, Ley K, Sarembock IJ. Single injection of P-selectin or P-selectin glycoprotein ligand-1 monoclonal antibody blocks neointima formation after arterial injury in apolipoprotein E-deficient mice. Circulation 2003; 107:2244-9. [PMID: 12707243 DOI: 10.1161/01.cir.0000065604.56839.18] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Emerging data suggest that P-selectin, by controlling adhesion of white blood cells, may be important in limiting the response to vascular injury. METHODS AND RESULTS We tested the hypothesis that transient inhibition of P-selectin with either anti-P-selectin monoclonal antibody (mAb) or anti-P-selectin glycoprotein ligand-1 (PSGL-1) mAb would reduce neointima formation in the setting of carotid denudation injury in atherosclerosis-prone apolipoprotein E-/- mice. Neointima formation at 28 days was reduced significantly, by 50% or 80%, by a single injection on the day of injury of 100 or 200 microg P-selectin mAb RB 40.34 and by 55% by a single injection of 100 microg PSGL-1 mAb 4RA10 (P< or =0.005). In addition, there was a significant reduction in neointimal macrophage content. CONCLUSIONS These findings demonstrate that transient P-selectin or PSGL-1 blockade at the time of arterial injury significantly limits plaque macrophage content and neointima formation in a dose-dependent manner after carotid denudation injury in apolipoprotein E-/- mice.
Collapse
Affiliation(s)
- J William Phillips
- Department of Medicine, Cardiovascular Division, University of Virginia Health System, Box 800158, Charlottesville, VA 22908-0158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Starcevic M, Nazarian R, Dell'Angelica EC. The molecular machinery for the biogenesis of lysosome-related organelles: lessons from Hermansky-Pudlak syndrome. Semin Cell Dev Biol 2003; 13:271-8. [PMID: 12243726 DOI: 10.1016/s1084952102000563] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hermansky-Pudlak syndrome (HPS) defines a group of autosomal recessive disorders characterized by defects in lysosome-related organelles such as melanosomes and platelet dense granules. The genes that are defective in each of the different forms of HPS in humans, or in HPS-like disorders in mice, are thought to encode components of a putative molecular machinery required for the formation of specialized organelles of the lysosomal system. This review discusses the biochemical and functional properties of the products of identified HPS genes, which include subunits of the AP-3 complex and the novel proteins HPS1p, HPS3p, HPS4p, pallidin and muted.
Collapse
Affiliation(s)
- Marta Starcevic
- Department of Human Genetics, School of Medicine, University of California at Los Angeles (UCLA), Gonda Center, Room 6357B, Los Angeles, CA 90095-7088, USA
| | | | | |
Collapse
|
25
|
Abstract
Weibel-Palade bodies (WPBs) are the lysosome-related secretory organelles of endothelial cells. Their content protein von Willebrand factor, plays a key role in haemostasis, whilst P-selectin in the membranes is critical in the initiation of inflammation. Biogenesis of these rod-shaped structures is driven by von Willebrand factor, since its heterologous expression leads to formation of organelles morphologically indistinguishable from bona fide WPBs. The two main membrane proteins of WPBs, CD63 and P-selectin, have complex itineraries controlled largely by cytoplasmic targeting signals. We are only just beginning to understand the way in which these three proteins come together to form mature WPBs.
Collapse
Affiliation(s)
- Matthew J Hannah
- MRC Laboratory for Molecular Cell Biology, Cell Biology Unit, University College London, Gower Street, WC1E 6BT, London, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
Platelet granule exocytosis plays a critical role in thrombosis and wound healing. Platelets have three major types of secretory granules that are defined by their unique molecular contents, kinetics of exocytosis and morphologies. Although the ontogeny of platelet granules is poorly understood, a convergence of new insights into megakaryocyte development, the molecular mechanisms of vesicle trafficking and the genetic basis of platelet granule defects, is beginning to define the cellular and molecular pathways responsible for platelet granule ontogeny.
Collapse
Affiliation(s)
- Sarah M King
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Bldg. II-127, 677 Huntington Ave., Boston, MA 02115, USA
| | | |
Collapse
|