1
|
Kim SJ, Sun EG, Bae JA, Park S, Hong C, Park Z, Kim H, Kim KK. A peptide interfering with the dimerization of oncogenic KITENIN protein and its stability suppresses colorectal tumour progression. Clin Transl Med 2022; 12:e871. [PMID: 35853101 PMCID: PMC9296036 DOI: 10.1002/ctm2.871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
The stability of a protein, as well as its function and versatility, can be enhanced through oligomerization. KITENIN (KAI1 C-terminal interacting tetraspanin) is known to promote the malignant progression of colorectal cancer (CRC). How KITENIN maintains its structural integrity and stability are largely unknown, however. Here we investigated the mechanisms regulating the stability of KITENIN with the aim of developing therapeutics blocking its oncogenic functions. We found that KITENIN formed a homo-oligomeric complex and that the intracellular C-terminal domain (KITENIN-CTD) was needed for this oligomerization. Expression of the KITENIN-CTD alone interfered with the formation of the KITENIN homodimer, and the amino acid sequence from 463 to 471 within the KITENIN-CTD was the most effective. This sequence coupled with a cell-penetrating peptide was named a KITENIN dimerization-interfering peptide (KDIP). We next studied the mechanisms by which KDIP affected the stability of KITENIN. The KITENIN-interacting protein myosin-X (Myo10), which has oncogenic activity in several cancers, functioned as an effector to stabilize the KITENIN homodimer in the cis formation. Treatment with KDIP resulted in the disintegration of the homodimer via downregulation of Myo10, which led to increased binding of RACK1 to the exposed RACK1-interacting motif (463-471 aa), and subsequent autophagy-dependent degradation of KITENIN and reduced CRC cell invasion. Intravenous injection of KDIP significantly reduced the tumour burden in a syngeneic mouse tumour model and colorectal liver metastasis in an intrasplenic hepatic metastasis model. Collectively, our present results provide a new cancer therapeutic peptide for blocking colorectal liver metastasis, which acts by inducing the downregulation of Myo10 and specifically targeting the stability of the oncogenic KITENIN protein.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Eun Gene Sun
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Jeong A Bae
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Chang‐Soo Hong
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Hangun Kim
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Kyung Keun Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| |
Collapse
|
2
|
He JH, Chen JG, Zhang B, Chen J, You KL, Hu JM, Xu JW, Chen L. Elevated MYO10 Predicts Poor Prognosis and its Deletion Hampers Proliferation and Migration Potentials of Cells Through Rewiring PI3K/Akt Signaling in Cervical Cancer. Technol Cancer Res Treat 2020; 19:1533033820936773. [PMID: 32618228 PMCID: PMC7336823 DOI: 10.1177/1533033820936773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MYO10, recognized as an important regulator of cytoskeleton remodeling, has been
reported to be associated with tumorigenesis. However, its functional
implication in cervical cancer and potential mechanism still remain to be
undetermined currently. MYO10 level in cervical cancer tissues was analyzed by
using data retrieved from The Cancer Genome Atlas and ONCOMINE databases.
Messenger RNA and protein expression levels were determined by quantitative
real-time polymerase chain reaction and Western blotting. Small-interfering RNA
and overexpressing plasmid were used for MYO10 silencing and overexpression, and
cell proliferation was analyzed by CCK-8. Transwell assays were performed to
investigate the ability of cell migration and invasion. MYO10 was upregulated in
cervical cancer tissues and cells when compared to normal controls, and survival
analysis showed patients with high MYO10 expression had worse overall survival.
Moreover, knockdown/overexpression of MYO10 significantly inhibited/enhanced the
proliferation, invasion, and migration capabilities of cervical cells
transfected with siRNAs/overexpressing plasmid. Additionally, MYO10 silencing
inhibited PI3K/Akt signaling pathway by decreasing the phosphorylation status of
PI3K and AKT. Data from the present study indicated that MYO10 were
overexpressed in patients with cervical cancer and positively linked with poor
prognosis. Experimental results suggested that MYO10 induced a significant
encouraging effect in cervical cancer cell proliferation, invasion, and
migration, linked with involvement of PI3K/Akt signaling. Collectively, these
results emphasize a novel role for MYO10 overexpression in cervical cancer and
provide a potent therapeutic strategy against cervical cancer.
Collapse
Affiliation(s)
- Jian-Hui He
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian-Guo Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ke-Li You
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie-Mei Hu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jia-Wen Xu
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Le Chen
- Department of gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
|
4
|
Mu Y, Li Q, Cheng J, Shen J, Jin X, Xie Z, Gao Z, Zhang W, Hua Q, Xia L, Gao Y, Xia Y. Integrated miRNA-seq analysis reveals the molecular mechanism underlying the effect of acupuncture on endometrial receptivity in patients undergoing fertilization: embryo transplantation. 3 Biotech 2020; 10:6. [PMID: 31824817 PMCID: PMC6879696 DOI: 10.1007/s13205-019-1990-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Endometrial receptivity (ER) is the main factor affecting in vitro fertilization (IVF) and embryo transplantation. Previous studies have shown that acupuncture might be useful for increasing ER. However, the underlying microRNA (miRNA) molecular mechanisms deserve to be further elucidated. In this study, we performed small RNA sequencing of endometrial samples from infertile women who either underwent acupuncture therapy or did not. Differentially expressed microRNAs (DEmiRNAs) were identified and used to predict target genes. Then, the functional and pathway were analyzed for the target genes. Moreover, quantitative reverse transcription PCR (qRT-PCR) was performed to validate the RNA-seq results. Finally, the miRNA-gene network was conducted by Cytoscape. A total of 39 DEmiRNAs were identified between the acupuncture group and the control group. The functional enrichment analysis suggested that the target genes of the DEmiRNAs were significantly enriched in GO biological process (BP) terms associated with transcription, such as regulation of DNA-templated transcription and positive regulation of DNA-templated transcription. The pathway analysis showed that DEmiRNAs might be involved in acupuncture therapy via Endocytosis, Axon guidance, Oxytocin signaling, the Hippo pathway, and Estrogen signaling pathways. Significant downregulation of hsa-miR-449a and hsa-miR-449b-3p, and significant upregulation of hsa-miR-3135b and hsa-miR-345-3p in the RNA-seq results were validated by qRT-PCR. Besides, these four DEmiRNAs and their 34 target genes conducted a miRNA-gene network. Our results predict that hsa-miR-449a, hsa-miR-3135b and hsa-miR-345-3p may underly mechanisms by which acupuncture therapy help increase ER and promote endometrium receptivity in preparation for in vitro fertilization and embryo transplantation.
Collapse
Affiliation(s)
- Yanyun Mu
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Qian Li
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Jie Cheng
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Jie Shen
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Xun Jin
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Zhengyun Xie
- Preventive Treatment Center, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, 210002 Jiangsu China
| | - Zhao Gao
- Pain Management, Zhongda Hospital Southest University, Nanjing, 210009 Jiangsu China
| | - Wenjing Zhang
- Beijing Haidian Garrison District Fifth Retired Cadre Sanatorium, Beijing, 100091 China
| | - Qixin Hua
- Acupuncture and Moxibustion Department, Nanjing Hospital of Traditional Chinese Medicine, Preventive Treatment Center, Nanjing, 210002 Jiangsu China
| | - Liangjun Xia
- College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Youling Gao
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
| | - Youbing Xia
- College of Acupuncture and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu China
- The Affiliated Hospital, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| |
Collapse
|
5
|
Tokuo H, Bhawan J, Coluccio LM. Myosin X is required for efficient melanoblast migration and melanoma initiation and metastasis. Sci Rep 2018; 8:10449. [PMID: 29993000 PMCID: PMC6041326 DOI: 10.1038/s41598-018-28717-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022] Open
Abstract
Myosin X (Myo10), an actin-associated molecular motor, has a clear role in filopodia induction and cell migration in vitro, but its role in vivo in mammals is not well understood. Here, we investigate the role of Myo10 in melanocyte lineage and melanoma induction. We found that Myo10 knockout (Myo10KO) mice exhibit a white spot on their belly caused by reduced melanoblast migration. Myo10KO mice crossed with available mice that conditionally express in melanocytes the BRAFV600E mutation combined with Pten silencing exhibited reduced melanoma development and metastasis, which extended medial survival time. Knockdown of Myo10 (Myo10kd) in B16F1 mouse melanoma cell lines decreased lung colonization after tail-vein injection. Myo10kd also inhibited long protrusion (LP) formation by reducing the transportation of its cargo molecule vasodilator-stimulated phosphoprotein (VASP) to the leading edge of migrating cells. These findings provide the first genetic evidence for the involvement of Myo10 not only in melanoblast migration, but also in melanoma development and metastasis.
Collapse
Affiliation(s)
- Hiroshi Tokuo
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Jag Bhawan
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Lynne M Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, 02118, USA
| |
Collapse
|
6
|
Qin S, Ingle JN, Liu M, Yu J, Wickerham DL, Kubo M, Weinshilboum RM, Wang L. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion. Breast Cancer Res 2017; 19:95. [PMID: 28821270 PMCID: PMC5562991 DOI: 10.1186/s13058-017-0890-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. METHODS Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. RESULTS We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. CONCLUSIONS Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - James N Ingle
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Mohan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - D Lawrence Wickerham
- Section of Cancer Genetics and Prevention, Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA.,National Surgical Adjuvant Breast and Bowel Project (NRG Oncology), Pittsburgh, PA, USA
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Chen CP, Sun ZL, Lu X, Wu WX, Guo WL, Lu JJ, Han C, Huang JQ, Fang Y. MiR-340 suppresses cell migration and invasion by targeting MYO10 in breast cancer. Oncol Rep 2015; 35:709-16. [PMID: 26573744 DOI: 10.3892/or.2015.4411] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors among females, and can seriously affect the physical and mental health and even threaten the lives of women. Recently, research has demonstrated that microRNAs (miRNAs), as a new method of regulation, have been shown to have oncogenic and tumor‑suppressive functions in human breast cancer. Detection of their expression may lead to the identification of novel markers for breast cancer. In the present study, we firstly detected miR‑340 expression and found lower expression of miR‑340 in 6 human breast cancer cell lines by using RT‑qPCR. Then by using wound healing assay and Transwell migration and invasion experiments, we focused on the role of miR-340 in the regulation of tumor cell migration and invasion, exploring the relationship between them. The results revealed that induction of miR‑340 expression was able to suppress tumor cell migration and invasion, whereas knockdown of miR‑340 expression promoted breast cancer cell migration and invasion. At the gene level, MYO10 (myosin X), as a direct miR‑340 target gene, mediated the cell migration and invasion. Finally, we verified our research further at the tissue specimen level and in animal experiments. In brief, miR‑340 plays an important role in breast cancer progression. Thus, miR‑340 may be further explored as a novel biomarker for breast cancer metastasis and prognosis, and potentially a therapeutic target.
Collapse
Affiliation(s)
- Cai-Ping Chen
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Zong-Lin Sun
- Department of Breast Surgery, Zaozhuang Mining Group Center Hospital, Zaozhuang, Shandong 277800, P.R. China
| | - Xiang Lu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Wan-Xin Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Wen-Li Guo
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Jian-Ju Lu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Chao Han
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Jian-Qi Huang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| | - Ying Fang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Jiaxing College, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|
8
|
Bennett RD, Pittelkow MR, Strehler EE. Immunolocalization of the tumor-sensitive calmodulin-like protein CALML3 in normal human skin and hyperproliferative skin disorders. PLoS One 2013; 8:e62347. [PMID: 23638045 PMCID: PMC3630146 DOI: 10.1371/journal.pone.0062347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Calmodulin-like protein CALML3 is an epithelial-specific protein regulated during keratinocyte differentiation in vitro. CALML3 expression is downregulated in breast cancers and transformed cell lines making it an attractive marker for tumor formation. The objective of this study was to survey CALML3 localization in normal epidermis and in hyperproliferative skin diseases including actinic keratosis, squamous and basal cell carcinoma as well as verruca and psoriasis and to compare CALML3 immunoreactivity with the proliferation marker Ki-67. METHODS Paraffin-embedded tissue sections from normal human skin and hyperproliferative skin disorders were examined by immunohistochemistry and analyzed for localization and expression of CALML3 and Ki-67. RESULTS CALML3 was strongly expressed in differentiating layers of normal skin, staining the periphery in suprabasal cells and exhibiting nuclear localization in the stratum granulosum. CALML3 nuclear localization was inversely correlated to Ki-67 staining in each disease, indicating that CALML3 nuclear presence is related to terminal cell differentiation and postmitotic state. CONCLUSIONS Increased CALML3 expression in suprabasal layers is characteristic for differentiating keratinocytes in normal epidermis, and nuclear expression of CALML3 inversely correlates with expression of the proliferation marker Ki-67. This suggests that CALML3 is a useful marker for normal and benign hyperplastic epidermal development, whereas the loss of nuclear CALML3 indicates progression to a proliferative and potentially malignant phenotype.
Collapse
Affiliation(s)
- Richard D. Bennett
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- Department of Cell Biology and Genetics Program, Graduate School, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Mark R. Pittelkow
- Department of Dermatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Emanuel E. Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
The development of cell-cell junctions was a fundamental step in metazoan evolution, and human health depends on the formation and function of cell junctions. Although it has long been known that actin and conventional myosin have important roles in cell junctions, research has begun to reveal the specific functions of the different forms of conventional myosin. Exciting new data also reveals that a growing number of unconventional myosins have important roles in cell junctions. Experiments showing that cell junctions act as mechanosensors have also provided new impetus to understand the functions of myosins and the forces they exert. In this review we will summarize recent developments on the roles of myosins in cell junctions.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Richard E Cheney
- Department of Cell and Molecular Physiology; School of Medicine; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
10
|
Abstract
Myosin-X (Myo10) is an unconventional myosin with MyTH4-FERM domains that is best known for its striking localization to the tips of filopodia and its ability to induce filopodia. Although the head domain of Myo10 enables it to function as an actin-based motor, its tail contains binding sites for several molecules with central roles in cell biology, including phosphatidylinositol (3,4,5)-trisphosphate, microtubules and integrins. Myo10 also undergoes fascinating long-range movements within filopodia, which appear to represent a newly recognized system of transport. Myo10 is also unusual in that it is a myosin with important roles in the spindle, a microtubule-based structure. Exciting new studies have begun to reveal the structure and single-molecule properties of this intriguing myosin, as well as its mechanisms of regulation and induction of filopodia. At the cellular and organismal level, growing evidence demonstrates that Myo10 has crucial functions in numerous processes ranging from invadopodia formation to cell migration.
Collapse
Affiliation(s)
- Michael L Kerber
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
11
|
Liu KC, Jacobs DT, Dunn BD, Fanning AS, Cheney RE. Myosin-X functions in polarized epithelial cells. Mol Biol Cell 2012; 23:1675-87. [PMID: 22419816 PMCID: PMC3338435 DOI: 10.1091/mbc.e11-04-0358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myosin-X, an unconventional myosin that has been studied primarily in fibroblast-like cells, has been shown to have important functions in polarized epithelial cell junction formation, regulation of paracellular permeability, and epithelial morphogenesis. Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis.
Collapse
Affiliation(s)
- Katy C Liu
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
12
|
Caride AJ, Bennett RD, Strehler EE. Kinetic analysis reveals differences in the binding mechanism of calmodulin and calmodulin-like protein to the IQ motifs of myosin-10. Biochemistry 2010; 49:8105-16. [PMID: 20731332 DOI: 10.1021/bi100644q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myo10 is an unconventional myosin with important functions in filopodial motility, cell migration, and cell adhesion. The neck region of Myo10 contains three IQ motifs that bind calmodulin (CaM) or the tissue-restricted calmodulin-like protein (CLP) as light chains. However, little is known about the mechanism of light chain binding to the IQ motifs in Myo10. Binding of CaM and CLP to each IQ motif was assessed by nondenaturing gel electrophoresis and by stopped-flow experiments using fluorescence-labeled CaM and CLP. Although the binding kinetics are different in each case, there are similarities in the mechanism of binding of CaM and CLP to IQ1 and IQ2: for both IQ motifs Ca(2+) increased the binding affinity, mainly by increasing the rate of the forward steps. The general kinetic mechanism comprises a two-step process, which in some cases may involve the binding of a second IQ motif with lower affinity. For IQ3, however, the kinetics of CaM binding is very different from that of CLP. In both cases, binding in the absence of Ca(2+) is poor, and addition of Ca(2+) decreases the K(d) to below 10 nM. However, while the CaM binding kinetics are complex and best fitted by a multistep model, binding of CLP is fitted by a relatively simple two-step model. The results show that, in keeping with growing structural evidence, complexes between CaM or CaM-like myosin light chains and IQ motifs are highly diverse and depend on the specific sequence of the particular IQ motif as well as the light chain.
Collapse
Affiliation(s)
- Ariel J Caride
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
13
|
Singh SK, Kurfurst R, Nizard C, Schnebert S, Perrier E, Tobin DJ. Melanin transfer in human skin cells is mediated by filopodia--a model for homotypic and heterotypic lysosome-related organelle transfer. FASEB J 2010; 24:3756-69. [PMID: 20501793 DOI: 10.1096/fj.10-159046] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transfer of the melanocyte-specific and lysosome-related organelle, the melanosome, from melanocytes to keratinocytes is crucial for the protection of the skin against harmful ultraviolet radiation (UVR)--our main physiological cutaneous stressor. However, this commonplace event remains a most enigmatic process despite several early hypotheses. Recently, we and others have proposed a role for filopodia in melanin transfer, although conclusive experimental proof remained elusive. Using known filopodial markers (MyoX/Cdc42) and the filopodial disrupter, low-dose cytochalasin-B, we demonstrate here a requirement for filopodia in melanosome transfer from melanocytes to keratinocytes and also, unexpectedly, between keratinocytes. Melanin distribution throughout the skin represents the key phenotypic event in skin pigmentation. Melanocyte filopodia were also necessary for UVR-stimulated melanosome transfer, as this was also inhibited by MyoX knockdown and low-dose cytochalasin-B. Knockdown of keratinocyte MyoX protein, in its capacity as a phagocytosis effector, resulted in the inhibition of melanin uptake by keratinocytes. This indicates a central role for phagocytosis by keratinocytes of melanocyte filopodia. In summary, we propose a new model for the regulation of pigmentation in human skin cells under both constitutive and facultative (post-UVR) conditions, which we call the "filopodial-phagocytosis model." This model also provides a unique and highly accessible way to study lysosome-related organelle movement between mammalian cells.
Collapse
Affiliation(s)
- Suman K Singh
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | | | | | | | | | | |
Collapse
|
14
|
Gotesman M, Hosein RE, Gavin RH. A FERM domain in a class XIV myosin interacts with actin and tubulin and localizes to the cytoskeleton, phagosomes, and nucleus in Tetrahymena thermophila. Cytoskeleton (Hoboken) 2010; 67:90-101. [PMID: 20169533 DOI: 10.1002/cm.20426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous studies have shown that Myo1(myosin class XIV) localizes to the cytoskeleton and is involved in amitosis of the macronucleus and trafficking of phagosomes. Myo1 contains a FERM domain that could be a site for interaction between Myo1 and the cytoskeleton. Here, we explore the function of FERM by investigating its cytoskeleton binding partners and involvement in localization of Myo1. Alignment of Myo1 FERM with a talin actin-binding sequence, a MAP-2 tubulin-binding sequence, the radixin FERM dimerization motif, and the SV40 nuclear localization sequence (NLS) revealed putative actin- and tubulin-binding sequences, a putative FERM dimerization motif, and NLS-like sequences in both the N-terminal and C-terminal regions of Myo1 FERM. Alignment of Myo1 with an ERM C-terminal motif revealed a similar sequence in the Myo1 motor domain. GFP-FERM and two truncated FERM domains were separately expressed in Tetrahymena. GFP-FERM contained the entire Myo1 FERM. Truncated Myo1 FERM domains contained either the N-terminal or the C-terminal region of FERM and one putative sequence for actin-binding, one for tubulin-binding, a putative dimerization motif, and a NLS-like sequence. Actin antibody coprecipitated GFP-fusion polypeptides and tubulin from lysate of cells expressing GFP-fusions. Cosedimentation assays performed with either whole cell extracts or anti-actin immunoprecipitation pellets revealed that F-actin (independent of ATP) and microtubules cosedimented with GFP-fusion polypeptides. GFP-FERM localized to the cytoskeleton, phagosomes, and nucleus. Truncated GFP-FERM domains localized to phagosomes but not to the cytoskeleton or nucleus.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, Brooklyn College of the City University of New York, 11210, USA
| | | | | |
Collapse
|
15
|
Hwang YS, Luo T, Xu Y, Sargent TD. Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. Dev Dyn 2010; 238:2522-9. [PMID: 19718754 DOI: 10.1002/dvdy.22077] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Myosin-X (MyoX) belongs to a large family of unconventional, nonmuscle, actin-dependent motor proteins. We show that MyoX is predominantly expressed in cranial neural crest (CNC) cells in embryos of Xenopus laevis and is required for head and jaw cartilage development. Knockdown of MyoX expression using antisense morpholino oligonucleotides resulted in retarded migration of CNC cells into the pharyngeal arches, leading to subsequent hypoplasia of cartilage and inhibited outgrowth of the CNC-derived trigeminal nerve. In vitro migration assays on fibronectin using explanted CNC cells showed significant inhibition of filopodia formation, cell attachment, spreading and migration, accompanied by disruption of the actin cytoskeleton. These data support the conclusion that MyoX has an essential function in CNC migration in the vertebrate embryo.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Bennett RD, Mauer AS, Pittelkow MR, Strehler EE. Calmodulin-like protein upregulates myosin-10 in human keratinocytes and is regulated during epidermal wound healing in vivo. J Invest Dermatol 2008; 129:765-9. [PMID: 18818677 DOI: 10.1038/jid.2008.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Epidermal wound healing is required for normal skin barrier function. Cell motility is a key factor in the ability of keratinocytes to heal epithelial damage. Calmodulin-like protein (CLP) is an epithelial-specific Ca(2+)-binding protein that is regulated during terminal keratinocyte differentiation. CLP is a specific light chain of unconventional myosin-10 (Myo10) and its expression increases filopodial length, filopodial number, and Myo10-dependent cell motility in vitro. However, the effects of CLP expression on keratinocyte motility are unknown. Here we used cultured human keratinocytes to study the role of CLP in regulating Myo10 and the effects of Myo10 and CLP on cell migration. CLP and Myo10 expression were correlated in vitro and required for keratinocyte motility in wound-healing assays. We examined the localization of CLP in wounded skin by immunohistochemistry and found an upregulation and peripheral localization of CLP in the basal and suprabasal cells adjacent to and immediately over the wound bed in vivo. The results suggest that increased CLP expression and CLP-mediated Myo10 function are important for skin differentiation and wound reepithelialization.
Collapse
Affiliation(s)
- Richard D Bennett
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
17
|
Calmodulin-like protein enhances myosin-10 translation. Biochem Biophys Res Commun 2008; 369:654-9. [PMID: 18295593 DOI: 10.1016/j.bbrc.2008.02.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/15/2008] [Indexed: 11/24/2022]
Abstract
Myosin-10 (Myo10) is involved in processes ranging from filopodial formation and extension to spindle orientation during cell division. Myo10 contains three IQ motifs that bind calmodulin and calmodulin-like protein (CLP) as light chains. We recently found that CLP expression up-regulates Myo10, leading to increased Myo10-dependent cell motility and filopodial extension [R.D. Bennett, et al., J. Biol. Chem. 282 (2007) 3205-3212]. CLP-dependent Myo10 up-regulation occurs without increase in Myo10 mRNA. We followed Myo10 degradation in vivo and in vitro and found that it was unaffected by CLP. Myo10 decayed rapidly with a half-life of approximately 2.5h. Using an in vitro transcription/translation system we determined that CLP increased Myo10 translation, resulting in a higher relative accumulation of Myo10 in the presence than in the absence of CLP. Our data suggest that CLP functions to increase translation of Myo10 possibly by acting as a chaperone for the emerging Myo10 heavy chain protein.
Collapse
|
18
|
Yonezawa S, Yoshizaki N, Kageyama T, Takahashi T, Sano M, Tokita Y, Masaki S, Inaguma Y, Hanai A, Sakurai N, Yoshiki A, Kusakabe M, Moriyama A, Nakayama A. Fates of Cdh23/CDH23 with mutations affecting the cytoplasmic region. Hum Mutat 2006; 27:88-97. [PMID: 16281288 DOI: 10.1002/humu.20266] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BUS/Idr mice carrying a mutant waltzer allele (vbus) are characterized by splayed hair bundles in inner ear sensory cells, providing a mouse homolog of USH1D/DFNB12. RT-PCR-based screening for the presence of mutations in mouse Cdh23, the gene responsible for the waltzer phenotype, has identified a G>A mutation in the donor splice site of intron 67 (Cdh23:c.9633+1G>A: GenBank AF308939.1), indicating that two altered Cdh23 molecules having intron-derived COOH-terminal structures could be generated in BUS mouse tissues. Immunochemical analyses with anti-Cdh23 antibodies showed, however, no clear Cdh23-related proteins in vbus/vbus tissues, while the antibodies immunoreacted with approximately 350 kDa proteins in control mice. Immunofluorescent experiments revealed considerable weakening of Cdh23 signals in sensory hair cell stereocilia and Reissner's membrane in the vbus/vbus inner ear, and transmission electron microscopy demonstrated abundant autophagosome/autolysosome vesicles, suggesting aberrant Cdh23:c.9633+1G>A-derived protein-induced acceleration of lysosomal bulk degradation of proteins. In transfection experiments, signal sequence-preceded FLAG-tagged transmembrane plus cytoplasmic regions (TMCy) of tissue-specific Cdh23(+/-68) isoforms were localized to filamentous actin-rich protrusions and the plasma membrane of cultured cells, whereas FLAG-TMCy:c.9633+1G>A proteins were highly insoluble and retained in the cytoplasm. In contrast, FLAG-tagged TMCy:p.Arg3175His and human TMCy:c.9625_9626insC forms were both localized to the plasma membrane in cultured cells, allowing prediction that USH1D-associated CDH23:p.Arg3175His and CDH23:c.9625_9626insC proteins could be transported to the plasma membrane in vivo. The present results thus suggest different fates of CDH23/Cdh23 with mutations affecting the cytoplasmic region.
Collapse
Affiliation(s)
- Satoshi Yonezawa
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Here, we report the first transcriptome for mouse epidermal neural crest stem cells (EPI-NCSC, formerly eNCSCs). In addition, our study resolves conflicting opinions in the literature by showing that EPI-NCSC are distinct from other types of skin-resident stem cells/progenitors. Finally, with the three gene profiles, we have established a foundation and provide a valuable resource for future mouse NCSC research. EPI-NCSC represent a novel type of multipotent adult stem cell that originates from the embryonic neural crest and resides in the bulge of hair follicles. We performed gene profiling by LongSAGE (long serial analysis of gene expression) with mRNA from EPI-NCSC, embryonic NCSC, and in vitro differentiated embryonic neural crest progeny. We have identified important differentially expressed genes, including novel genes and disease genes. Furthermore, using stringent criteria, we have defined an NCSC molecular signature that consists of a panel of 19 genes and is representative of both EPI-NCSC and NCSC. EPI-NCSC have characteristics that combine advantages of embryonic and adult stem cells. Similar to embryonic stem cells, EPI-NCSC have a high degree of innate plasticity, they can be isolated at high levels of purity, and they can be expanded in vitro. Similar to other types of adult stem cell, EPI-NCSC are readily accessible by minimal invasive procedure. Multipotent adult mammalian stem cells are of great interest because of their potential value in future cell replacement therapy by autologous transplantation, which avoids graft rejection.
Collapse
Affiliation(s)
- Yao Fei Hu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
20
|
Abstract
Phosphoinositide phosphates (PIPs) correspond to phosphorylated derivatives of phosphatidylinositol (PI). Despite their relatively low abundance in the plasma membrane, PIPs play a crucial role as precursors of second messengers and are themselves important signaling and targeting molecules. Indeed, modulation of levels of PIPs affects, for example, cortical actin organization, membrane dynamics, and cell migration. The focus of this review is on selected interesting targets of PIPs. Those proteins that bind PIPs and are involved in regulation of actin assembly, actin membrane linkage, and actin contractility are discussed, as well as those that are involved in signaling, such as small GTPases, protein kinases, and phosphatases, or in regulation of membrane dynamics.
Collapse
Affiliation(s)
- Verena Niggli
- Department of Pathology, University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
21
|
Sousa AD, Cheney RE. Myosin-X: a molecular motor at the cell's fingertips. Trends Cell Biol 2005; 15:533-9. [PMID: 16140532 DOI: 10.1016/j.tcb.2005.08.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Research in several areas, including unconventional myosins and deafness genes, has converged recently on a group of myosins whose tails contain myosin tail homology 4 (MyTH4) and band 4.1, ezrin, radixin, moesin (FERM) domains. Although these 'MyTH-FERM' myosins are not present in yeast and plants, they are present in slime molds, worms, flies and mammals, where they mediate interactions between the cytoskeleton and the plasma membrane. The most broadly distributed MyTH-FERM myosin in vertebrate cells appears to be myosin-X (Myo10). This myosin can act as a link to integrins and microtubules, stimulate the formation of filopodia and undergo a novel form of motility within filopodia.
Collapse
Affiliation(s)
- Aurea D Sousa
- Medical Biomolecular Research Building, Department of Cell and Molecular Physiology, CB #7545, University of North Carolina at Chapel Hill, 27599-7545, USA
| | | |
Collapse
|
22
|
Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 2004; 431:325-9. [PMID: 15372037 DOI: 10.1038/nature02834] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 07/12/2004] [Indexed: 11/08/2022]
Abstract
Proper spindle positioning and orientation are essential for asymmetric cell division and require microtubule-actin filament (F-actin) interactions in many systems. Such interactions are particularly important in meiosis, where they mediate nuclear anchoring, as well as meiotic spindle assembly and rotation, two processes required for asymmetric cell division. Myosin-10 proteins are phosphoinositide-binding, actin-based motors that contain carboxy-terminal MyTH4 and FERM domains of unknown function. Here we show that Xenopus laevis myosin-10 (Myo10) associates with microtubules in vitro and in vivo, and is concentrated at the point where the meiotic spindle contacts the F-actin-rich cortex. Microtubule association is mediated by the MyTH4-FERM domains, which bind directly to purified microtubules. Disruption of Myo10 function disrupts nuclear anchoring, spindle assembly and spindle-F-actin association. Thus, this myosin has a novel and critically important role during meiosis in integrating the F-actin and microtubule cytoskeletons.
Collapse
Affiliation(s)
- Kari L Weber
- Department of Zoology, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
23
|
Mashanov GI, Tacon D, Peckham M, Molloy JE. The Spatial and Temporal Dynamics of Pleckstrin Homology Domain Binding at the Plasma Membrane Measured by Imaging Single Molecules in Live Mouse Myoblasts. J Biol Chem 2004; 279:15274-80. [PMID: 14729907 DOI: 10.1074/jbc.m312140200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pleckstrin homology (PH) domains act to target proteins to the plasma membrane and intracellular vesicles by binding to specific phosphoinositol phospholipids. We have investigated the binding kinetics of PH domains found in the tail region of the molecular motor, myosin X. Using total internal reflection fluorescence microscopy, we observed binding and release of individual PH domains fused to green fluorescent protein at the plasma membrane of living cells. Individual spots of light corresponding to single fluorescently tagged molecules were imaged onto a sensitive camera system, and digital image processing was then used to identify each fluorophore and store its trajectory in time and space. The PH domains bound with an apparent on-rate of 0.03 microm(-1) microm(-2) s(-1) and a detachment rate constant of 0.05 s(-1). The average residency time of the domains at the plasma membrane was about 20s. We found very limited movement of the membrane-bound PH domains in the mouse myoblast cells that we studied. This implies that the PH domains must either be attached to the cytoskeleton or corralled in a lipid compartment. Localization of the PH domains together with their rapid detachment rate is probably important in controlling the response of myosin X to signaling events and in regulating its cellular function.
Collapse
Affiliation(s)
- Gregory I Mashanov
- Medical Research Council National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|