1
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Uhlén M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, Zhong W, Tebani A, Strandberg L, Edfors F, Sjöstedt E, Mulder J, Mardinoglu A, Berling A, Ekblad S, Dannemeyer M, Kanje S, Rockberg J, Lundqvist M, Malm M, Volk AL, Nilsson P, Månberg A, Dodig-Crnkovic T, Pin E, Zwahlen M, Oksvold P, von Feilitzen K, Häussler RS, Hong MG, Lindskog C, Ponten F, Katona B, Vuu J, Lindström E, Nielsen J, Robinson J, Ayoglu B, Mahdessian D, Sullivan D, Thul P, Danielsson F, Stadler C, Lundberg E, Bergström G, Gummesson A, Voldborg BG, Tegel H, Hober S, Forsström B, Schwenk JM, Fagerberg L, Sivertsson Å. The human secretome. Sci Signal 2019; 12:12/609/eaaz0274. [PMID: 31772123 DOI: 10.1126/scisignal.aaz0274] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.
Collapse
Affiliation(s)
- Mathias Uhlén
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden. .,Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Max J Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Hober
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anne-Sophie Svensson
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Julia Scheffel
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - David Kotol
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Wen Zhong
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Abdellah Tebani
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Linnéa Strandberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Evelina Sjöstedt
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Adil Mardinoglu
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Berling
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Siri Ekblad
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Melanie Dannemeyer
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Johan Rockberg
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Magnus Lundqvist
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Magdalena Malm
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna-Luisa Volk
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Tea Dodig-Crnkovic
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Elisa Pin
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Martin Zwahlen
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Per Oksvold
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kalle von Feilitzen
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Ragna S Häussler
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mun-Gwan Hong
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - Fredrik Ponten
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Borbala Katona
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Jimmy Vuu
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Emil Lindström
- Department of Pathology, Uppsala University, Uppsala, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jonathan Robinson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Burcu Ayoglu
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Diana Mahdessian
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Devin Sullivan
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Peter Thul
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Frida Danielsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Charlotte Stadler
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Emma Lundberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bjørn G Voldborg
- Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hanna Tegel
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Björn Forsström
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jochen M Schwenk
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Åsa Sivertsson
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Kunze M. The type-2 peroxisomal targeting signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118609. [PMID: 31751594 DOI: 10.1016/j.bbamcr.2019.118609] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
The type-2 peroxisomal targeting signal (PTS2) is one of two peptide motifs destining soluble proteins for peroxisomes. This signal acts as amphiphilic α-helix exposing the side chains of all conserved residues to the same side. PTS2 motifs are recognized by a bipartite protein complex consisting of the receptor PEX7 and a co-receptor. Cargo-loaded receptor complexes are translocated across the peroxisomal membrane by a transient pore and inside peroxisomes, cargo proteins are released and processed in many, but not all species. The components of the bipartite receptor are re-exported into the cytosol by a ubiquitin-mediated and ATP-driven export mechanism. Structurally, PTS2 motifs resemble other N-terminal targeting signals, whereas the functional relation to the second peroxisomal targeting signal (PTS1) is unclear. Although only a few PTS2-carrying proteins are known in humans, subjects lacking a functional import mechanism for these proteins suffer from the severe inherited disease rhizomelic chondrodysplasia punctata.
Collapse
Affiliation(s)
- Markus Kunze
- Medical University of Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|
4
|
Mukai S, Matsuzaki T, Fujiki Y. The cytosolic peroxisome-targeting signal (PTS)-receptors, Pex7p and Pex5pL, are sufficient to transport PTS2 proteins to peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:441-449. [PMID: 30296498 DOI: 10.1016/j.bbamcr.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Proteins harboring peroxisome-targeting signal type-2 (PTS2) are recognized in the cytosol by mobile PTS2 receptor Pex7p and associate with a longer isoform Pex5pL of the PTS1 receptor. Trimeric PTS2 protein-Pex7p-Pex5pL complexes are translocated to peroxisomes in mammalian cells. However, it remains unclear whether Pex5pL and Pex7p are sufficient cytosolic components in transporting of PTS2 proteins to peroxisomes. Here, we construct a semi-intact cell import system to define the cytosolic components required for the peroxisomal PTS2 protein import and show that the PTS2 pre-import complexes comprising Pex7p, Pex5p, and Hsc70 isolated from the cytosol of pex14 Chinese hamster ovary cell mutant ZP161 is import-competent. PTS2 reporter proteins are transported to peroxisomes by recombinant Pex7p and Pex5pL in semi-intact cells devoid of the cytosol. Furthermore, PTS2 proteins are translocated to peroxisomes in the presence of a non-hydrolyzable ATP analogue, adenylyl imidodiphosphate, and N-ethylmaleimide, suggesting that ATP-dependent chaperones including Hsc70 are dispensable for PTS2 protein import. Taken together, we suggest that Pex7p and Pex5pL are the minimal cytosolic factors in the transport of PTS2 proteins to peroxisomes.
Collapse
Affiliation(s)
- Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
5
|
Identification of d-amino acid oxidase and propiverine interaction partners and their potential role in the propiverine-mediated nephropathy. Chem Biol Interact 2017; 281:69-80. [PMID: 29273565 DOI: 10.1016/j.cbi.2017.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/20/2022]
Abstract
Propiverine, a frequently-prescribed pharmaceutical for the treatment of symptoms associated with overactive bladder syndrome, provoked massive intranuclear and cytosolic protein inclusions in rat proximal tubule epithelium, primarily consisting of the peroxisomal targeting signal 1 (PTS1) containing protein d-amino acid oxidase (DAAO). As this type of nephropathy was also observed for other drugs, the aim was to determine whether propiverine interferes with trafficking and/or import of peroxisomal proteins. To elucidate this, DAAO- and propiverine-specific interaction partners from human HEK293 and rat WKPT cell lines and rat kidney and liver homogenate were determined using co-immunoprecipitation with subsequent nano-ESI-LC-MS/MS analyses. Corroboration of the role of DAAO- and/or propiverine-specific interaction partners in the drug-induced DAAO accumulation was sought via specific immunofluorescence staining of rat kidney sections from control and propiverine-treated rats. Above analyses demonstrated the interaction of propiverine with several protein classes, foremost peroxisomal proteins (DAAO, MFE2, HAOX2) and proteins of the protein quality control system, i.e. chaperones (HSP70 and DnaJ co-chaperones), proteases and proteasomal proteins (regulatory subunits of the 26S proteasome; Rpn1/2). The immunofluorescence analysis revealed mislocalization of many PTS1-proteins (DAAO, CAT, MFE2, ACOX1, EHHADH) in rat renal sections, strongly suggesting that propiverine primarily binds to PTS1 proteins resulting in the formation of PTS1 but not PTS2 or peroxisomal membrane protein (PMP) accumulations. Moreover, chaperones involved in peroxisomal trafficking (HSC70, DnaJB1) and peroxisomal biogenesis factor proteins (PEX3, PEX5, PEX7), also presented with distinct mislocalization patterns. Concomitantly, an increased number of peroxisomes was observed, suggestive of a compensatory mechanism for the presumably suboptimally functioning peroxisomes. Overall, the data presented suggested that propiverine interacts exclusively with DAAO or with a selected number of PTS1 proteins. The consequence of this interaction is the abrogated trafficking and peroxisomal import of PTS1 proteins concomitant with their nuclear and cytosolic accumulation due to inhibited degradation and imbalanced protein homeostasis.
Collapse
|
6
|
Protein-mimicking nanoparticles for the reproduction of transient protein-receptor interactions. Colloids Surf B Biointerfaces 2017; 160:682-687. [PMID: 29054092 DOI: 10.1016/j.colsurfb.2017.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/14/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022]
Abstract
One of the major concerns in target identification has been the need for new methods to detect target molecules in the native cellular environment. In conventional target identification, affinity-based pull down has been conducted using cell lysates. However, interactions in cell lysate do not reflect real endogenous interactions in living cells, and can produce false-positive or false-negative results. This study aimed to develop a new method of target protein identification in living cells. Targeting probes were conjugated onto magnetic nanoparticles (MNPs). After nanoparticle cellular uptake, identification and recruitment of target proteins were conducted in living cells, and the target protein was finally recovered under the magnetic field. As a proof-of-concept study, we developed a functionalized MNP (PTS1-MNP) to mimic a peroxisomal protein containing a synthetic peroxisomal targeting signal 1 (PTS1). The PTS1-MNPs were imported into human hepatoma HepG2 cells to recruit PTS1-receptor protein Pex5p. Successful peroxisomal translocation of PTS-MNPs was achieved via transient interaction with Pex5p. Pull-down of Pex5p in lysed or living HepG2 cells confirmed the selective recruiting functionality of synthetic PTS1. The specific detection of Pex5p before complete PTS1-MNPs translocation in living HepG2 cells further demonstrated the transient interaction between Pex5p and PTS1-MNPs. This is the first report showing the peroxisomal translocation of nanostructured materials in living cells. This approach can be applied as a new concept to study transient interactions and target identification or recruiting in living cells.
Collapse
|
7
|
Peroxisomal Membrane and Matrix Protein Import Using a Semi-Intact Mammalian Cell System. Methods Mol Biol 2017; 1595:213-219. [PMID: 28409465 DOI: 10.1007/978-1-4939-6937-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peroxisomes are essential intracellular organelles that catalyze a number of essential metabolic pathways including β-oxidation of very long chain fatty acids, synthesis of plasmalogen, bile acids, and generation and degradation of hydrogen peroxide. These peroxisomal functions are accomplished by strictly and spatiotemporally regulated compartmentalization of the enzymes catalyzing these reactions. Defects in peroxisomal protein import result in inherited peroxisome biogenesis disorders in humans. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes and transported to peroxisomes in a manner dependent on their specific targeting signals and their receptors. Peroxisomal protein import can be analyzed using a semi-intact assay system, in which targeting efficiency is readily monitored by immunofluorescence microscopy. Furthermore, cytosolic factors required for peroxisomal protein import can be manipulated, suggesting that the semi-intact system is a useful and convenient system to uncover the molecular mechanisms of peroxisomal protein import.
Collapse
|
8
|
The first minutes in the life of a peroxisomal matrix protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:814-20. [PMID: 26408939 DOI: 10.1016/j.bbamcr.2015.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 01/30/2023]
Abstract
In the field of intracellular protein sorting, peroxisomes are most famous by their capacity to import oligomeric proteins. The data supporting this remarkable property are abundant and, understandably, have inspired a variety of hypothetical models on how newly synthesized (cytosolic) proteins reach the peroxisome matrix. However, there is also accumulating evidence suggesting that many peroxisomal oligomeric proteins actually arrive at the peroxisome still as monomers. In support of this idea, recent data suggest that PEX5, the shuttling receptor for peroxisomal matrix proteins, is also a chaperone/holdase, binding newly synthesized peroxisomal proteins in the cytosol and blocking their oligomerization. Here we review the data behind these two different perspectives and discuss their mechanistic implications on this protein sorting pathway.
Collapse
|
9
|
Analysis of the Leishmania peroxin 7 interactions with peroxin 5, peroxin 14 and PTS2 ligands. Biochem J 2014; 460:273-82. [DOI: 10.1042/bj20131628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LPEX7 (Leishmania peroxin 7) is essential for targeting newly synthesized proteins with a PTS2 (peroxisome-targeting signal type 2) import signal into the glycosome. In the present paper, we describe the biophysical characterization of a functional LPEX7 isolated from Escherichia coli inclusion bodies. Pull-down assays showed that LPEX7 binds the interacting partners LdPEX5 (Leishmania donovani peroxin 5) and LdPEX14, but, more importantly, this receptor can specifically bind PTS2 cargo proteins in the monomeric and dimeric states. However, in the absence of interacting partners, LPEX7 preferentially adopts a tetrameric structure. Mapping studies localized the LdPEX5- and LdPEX14-binding sites to the N-terminal portion of LPEX7. Deletion of the first 52 residues abolished LdPEX14 association without altering the LdPEX5 interaction. Intrinsic fluorescence techniques suggested that each LPEX7 subunit has a single unique binding site for each of the respective interacting partners LdPEX5, LdPEX14 and PTS2 cargo proteins. Extrinsic fluorescence studies with ANS (8-anilinonaphthalene-1-sulfonic acid) demonstrated that LPEX7 contains a surface-exposed hydrophobic region(s) that was not altered by the binding of a PTS2 protein or LdPEX5. However, in the presence of these ligands, the accessibility of the hydrophobic domain was dramatically restricted, suggesting that both ligands are necessary to induce notable conformational changes in LPEX7. In contrast, binding of LdPEX14 did not alter the hydrophobic domain on LPEX7. It is possible that the hydrophobic surfaces on LPEX7 may be a crucial characteristic for the shuttling of this receptor in and out of the glycosome.
Collapse
|
10
|
Mohamadynejad P, Ghaedi K, Shafeghati Y, Salamian A, Tanhaie S, Karamali F, Rabiee F, Parivar K, Baharvand H, Nasr-Esfahani MH. Identification of a novel missense mutation of PEX7 gene in an Iranian patient with rhizomelic chondrodysplasia punctata type 1. Gene 2013; 518:461-6. [DOI: 10.1016/j.gene.2013.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/24/2012] [Accepted: 01/10/2013] [Indexed: 11/30/2022]
|
11
|
Mutowo-Meullenet P, Huntley RP, Dimmer EC, Alam-Faruque Y, Sawford T, Jesus Martin M, O'Donovan C, Apweiler R. Use of Gene Ontology Annotation to understand the peroxisome proteome in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bas062. [PMID: 23327938 PMCID: PMC3548334 DOI: 10.1093/database/bas062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Gene Ontology (GO) is the de facto standard for the functional description of gene products, providing a consistent, information-rich terminology applicable across species and information repositories. The UniProt Consortium uses both manual and automatic GO annotation approaches to curate UniProt Knowledgebase (UniProtKB) entries. The selection of a protein set prioritized for manual annotation has implications for the characteristics of the information provided to users working in a specific field or interested in particular pathways or processes. In this article, we describe an organelle-focused, manual curation initiative targeting proteins from the human peroxisome. We discuss the steps taken to define the peroxisome proteome and the challenges encountered in defining the boundaries of this protein set. We illustrate with the use of examples how GO annotations now capture cell and tissue type information and the advantages that such an annotation approach provides to users. Database URL:http://www.ebi.ac.uk/GOA/ and http://www.uniprot.org
Collapse
|
12
|
Otera H, Fujiki Y. Pex5p imports folded tetrameric catalase by interaction with Pex13p. Traffic 2012; 13:1364-77. [PMID: 22747494 DOI: 10.1111/j.1600-0854.2012.01391.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/28/2022]
Abstract
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Biology, Faculty of Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | | |
Collapse
|
13
|
Kunze M, Neuberger G, Maurer-Stroh S, Ma J, Eck T, Braverman N, Schmid JA, Eisenhaber F, Berger J. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7. J Biol Chem 2011; 286:45048-62. [PMID: 22057399 DOI: 10.1074/jbc.m111.301853] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The import of a subset of peroxisomal matrix proteins is mediated by the peroxisomal targeting signal 2 (PTS2). The results of our sequence and physical property analysis of known PTS2 signals and of a mutational study of the least characterized amino acids of a canonical PTS2 motif indicate that PTS2 forms an amphipathic helix accumulating all conserved residues on one side. Three-dimensional structural modeling of the PTS2 receptor PEX7 reveals a groove with an evolutionarily conserved charge distribution complementary to PTS2 signals. Mammalian two-hybrid assays and cross-complementation of a mutation in PTS2 by a compensatory mutation in PEX7 confirm the interaction site. An unstructured linker region separates the PTS2 signal from the core protein. This additional information on PTS2 signals was used to generate a PTS2 prediction algorithm that enabled us to identify novel PTS2 signals within human proteins and to describe KChIP4 as a novel peroxisomal protein.
Collapse
Affiliation(s)
- Markus Kunze
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wong Sak Hoi J, Lamarre C, Beau R, Meneau I, Berepiki A, Barre A, Mellado E, Read ND, Latgé JP. A novel family of dehydrin-like proteins is involved in stress response in the human fungal pathogen Aspergillus fumigatus. Mol Biol Cell 2011; 22:1896-906. [PMID: 21490150 PMCID: PMC3103405 DOI: 10.1091/mbc.e10-11-0914] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During a search for genes controlling conidial dormancy in Aspergillus fumigatus, two dehydrin-like genes, DprA and DprB, were identified. The deduced proteins had repeated stretches of 23 amino acids that contained a conserved dehydrin-like protein (DPR) motif. Disrupted DprAΔ mutants were hypersensitive to oxidative stress and to phagocytic killing, whereas DprBΔ mutants were impaired in osmotic and pH stress responses. However, no effect was observed on their pathogenicity in our experimental models of invasive aspergillosis. Molecular dissection of the signaling pathways acting upstream showed that expression of DprA was dependent on the stress-activated kinase SakA and the cyclic AMP-protein kinase A (cAMP-PKA) pathways, which activate the bZIP transcription factor AtfA, while expression of DprB was dependent on the SakA mitogen-activated protein kinase (MAPK) pathway, and the zinc finger transcription factor PacC. Fluorescent protein fusions showed that both proteins were associated with peroxisomes and the cytosol. Accordingly, DprA and DprB were important for peroxisome function. Our findings reveal a novel family of stress-protective proteins in A. fumigatus and, potentially, in filamentous ascomycetes.
Collapse
|
15
|
Grunau S, Schliebs W, Linnepe R, Neufeld C, Cizmowski C, Reinartz B, Meyer HE, Warscheid B, Girzalsky W, Erdmann R. Peroxisomal targeting of PTS2 pre-import complexes in the yeast Saccharomyces cerevisiae. Traffic 2009; 10:451-60. [PMID: 19183303 DOI: 10.1111/j.1600-0854.2008.00876.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.
Collapse
Affiliation(s)
- Silke Grunau
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Miyata N, Hosoi KI, Mukai S, Fujiki Y. In vitro import of peroxisome-targeting signal type 2 (PTS2) receptor Pex7p into peroxisomes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:860-70. [DOI: 10.1016/j.bbamcr.2009.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 02/10/2009] [Accepted: 02/19/2009] [Indexed: 11/25/2022]
|
17
|
Lazarow PB. Chapter 3.1.7. The import receptor Pex7p and the PTS2 targeting sequence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1599-604. [PMID: 16996627 DOI: 10.1016/j.bbamcr.2006.08.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 07/25/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
This chapter concerns one branch of the peroxisome import pathway for newly-synthesized peroxisomal proteins, specifically the branch for matrix proteins that contain a peroxisome targeting sequence type 2 (PTS2). The structure and utilization of the PTS2 are discussed, as well as the properties of the receptor, Pex7p, which recognizes the PTS2 sequence and conveys these proteins to the common translocation machinery in the peroxisome membrane. We also describe the recent evidence that this receptor recycles into the peroxisome matrix and back out to the cytosol in the course of its function. Pex7p is assisted in its functioning by several species-specific auxiliary proteins that are described in the following chapter.
Collapse
|
18
|
Schliebs W, Kunau WH. PTS2 Co-receptors: Diverse proteins with common features. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1605-12. [PMID: 17028014 DOI: 10.1016/j.bbamcr.2006.08.051] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/25/2006] [Accepted: 08/30/2006] [Indexed: 11/23/2022]
Abstract
One feature of the PTS2 import pathway is the separation of the roles of the PTS receptor between two proteins. Pex7p alone is insufficient to act as the receptor for the import cycle for peroxisomal matrix proteins. In all cases, Pex7p needs a PTS2 co-receptor to form an import-competent PTS2 receptor complex together with the PTS2 cargo. We provide an overview of the proteins that have been identified as PTS2 co-receptors and discuss their proposed functions.
Collapse
Affiliation(s)
- Wolfgang Schliebs
- Institut für Physiologische Chemie, Abt. Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
19
|
Ramos-Pamplona M, Naqvi NI. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol 2006; 61:61-75. [PMID: 16824095 DOI: 10.1111/j.1365-2958.2006.05194.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In lower eukaryotes, beta-oxidation of fatty acids is restricted primarily to the peroxisomes and the resultant acetyl-CoA molecules (and the chain-shortened fatty acids) are transported via the cytosol into the mitochondria for further breakdown and usage. Using a loss-of-function mutation in the Magnaporthe grisea PEROXIN6 orthologue, we define an essential role for peroxisomal acetyl-CoA during the host invasion step of the rice-blast disease. We show that an Mgpex6Delta strain lacks functional peroxisomes and is incapable of beta-oxidation of long-chain fatty acids. The Mgpex6Delta mutant lacked appressorial melanin and host penetration, and was completely non-pathogenic. We further show that a peroxisome-associated carnitine acetyl-transferase (Crat1) activity is essential for such appressorial function in Magnaporthe. CRAT1-minus appressoria showed reduced melanization, but were surprisingly incapable of elaborating penetration pegs or infection hyphae. Exogenous addition of excess glucose during infection stage caused partial remediation of the pathogenicity defects in the crat1Delta strain. Moreover, Mgpex6Delta and crat1Delta mycelia showed increased sensitivity to Calcofluor white, suggesting that weakened cell wall biosynthesis in a glucose-deficient environment leads to appressorial dysfunction in these mutants. Interestingly, CRAT1 was itself essential for growth on acetate and long-chain fatty acids. Thus, carnitine-dependent metabolic activities associated with the peroxisomes, cooperatively facilitate the appressorial function of host invasion during rice-blast infections.
Collapse
Affiliation(s)
- Marilou Ramos-Pamplona
- Fungal Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | | |
Collapse
|
20
|
Léon S, Goodman JM, Subramani S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1552-64. [PMID: 17011644 DOI: 10.1016/j.bbamcr.2006.08.037] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors.
Collapse
Affiliation(s)
- Sébastien Léon
- Section of Molecular Biology, Division of Biological Sciences, University California, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA
| | | | | |
Collapse
|
21
|
Kurbatova EM, Dutova TA, Trotsenko YA. Structural, functional and genetic aspects of peroxisome biogenesis. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiol Rev 2005; 28:603-43. [PMID: 15539076 DOI: 10.1016/j.femsre.2004.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 10/26/2022] Open
Abstract
In trypanosomatids (Trypanosoma and Leishmania), protozoa responsible for serious diseases of mankind in tropical and subtropical countries, core carbohydrate metabolism including glycolysis is compartmentalized in peculiar peroxisomes called glycosomes. Proper biogenesis of these organelles and the correct sequestering of glycolytic enzymes are essential to these parasites. Biogenesis of glycosomes in trypanosomatids and that of peroxisomes in other eukaryotes, including the human host, occur via homologous processes involving proteins called peroxins, which exert their function through multiple, transient interactions with each other. Decreased expression of peroxins leads to death of trypanosomes. Peroxins show only a low level of sequence conservation. Therefore, it seems feasible to design compounds that will prevent interactions of proteins involved in biogenesis of trypanosomatid glycosomes without interfering with peroxisome formation in the human host cells. Such compounds would be suitable as lead drugs against trypanosomatid-borne diseases.
Collapse
Affiliation(s)
- Juliette Moyersoen
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Petriv OI, Tang L, Titorenko VI, Rachubinski RA. A new definition for the consensus sequence of the peroxisome targeting signal type 2. J Mol Biol 2004; 341:119-34. [PMID: 15312767 DOI: 10.1016/j.jmb.2004.05.064] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 05/05/2004] [Accepted: 05/22/2004] [Indexed: 10/26/2022]
Abstract
All organisms except the nematode Caenorhabditis elegans have been shown to possess an import system for peroxisomal proteins containing a peroxisome targeting signal type 2 (PTS2). The currently accepted consensus sequence for this amino-terminal nonapeptide is -(R/K)(L/V/I)X(5)(H/Q)(L/A)-. Some C.elegans proteins contain putative PTS2 motifs, including the ortholog (CeMeK) of human mevalonate kinase, an enzyme known to be targeted by PTS2 to mammalian peroxisomes. We cloned the gene for CeMeK (open reading frame Y42G9A.4) and examined the subcellular localization of CeMeK and of two other proteins with putative PTS2s at their amino termini encoded by the open reading frames D1053.2 and W10G11.11. All three proteins localized to the cytosol, confirming and extending the finding that C.elegans lacks PTS2-dependent peroxisomal protein import. The putative PTS2s of the proteins encoded by D1053.2 and W10G11.11 did not function in targeting to peroxisomes in yeast or mammalian cells, suggesting that the current PTS2 consensus sequence is too broad. Analysis of available experimental data on both functional and nonfunctional PTS2s led to two re-evaluated PTS2 consensus sequences: -R(L/V/I/Q)XX(L/V/I/H)(L/S/G/A)X(H/Q)(L/A)-, describes the most common variants of PTS2, while -(R/K)(L/V/I/Q)XX(L/V/I/H/Q)(L/S/G/A/K)X(H/Q)(L/A/F)-, describes essentially all variants of PTS2. These redefined PTS2 consensus sequences will facilitate the identification of proteins of unknown cellular localization as possible peroxisomal proteins.
Collapse
Affiliation(s)
- Oleh I Petriv
- Department of Cell Biology, University of Alberta, Medical Sciences Building 5-14, Edmonton, Alta., Canada T6G 2H7
| | | | | | | |
Collapse
|
24
|
Westin MAK, Alexson SEH, Hunt MC. Molecular Cloning and Characterization of Two Mouse Peroxisome Proliferator-activated Receptor α (PPARα)-regulated Peroxisomal Acyl-CoA Thioesterases. J Biol Chem 2004; 279:21841-8. [PMID: 15007068 DOI: 10.1074/jbc.m313863200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisomes are organelles that function in the beta-oxidation of long- and very long-chain acyl-CoAs, bile acid-CoA intermediates, prostaglandins, leukotrienes, thromboxanes, dicarboxylic fatty acids, pristanic acid, and xenobiotic carboxylic acids. The very long- and long-chain acyl-CoAs are mainly chain-shortened and then transported to mitochondria for further metabolism. We have now identified and characterized two peroxisomal acyl-CoA thioesterases, named PTE-Ia and PTE-Ic, that hydrolyze acyl-CoAs to the free fatty acid and coenzyme A. PTE-Ia and PTE-Ic show 82% sequence identity at the amino acid level, and a putative peroxisomal type 1 targeting signal of -AKL was identified at the carboxyl-terminal end of both proteins. Localization experiments using green fluorescent fusion protein showed PTE-Ia and PTE-Ic to be localized in peroxisomes. Despite their high level of sequence identity, we show that PTE-Ia is mainly active on long-chain acyl-CoAs, whereas PTE-Ic is mainly active on medium-chain acyl-CoAs. Lack of regulation of enzyme activity by free CoASH suggests that PTE-Ia and PTE-Ic regulate intraperoxisomal levels of acyl-CoA, and they may have a function in termination of beta-oxidation of fatty acids of different chain lengths. Tissue expression studies revealed that PTE-Ia is highly expressed in kidney, whereas PTE-Ic is most highly expressed in spleen, brain, testis, and proximal and distal intestine. Both PTE-Ia and PTE-Ic were highly up-regulated in mouse liver by treatment with the peroxisome proliferator WY-14,643 and by fasting in a peroxisome proliferator-activated receptor alpha-dependent manner. These data show that PTE-Ia and PTE-Ic have different functions based on different substrate specificities and tissue expression.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- Cytosol/metabolism
- DNA, Complementary/metabolism
- Fibroblasts/metabolism
- Gene Expression Regulation
- Green Fluorescent Proteins
- Humans
- Hydrolysis
- Kinetics
- Liver/metabolism
- Luminescent Proteins/metabolism
- Male
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Mitochondria/metabolism
- Models, Genetic
- Molecular Sequence Data
- Oxygen/metabolism
- Peroxisomes/metabolism
- Protein Structure, Tertiary
- Pyrimidines/pharmacology
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Skin/metabolism
- Thiolester Hydrolases/chemistry
- Thiolester Hydrolases/metabolism
- Time Factors
- Tissue Distribution
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Maria A K Westin
- Department of Laboratory Medicine, Karolinska Institutet, C1-74, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Abstract
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in beta-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1). import of peroxisomal membrane proteins; (2). import of peroxisomal matrix proteins and (3). peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.
Collapse
Affiliation(s)
- Laura-Anne Brown
- Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
26
|
Fraisl P, Forss-Petter S, Zigman M, Berger J. Murine bubblegum orthologue is a microsomal very long-chain acyl-CoA synthetase. Biochem J 2004; 377:85-93. [PMID: 14516277 PMCID: PMC1223850 DOI: 10.1042/bj20031062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 09/26/2003] [Accepted: 09/30/2003] [Indexed: 11/17/2022]
Abstract
It has been suggested that a gene termed bubblegum (Bgm), encoding an acyl-CoA synthetase, could be involved in the pathogenesis of the inherited neurodegenerative disorder X-ALD (X-linked adrenoleukodystrophy). The precise function of the ALDP (ALD protein) still remains unclear. Aldp deficiency in mammals and Bgm deficiency in Drosophila led to accumulation of VLCFAs (very long-chain fatty acids). As a first step towards studying this interaction in wild-type versus Aldp-deficient mice, we analysed the expression pattern of the murine orthologue of the Bgm gene. In contrast with the ubiquitously expressed Ald gene, Bgm expression is restricted to the tissues that are affected by X-ALD such as brain, testis and adrenals. During mouse brain development, Bgm mRNA was first detected by Northern-blot analysis on embryonic day 18 and increased steadily towards adulthood, whereas the highest level of Ald mRNA was found on embryonic day 12 and decreased gradually during differentiation. Protein fractionation and confocal laser imaging of Bgm-green fluorescent protein fusion proteins revealed a microsomal localization that was different from peroxisomes (where Aldp is detected), endoplasmic reticulum and Golgi. Mouse Bgm showed acyl-CoA synthetase activity towards a VLCFA substrate in addition to LCFAs, and this activity was enriched in the microsomal compartment. Speculating that Bgm expression could be regulated by Ald deficiency, we compared the abundance of Bgm mRNA in wild-type and Ald knockout mice but observed no difference. Although mouse Bgm is capable of activating VLCFA, we conclude that a direct interaction between the mouse Bgm and the Aldp seems unlikely.
Collapse
Affiliation(s)
- Peter Fraisl
- Division of Neuroimmunology, Brain Research Institute, Vienna University Medical School, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
27
|
Brocard CB, Jedeszko C, Song HC, Terlecky SR, Walton PA. Protein structure and import into the peroxisomal matrix. Traffic 2003; 4:74-82. [PMID: 12559034 DOI: 10.1034/j.1600-0854.2003.40203.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins destined for the peroxisomal matrix are synthesized in the cytosol, and imported post-translationally. It has been previously demonstrated that stably folded proteins are substrates for peroxisomal import. Mammalian peroxisomes do not contain endogenous chaperone molecules. Therefore, it is possible that proteins are required to fold into their stable, tertiary conformation in order to be imported into the peroxisome. These investigations were undertaken to determine whether proteins rendered incapable of folding were also substrates for import into peroxisomes. Reduction of albumin resulted in a less compact tertiary structure as measured by analytical centrifugation. Microinjection of unfolded albumin molecules bearing the PTS1 targeting signal resulted in their import into peroxisomes. Kinetic analysis indicated that native and unfolded molecules were imported into peroxisomes at comparable rates. While import was unaffected by treatment with cycloheximide, hsc70 molecules were observed to be imported along with the unfolded albumin molecules. These results indicate that proteins, which are incapable of assuming their native conformation, are substrates for peroxisomal import. When combined with previous observations demonstrating the import of stably folded proteins, these results support the model that tertiary structure has no effect on protein import into the peroxisomal matrix.
Collapse
Affiliation(s)
- Cécile B Brocard
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
28
|
Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, Walton PA, Terlecky SR. Peroxisome senescence in human fibroblasts. Mol Biol Cell 2002; 13:4243-55. [PMID: 12475949 PMCID: PMC138630 DOI: 10.1091/mbc.e02-06-0322] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Revised: 07/31/2002] [Accepted: 09/13/2002] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging.
Collapse
Affiliation(s)
- Julie E Legakis
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghys K, Fransen M, Mannaerts GP, Van Veldhoven PP. Functional studies on human Pex7p: subcellular localization and interaction with proteins containing a peroxisome-targeting signal type 2 and other peroxins. Biochem J 2002; 365:41-50. [PMID: 11931631 PMCID: PMC1222642 DOI: 10.1042/bj20011432] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Revised: 03/25/2002] [Accepted: 04/03/2002] [Indexed: 01/13/2023]
Abstract
Pex7p is a WD40-containing protein involved in peroxisomal import of proteins containing an N-terminal peroxisome-targeting signal (PTS2). The interaction of human recombinant Pex7p expressed in different hosts/systems with its PTS2 ligand and other peroxins was analysed using various experimental approaches. Specific binding of human Pex7p to PTS2 could be demonstrated only when Pex7p was formed in vitro by a coupled transcription/translation system or synthesized in vivo in Chinese hamster ovary K1 cells transfected with a construct coding for a Pex7p-green fluorescent protein (GFP) fusion protein. Apparently, no cofactors are required and only monomeric Pex7p binds to PTS2. The interaction is reduced upon cysteine alkylation and is impaired upon truncation of the N-terminus of Pex7p. Interaction of Pex7p with other peroxins could not be demonstrated in bacterial or yeast two-hybrid screens, or in pull-down binding assays. The GFP fusion proteins, tagged at either the N- or C-terminus, were able to restore PTS2 import in rhizomelic chondrodysplasia punctata fibroblasts, and Pex7p-GFP was located both in the lumen of peroxisomes and in the cytosol.
Collapse
Affiliation(s)
- Karen Ghys
- Katholieke Universiteit Leuven, Fakulteit Geneeskunde, Campus Gasthuisberg (O/N), Afdeling Farmakologie, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
30
|
Gould SJ, Collins CS. Opinion: peroxisomal-protein import: is it really that complex? Nat Rev Mol Cell Biol 2002; 3:382-9. [PMID: 11988772 DOI: 10.1038/nrm807] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisomal enzymes are synthesized in the cytoplasm and imported post-translationally across the peroxisome membrane. Unlike other organelles with a sealed membrane, peroxisomes can import folded enzymes, and they seem to lack intraperoxisomal chaperones. Here, we propose a mechanistic model for the early steps in peroxisomal-matrix-enzyme import, which might help to explain the unusual features of this process.
Collapse
Affiliation(s)
- Stephen J Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
31
|
Mukai S, Ghaedi K, Fujiki Y. Intracellular localization, function, and dysfunction of the peroxisome-targeting signal type 2 receptor, Pex7p, in mammalian cells. J Biol Chem 2002; 277:9548-61. [PMID: 11756410 DOI: 10.1074/jbc.m108635200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously isolated and characterized a Chinese hamster ovary (CHO) cell mutant, ZPG207, that is defective in import of proteins carrying a peroxisome-targeting signal type 2 (PTS2) nonapeptide. Herein we have cloned Chinese hamster (Cl) PEX7 encoding the PTS2 receptor. ClPex7p consists of 318 amino acids, shorter than human Pex7p by 5 residues, showing 91 and 30% identity with Pex7p from humans and the yeast Saccharomyces cerevisiae, respectively. Expression of ClPEX7 rescued the impaired PTS2 import in pex7 ZPG207. Mutation in ZPG207 PEX7 was determined by reverse transcription PCR; a G-to-A transition caused a 1-amino acid substitution, W221ter. We investigated the molecular dysfunction of Pex7p variants in mammals, including Pex7p-W221ter and Pex7p with one site mutation at G217R, A218V, or L292ter, which frequently occurs in the human fatal genetic peroxisomal disease rhizomelic chondrodysplasia punctata, showing a cell phenotype of PTS2 import defect. All types of the mutations affected Pex7p in binding to both PTS2 cargo protein and the longer isoform of PTS1 receptor Pex5pL that is responsible for transport of the Pex7p-PTS2 complex. Subcellular fractionation and protease protection studies demonstrated bimodal distribution of Pex7p between the cytoplasm and peroxisomes in CHO and human cells. Moreover, expression of Pex5pL, but not of the shorter isoform Pex5pS, enhanced translocation of Pex7p-PTS2 proteins into peroxisomes, thereby implying that both PTS receptors shuttle between peroxisomes and the cytosol. Furthermore, a ClPex7p mutant with a deletion of 7 amino acids from the N terminus retained peroxisome-restoring activity, whereas an 11-amino acid truncation abrogated the activity. ClPex7p with a C-terminal 9- amino acid truncation, comprising residues 1--309, maintained the activity, whereas a 14-amino acid shorter form lacking several amino acids of the sixth WD motif lost the activity. Therefore, nearly the full length of Pex7p, including all WD motifs, is required for its function.
Collapse
Affiliation(s)
- Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|