1
|
Ho Shon I, Hogg PJ. Imaging of cell death in malignancy: Targeting pathways or phenotypes? Nucl Med Biol 2023; 124-125:108380. [PMID: 37598518 DOI: 10.1016/j.nucmedbio.2023.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Cell death is fundamental in health and disease and resisting cell death is a hallmark of cancer. Treatment of malignancy aims to cause cancer cell death, however current clinical imaging of treatment response does not specifically image cancer cell death but assesses this indirectly either by changes in tumor size (using x-ray computed tomography) or metabolic activity (using 2-[18F]fluoro-2-deoxy-glucose positron emission tomography). The ability to directly image tumor cell death soon after commencement of therapy would enable personalised response adapted approaches to cancer treatment that is presently not possible with current imaging, which is in many circumstances neither sufficiently accurate nor timely. Several cell death pathways have now been identified and characterised that present multiple potential targets for imaging cell death including externalisation of phosphatidylserine and phosphatidylethanolamine, caspase activation and La autoantigen redistribution. However, targeting one specific cell death pathway carries the risk of not detecting cell death by other pathways and it is now understood that cancer treatment induces cell death by different and sometimes multiple pathways. An alternative approach is targeting the cell death phenotype that is "agnostic" of the death pathway. Cell death phenotypes that have been targeted for cell death imaging include loss of plasma membrane integrity and dissipation of the mitochondrial membrane potential. Targeting the cell death phenotype may have the advantage of being a more sensitive and generalisable approach to cancer cell death imaging. This review describes and summarises the approaches and radiopharmaceuticals investigated for imaging cell death by targeting cell death pathways or cell death phenotype.
Collapse
Affiliation(s)
- Ivan Ho Shon
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Sydney, Australia; School of Clinical Medicine, UNSW Medicine & Health, Randwick Clinical Campus, UNSW Sydney, Australia.
| | - Philip J Hogg
- The Centenary Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Nuclear cardiology for a cardiothoracic surgeon. Indian J Thorac Cardiovasc Surg 2022; 38:268-282. [PMID: 35529010 PMCID: PMC9023643 DOI: 10.1007/s12055-021-01311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022] Open
Abstract
Cardiac surgeons are commonly faced with issues regarding the balance between the potential risk and the potential benefit of a surgical procedure. Nuclear cardiology procedures such as single-photon emission computed tomography and positron emission tomography provide the surgeon with objective information that augments standard clinical and angiographic assessments related to the diagnosis, prognosis, and potential benefit from any intervention. Myocardial perfusion is imaged with the use of radiopharmaceuticals that accumulate rapidly in the myocardium in proportion to the myocardial blood flow. Radionuclide lung imaging most commonly involves the demonstration of pulmonary perfusion using technetium-99 m macro aggregate albumin (Tc-99 m MAA), as well as the assessment of ventilation using inspired inert gas, usually xenon, or Tc-99 m-labelled aerosols. Nuclear cardiology is extensively used as a part of the work-up of ischemic heart disease and cardiac failure in deciding the optimal therapeutic strategy with its ability to predict the severity of the disease. It has also proved extremely useful in the management of congenital heart disease and the diagnosis of pulmonary embolism, among many other applications. Myocardial perfusion imaging is a basic adjunct to the noninvasive assessment of patients with stable angina, baseline electrocardiogram (ECG) abnormalities, post-revascularisation assessment, and heart failure. This review article covers a summary of basic concepts of nuclear cardiology about what a cardiac surgeon should be aware of. To many, it is just a perfusion test, but the versatility, reliability, and future of the technology are without a doubt.
Collapse
|
3
|
Qin X, Jiang H, Liu Y, Zhang H, Tian M. Radionuclide imaging of apoptosis for clinical application. Eur J Nucl Med Mol Imaging 2022; 49:1345-1359. [PMID: 34873639 PMCID: PMC8921127 DOI: 10.1007/s00259-021-05641-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Apoptosis was a natural, non-inflammatory, energy-dependent form of programmed cell death (PCD) that can be discovered in a variety of physiological and pathological processes. Based on its characteristic biochemical changes, a great number of apoptosis probes for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) have been developed. Radionuclide imaging with these tracers were potential for the repetitive and selective detection of apoptotic cell death in vivo, without the need for invasive biopsy. In this review, we overviewed molecular mechanism and specific biochemical changes in apoptotic cells and summarized the existing tracers that have been used in clinical trials as well as their potentialities and limitations. Particularly, we highlighted the clinic applications of apoptosis imaging as diagnostic markers, early-response indicators, and prognostic predictors in multiple disease fields.
Collapse
Affiliation(s)
- Xiyi Qin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yu Liu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China.
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Feher A, Sinusas AJ. Evaluation of cardiac allograft vasculopathy by positron emission tomography. J Nucl Cardiol 2021; 28:2616-2628. [PMID: 33389637 DOI: 10.1007/s12350-020-02438-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022]
Abstract
Cardiac allograft vasculopathy (CAV) remains one of the most important late occurring complications in heart transplant (HT) recipients significantly effecting graft survival. Recently, there has been tremendous focus on the development of effective and safe non-invasive diagnostic strategies for the diagnosis of CAV employing a wide range of imaging technologies. During the past decade multiple studies have been published using positron emission tomography (PET) myocardial perfusion imaging, establishing the value of PET myocardial blood flow quantification for the evaluation of CAV. These independent investigations demonstrate that PET can be successfully used to establish the diagnosis of CAV, can be utilized for prognostication and may be used for serial monitoring of HT recipients. In addition, molecular imaging techniques have started to emerge as new tools to enhance our knowledge to better understand the pathophysiology of CAV.
Collapse
Affiliation(s)
- Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520, USA.
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208017, Dana 3, New Haven, CT, 06520, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021; 12:735472. [PMID: 34566657 PMCID: PMC8458574 DOI: 10.3389/fphar.2021.735472] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients.
Collapse
Affiliation(s)
- Louise Mui
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
6
|
Li H, Chen Y, Jin Q, Wu Y, Deng C, Gai Y, Sun Z, Li Y, Wang J, Yang Y, Lv Q, Zhang Y, An R, Lan X, Zhang L, Xie M. Noninvasive Radionuclide Molecular Imaging of the CD4-Positive T Lymphocytes in Acute Cardiac Rejection. Mol Pharm 2021; 18:1317-1326. [PMID: 33506680 DOI: 10.1021/acs.molpharmaceut.0c01155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heart transplantation (HT) is an effective treatment for end-stage heart disease. However, acute rejection (AR) is still the main cause of death within one year after HT. AR is an acute immune response mediated by T lymphocytes, mainly CD4+ T lymphocytes. This study innovatively develops a radiolabeled probe 99mTc-HYNIC-mAbCD4 for noninvasive visualization of CD4+ T lymphocyte infiltration and detection of AR. The 99mTc-HYNIC-mAbCD4 and its isotype control 99mTc-HYNIC-IgG were successfully prepared and characterized. The specificity and affinity of the probe in vitro were assessed by cell-binding experiments. Binding of 99mTc-HYNIC-mAbCD4 to CD4+ T lymphocytes was higher than that of the macrophages and IgG probe groups, and mAbCD4 was effective in the blockade of the binding reaction. The biodistribution data confirmed the SPECT/CT images, with significantly higher levels of 99mTc-HYNIC-mAbCD4 observed in allografts compared to allograft treatment (10 mg/kg/d Cyclosporin A subcutaneously for 5 consecutive days after surgery), isografts, or in rats which received allografts injected with 99mTc-HYNIC-IgG. Histological examination confirmed more CD4+ T lymphocyte infiltration in the allograft hearts than other groups. In summary, 99mTc-HYNIC-mAbCD4 achieved high affinity and specificity of binding to CD4+ T lymphocytes and accumulation in the transplanted heart. Radionuclide molecular imaging with 99mTc-HYNIC-mAbCD4 may be a potential diagnostic method for acute cardiac rejection.
Collapse
Affiliation(s)
- Huiling Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongkang Gai
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuman Li
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yali Yang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongxue Zhang
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui An
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoli Lan
- Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
8
|
Shekhar A, Heeger P, Reutelingsperger C, Arbustini E, Narula N, Hofstra L, Bax JJ, Narula J. Targeted Imaging for Cell Death in Cardiovascular Disorders. JACC Cardiovasc Imaging 2018; 11:476-493. [DOI: 10.1016/j.jcmg.2017.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/19/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023]
|
9
|
Molecular Imaging of Acute Cardiac Transplant Rejection: Animal Experiments and Prospects. Transplantation 2017; 101:1977-1986. [PMID: 28538050 DOI: 10.1097/tp.0000000000001780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute rejection (AR) remains the biggest challenge during the first year after heart transplantation despite advances in immunosuppressive therapy. The early detection and curbing of AR are crucial to the survival of transplant recipients. However, as the criterion standard for AR, endomyocardial biopsy has several limitations because of its inherent invasiveness and morbidity. Traditional imaging techniques, such as echocardiography and cardiac magnetic resonance imaging, are of certain value for AR, but their diagnostic criteria and accuracy remain in question. Molecular imaging sheds new light on AR diagnosis because it can provide information about gene expression and the location of molecules and cells. This article reviews the latest research and applications of several typical modalities of molecular imaging used in AR and discusses their advantages and disadvantages.
Collapse
|
10
|
SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget 2017; 8:20476-20495. [PMID: 28108738 PMCID: PMC5386778 DOI: 10.18632/oncotarget.14730] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022] Open
Abstract
Owing to the central role of apoptosis in many human diseases and the wide-spread application of apoptosis-based therapeutics, molecular imaging of apoptosis in clinical practice is of great interest for clinicians, and holds great promises. Based on the well-defined biochemical changes for apoptosis, a rich assortment of probes and approaches have been developed for molecular imaging of apoptosis with various imaging modalities. Among these imaging techniques, nuclear imaging (including single photon emission computed tomography and positron emission tomography) remains the premier clinical method owing to their high specificity and sensitivity. Therefore, the corresponding radiopharmaceuticals have been a major focus, and some of them like 99mTc-Annexin V, 18F-ML-10, 18F-CP18, and 18F-ICMT-11 are currently under clinical investigations in Phase I/II or Phase II/III clinical trials on a wide scope of diseases. In this review, we summarize these radiopharmaceuticals that have been widely used in clinical trials and elaborate them in terms of radiosynthesis, pharmacokinetics and dosimetry, and their applications in different clinical stages. We also explore the unique features required to qualify a desirable radiopharmaceutical for imaging apoptosis in clinical practice. Particularly, a perspective of the impact of these clinical efforts, namely, apoptosis imaging as predictive and prognostic markers, early-response indicators and surrogate endpoints, is also the highlight of this review.
Collapse
|
11
|
Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol 2017; 24:574-590. [PMID: 27480973 DOI: 10.1007/s12350-016-0620-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Cardiac left ventricular (LV) remodeling is the final common pathway of most primary cardiovascular diseases that manifest clinically as heart failure (HF). The more advanced the systolic HF and LV dysfunction, the worse the prognosis. The knowledge of the molecular, cellular, and neurohormonal mechanisms that lead to myocardial dysfunction and symptomatic HF has expanded rapidly and has allowed sophisticated approaches to understanding and management of the disease. New therapeutic targets for pharmacologic intervention in HF have also been identified through discovery of novel cellular and molecular components of membrane-bound receptor-mediated intracellular signal transduction cascades. Despite all advances, however, the prognosis of systolic HF has remained poor in general. This is, at least in part, related to the (1) relatively late institution of treatment due to reliance on gross functional and structural abnormalities that define the "heart failure phenotype" clinically; (2) remarkable genetic-based interindividual variations in the contribution of each of the many molecular components of cardiac remodeling; and (3) inability to monitor the activity of individual pathways to cardiac remodeling in order to estimate the potential benefits of pharmacologic agents, monitor the need for dose titration, and minimize side effects. Imaging of the recognized ultrastructural components of cardiac remodeling can allow redefinition of heart failure based on its "molecular phenotype," and provide a guide to implementation of "personalized" and "evidence-based" evaluation, treatment, and longitudinal monitoring of the disease beyond what is currently available through randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA.
| | - Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Sahil Agrawal
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
|
13
|
McDiarmid AK, Plein S, Ross HJ. Emerging imaging techniques after cardiac transplantation. J Heart Lung Transplant 2016; 35:1399-1411. [PMID: 27523792 DOI: 10.1016/j.healun.2016.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/13/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022] Open
Abstract
Improvements in survival after cardiac transplantation have in part been driven by improved graft surveillance. Graft surveillance relies mainly on 3 techniques: coronary angiography, endomyocardial biopsy and echocardiography. Developments in invasive and non-invasive imaging technology have revolutionized assessment of the heart in both health and disease, offering new insights into tissue composition and myocardial metabolism. Herein we aim to review the strengths and weaknesses of these techniques, and summarize the evidence in the following 5 fields of cardiac imaging after transplantation: cardiovascular magnetic resonance; computed tomography; positron emission tomography; single-photon emission computed tomography; and optical coherence tomography and molecular imaging techniques.
Collapse
Affiliation(s)
- Adam K McDiarmid
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada; Multidisciplinary Cardiovascular Research Centre and Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre and Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Heather J Ross
- Peter Munk Cardiac Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
McMinn JF, Lang NN, McPhadden A, Payne JR, Petrie MC, Gardner RS. Biomarkers of acute rejection following cardiac transplantation. Biomark Med 2015; 8:815-32. [PMID: 25224938 DOI: 10.2217/bmm.14.56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cardiac transplantation can be a life-saving treatment for selected patients with heart failure. However, despite advances in immunosuppressive therapy, acute allograft rejection remains a significant cause of morbidity and mortality. The current 'gold standard' for rejection surveillance is endomyocardial biopsy, which aims to identify episodes of rejection prior to development of clinical manifestations. This is an invasive technique with a risk of false-positive and false-negative results. Consequently, a wide variety of noninvasive alternatives have been investigated for their potential role as biomarkers of rejection. This article reviews the evidence behind proposed alternatives such as imaging techniques, electrophysiological parameters and peripheral blood markers, and highlights the potential future role for biomarkers in cardiac transplantation as an adjunct to biopsy.
Collapse
Affiliation(s)
- Jenna F McMinn
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Clydebank, UK
| | | | | | | | | | | |
Collapse
|
15
|
Zeng W, Wang X, Xu P, Liu G, Eden HS, Chen X. Molecular imaging of apoptosis: from micro to macro. Theranostics 2015; 5:559-82. [PMID: 25825597 PMCID: PMC4377726 DOI: 10.7150/thno.11548] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Apoptosis, or programmed cell death, is involved in numerous human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer, and is often confused with other types of cell death. Therefore strategies that enable visualized detection of apoptosis would be of enormous benefit in the clinic for diagnosis, patient management, and development of new therapies. In recent years, improved understanding of the apoptotic machinery and progress in imaging modalities have provided opportunities for researchers to formulate microscopic and macroscopic imaging strategies based on well-defined molecular markers and/or physiological features. Correspondingly, a large collection of apoptosis imaging probes and approaches have been documented in preclinical and clinical studies. In this review, we mainly discuss microscopic imaging assays and macroscopic imaging probes, ranging in complexity from simple attachments of reporter moieties to proteins that interact with apoptotic biomarkers, to rationally designed probes that target biochemical changes. Their clinical translation will also be our focus.
Collapse
|
16
|
Zhu JC, Wang F, Fang W, Hua ZC, Wang ZZ. 18F-annexin V apoptosis imaging for detection of myocardium ischemia and reperfusion injury in a rat model. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2667-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Gong J, Archer R, Brown M, Fisher S, Chang C, Peacock M, Hughes C, Freimark B. Measuring Response to Therapy by Near-Infrared Imaging of Tumors Using a Phosphatidylserine-Targeting Antibody Fragment. Mol Imaging 2013. [DOI: 10.2310/7290.2012.00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jian Gong
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Richard Archer
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Michael Brown
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Seth Fisher
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Connie Chang
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Matthew Peacock
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Christopher Hughes
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| | - Bruce Freimark
- From the Departments of Preclinical Development, Oncology, and Process Sciences, Peregrine Pharmaceuticals, Inc., Tustin, CA, and the Department of Molecular Biology and Biochemistry, University of California, Irvine, CA
| |
Collapse
|
18
|
Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010; 15:1072-82. [PMID: 20440562 PMCID: PMC2929432 DOI: 10.1007/s10495-010-0503-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface.
Collapse
Affiliation(s)
- Kristof Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | |
Collapse
|
19
|
Schutters K, Reutelingsperger C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010. [PMID: 20440562 DOI: 10.1007/s10495-010�0503-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface.
Collapse
Affiliation(s)
- Kristof Schutters
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| | | |
Collapse
|
20
|
Southworth R. Hexokinase-mitochondrial interaction in cardiac tissue: implications for cardiac glucose uptake, the 18FDG lumped constant and cardiac protection. J Bioenerg Biomembr 2009; 41:187-93. [PMID: 19415474 DOI: 10.1007/s10863-009-9207-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hexokinases are fundamental regulators of cardiac glucose uptake; by phosphorylating free intracellular glucose, they maintain the concentration gradient driving myocardial extraction of glucose from the bloodstream. Hexokinases are highly regulated proteins, subject to activation by insulin, hypoxia or ischaemia, and inhibition by their enzymatic product glucose-6-phosphate. In vitro and in many non-cardiac cell types, hexokinases have been shown to bind to the mitochondria, both increasing their phosphorylative capacity, and having a putative role in the anti-apoptotic function of protein kinase B (PKB)/Akt. Whether hexokinase-mitochondrial interaction is a dynamic and responsive process in the heart has been difficult to prove, but there is growing evidence that this association does indeed increase in response to insulin stimulation or ischaemia. In this review I discuss the relevance of hexokinase-mitochondrial interaction to cardiac glycolytic control, our interpretation of (18)FDG cardiac PET scans, and its possible role in protecting the myocardium from ischaemic injury.
Collapse
Affiliation(s)
- Richard Southworth
- Division of Imaging Sciences, King's College London, The Rayne Institute, St. Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK.
| |
Collapse
|
21
|
Flotats A, Carrió I. Radionuclide noninvasive evaluation of heart failure beyond left ventricular function assessment. J Nucl Cardiol 2009; 16:304-15. [PMID: 19247733 DOI: 10.1007/s12350-009-9064-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/25/2009] [Indexed: 01/08/2023]
Abstract
The management of patients with heart failure (HF) is challenging and requires the integration of clinical skills and accurate ancillary tests for the correct diagnosis and estimation of individual prognosis. Although the basic characterization of patients with HF is supported primarily by echocardiographic assessment of the left ventricular function, other noninvasive imaging procedures are being developed, including those involved in the processes of myocardial perfusion, metabolism, cellular injury, intersticial dysregulation, and neurohormonal receptor function. Nuclear techniques for molecular imaging of the myocardium may provide valuable insights into the pathophysiology, severity, management (medical/mechanical/surgical), response to treatment, and prognosis of HF patients. This will permit individualized management decisions and hopefully facilitate better clinical outcomes for patients with HF.
Collapse
Affiliation(s)
- Albert Flotats
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Antoni M. Claret, 167, Barcelona, 08025, Spain.
| | | |
Collapse
|
22
|
Abstract
Recent advances in molecular imaging have permitted the noninvasive imaging of apoptosis, a critical process underlying the pathogenesis of many diseases of the cardiovascular system including atherosclerotic vascular disease, myocardial ischemia and reperfusion injury, chronic heart failure, myocarditis, and cardiac allograft rejection. Multiple molecular targets including phosphatidylserine, phosphatidylinositol 3-kinase, and caspases have been targeted by a variety of imaging agents and modalities such as nuclear scintigraphy, PET, MRI, and fluorescent and bioluminescent imaging. Translationally, methods utilizing radiolabeled annexin V have proven promising in several clinical trials of ischemia-reperfusion injury and cardiac allograft rejection. New approaches using novel molecular imaging agents show great potential for the ability to image apoptosis in the research and clinical setting. Ultimately the ability to detect apoptosis noninvasively would help to identify patients for emerging anti-apoptotic therapies and guide clinical management with the aim of maximal myocardial preservation.
Collapse
|
23
|
Endothelial cell activation contributes to the release of procoagulant microparticles during acute cardiac allograft rejection. J Heart Lung Transplant 2008; 27:38-45. [PMID: 18187085 DOI: 10.1016/j.healun.2007.09.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 08/24/2007] [Accepted: 09/30/2007] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Circulating procoagulant microparticles are reliable markers of vascular damage. The microparticle phenotypes provide additional information reflecting the nature of cell injury. This study assessed procoagulant microparticle levels and phenotypes in the diagnosis of acute allograft rejection after heart transplantation. METHODS Microparticles were prospectively investigated in the venous blood of 64 heart transplant patients, 23 with allograft rejection mainly of low score, and 41 without a rejection episode. Plasma concentrations of cytokines, cytoadhesins, and platelet activation markers were determined. RESULTS By univariate analysis, the mean time elapsed from heart transplant, cold ischemia time, E-selectin-, Fas- and tissue factor-bearing microparticles were associated with allograft rejection. By multivariate analysis, E-selectin-microparticle levels appeared independently associated with allograft rejection, even when other significant variables were included in the model (odds ratio, 9.8; 95% confidence interval, 1.36-71.4; p = 0.023). CONCLUSION The pattern of procoagulant microparticles released during acute allograft rejection suggests endothelial cell activation and Fas-mediated apoptosis. E-selectin-bearing microparticles appeared as an independent marker of acute allograft rejection that was still informative after adjustment for graft characteristics.
Collapse
|
24
|
Skouri HN, Dec GW, Friedrich MG, Cooper LT. Noninvasive imaging in myocarditis. J Am Coll Cardiol 2006; 48:2085-93. [PMID: 17112998 DOI: 10.1016/j.jacc.2006.08.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 07/05/2006] [Accepted: 07/05/2006] [Indexed: 11/22/2022]
Abstract
Increased recognition of the role of inflammation in acute and chronic dilated cardiomyopathy has revived an interest in noninvasive imaging for detection of myocarditis. Diagnostic strategies that are based on molecular imaging promise to further advance our understanding and improve diagnostic precision. This article reviews the strengths and limitations of common clinical tests used for the diagnosis of myocarditis, with a focus on the emerging role of cardiovascular magnetic resonance imaging. Novel imaging modalities that are currently in preclinical development are discussed with recommendations for future clinical research.
Collapse
Affiliation(s)
- Hadi N Skouri
- Cardiovascular Department, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Effective noninvasive evaluation of acute and chronic allograft rejection remains an important challenge in patients with cardiac transplantation. Radionuclide studies have demonstrated utility because of their ease of use, giving relevant information about the pathophysiology of the transplanted heart, along with valuable diagnostic and prognostic indicators. This article focuses on reviewing the pathophysiological changes of the transplanted heart and implications for radionuclide studies.
Collapse
Affiliation(s)
- Albert Flotats
- Department of Nuclear Medicine, Autonomous University of Barcelona, Spain.
| | | |
Collapse
|
27
|
Corsten MF, Hofstra L, Narula J, Reutelingsperger CPM. Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res 2006; 66:1255-60. [PMID: 16452175 DOI: 10.1158/0008-5472.can-05-3000] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The unveiling of the heterogeneous nature of cell death modes has compromised the long-lived consensus that cancer treatment typically kills cancer cells through apoptosis. Moreover, it implies that measures of apoptosis may be misleading indicators of treatment efficacy. Simultaneously, it has become clear that phosphatidylserine exposition, traditionally considered a hallmark of apoptosis, is also associated with most other cell death programs, rendering phosphatidylserine an attractive target for overall cell death imaging. Annexin A5 binds with strong affinity to phosphatidylserine and hence offers an interesting opportunity for visualization of aggregate cell death, thus providing a fit benchmark for in vivo monitoring of anticancer treatment. This might be of significant value for pharmacologic therapy development as well as clinical monitoring of treatment success.
Collapse
Affiliation(s)
- Maarten F Corsten
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University Maastricht, P. Debyelaan 25, 6229 AD Maastricht, the Netherlands
| | | | | | | |
Collapse
|
28
|
Kanderi T, Moore WH, Wendt JA. Molecular imaging in transplantation: basic concepts and strategies for potential application. Nucl Med Commun 2005; 26:947-55. [PMID: 16208171 DOI: 10.1097/01.mnm.0000183800.89591.2c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The potential applications of molecular imaging in the clinical arena are diverse and expanding rapidly. One such area of application is transplantation. Currently, biopsy is the gold standard for monitoring allograft well-being after transplantation of organs or tissues. However, biopsies are invasive, associated with morbidity if performed on a routine basis and can potentially miss focal rejection. AIM It is notable that none of the existing studies in the literature have examined the possible role of molecular imaging in transplantation-related indications. In this direction, this paper aims to discuss imaging strategies that could be of pertinence in monitoring immune events and improving long-term outcomes after solid organ or tissue transplantation. METHODS This paper discusses the currently available direct/surrogate imaging techniques/agents that can be used to detect chemokine receptors/ligands, leucocyte endothelial events and ischaemia-reperfusion injury in transplantation. CONCLUSION Molecular imaging methods can non-invasively detect, quantify and monitor immune phenomena, such as rejection or graft-versus-host disease, after transplantation. Molecular imaging could help in targeted biopsy and could improve graft survival by allowing for early intervention with tailored immunosuppressive regimens. Given the unprecedented progress in the field, the potential benefits of molecular imaging to the speciality of organ and tissue transplantation cannot be underestimated.
Collapse
Affiliation(s)
- Tanuja Kanderi
- Division of Nuclear Medicine, Department of Radiology, Baylor College of Medicine, Houston, Texas, USA.
| | | | | |
Collapse
|
29
|
Dekker B, Keen H, Shaw D, Disley L, Hastings D, Hadfield J, Reader A, Allan D, Julyan P, Watson A, Zweit J. Functional comparison of annexin V analogues labeled indirectly and directly with iodine-124. Nucl Med Biol 2005; 32:403-13. [PMID: 15878510 DOI: 10.1016/j.nucmedbio.2005.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/25/2005] [Accepted: 02/06/2005] [Indexed: 11/28/2022]
Abstract
We are interested in imaging cell death in vivo using annexin V radiolabeled with (124)I. In this study, [(124)I]4IB-annexin V and [(124)I]4IB-ovalbumin were made using [(124)I]N-hydroxysuccinimidyl-4-iodobenzoate prepared by iododestannylation of N-hydroxysuccinimidyl-4-(tributylstannyl)benzoate. [(124)I]4IB-annexin V binds to phosphatidylserine-coated microtiter plates and apoptotic Jurkat cells and accumulates in hepatic apoptotic lesions in mice treated with anti-Fas antibody, while [(124)I]4IB-ovalbumin does not. In comparison with (124)I-annexin V, [(124)I]4IB-annexin V has a higher rate of binding to phosphatidylserine in vitro, a higher kidney and urine uptake, a lower thyroid and stomach content uptake, greater plasma stability and a lower rate of plasma clearance. Binding of radioactivity to apoptotic cells relative to normal cells in vitro and in vivo appears to be lower for [(124)I]4IB-annexin V than for (124)I-annexin V.
Collapse
Affiliation(s)
- Bronwen Dekker
- CRUK/UMIST Department of Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, M20 4BX Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dekker B, Keen H, Lyons S, Disley L, Hastings D, Reader A, Ottewell P, Watson A, Zweit J. MBP-annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET. Nucl Med Biol 2005; 32:241-52. [PMID: 15820759 DOI: 10.1016/j.nucmedbio.2004.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/21/2004] [Accepted: 11/17/2004] [Indexed: 11/21/2022]
Abstract
A noninvasive method of measuring programmed cell death in the tumors of cancer patients using positron-emission tomography (PET) would provide valuable information regarding their response to therapeutic intervention. Our strategy is to radiolabel annexin V, a protein that binds to phosphatidylserine moieties that are translocated to the external leaflet of plasma membranes during apoptosis. We developed a phosphatidylserine-ELISA capable of distinguishing wild type from point mutant annexin V that is known to have a lower phosphatidylserine binding affinity. A maltose-binding protein/annexin V chimera was synthesized and purified with high yield using amylose resin. We showed that it bound to phosphatidylserine in the ELISA as well as to that exposed on apoptotic Jurkat cells; therefore, it was used in the development of a method for radiolabeling annexin V using iodine radionuclides. MBP-annexin V retained its phosphatidylserine binding properties on direct iodination, but at high levels of oxidizing agents (iodogen and chloramine T), its specificity for phosphatidylserine was compromised. (124)I-MBP-annexin V was successfully used to image Fas-mediated hepatic cell death in BDF-1 mice using PET. In conclusion, we have shown that MBP-annexin V and the phosphatidylserine ELISA are useful tools for the development of methods for radiolabeling annexin V for PET imaging.
Collapse
Affiliation(s)
- Bronwen Dekker
- Cancer Research UK/UMIST, Department of Radiochemical Targeting and Imaging, Paterson Institute for Cancer Research, M20 4BX Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Evidence exists for an essential role of beta-cell apoptosis in the pathology of type 1 and type 2 diabetes. Current methods for diabetes-associated apoptosis detection, however, suffer the drawbacks of relying on in situ-based strategies. In this study, we attempted to measure, both in vitro and ex vivo, levels of beta-cell apoptosis in diabetic mice using Cy5.5-labeled annexin V. We used streptozotocin-treated BALB/c mice and NOD mice of different ages as models of type 1 diabetes and db/db mice as a model of type 2 diabetes. With annexin V Cy5.5, we established differences in levels of apoptosis between diabetic and control animals. Intravenously administered annexin V Cy5.5 accumulated in pancreata of diabetic mice but not in nondiabetic controls. Furthermore, its localization was specific to apoptotic events within diabetic islets; its selectivity was supported by transferase-mediated dUTP nick-end labeling staining. Because annexin V defines an early marker of apoptosis and the developed probe is suitable for in vivo administration, it may provide a promising tool for real-time identification in intact animals of the earliest stages of diabetes-associated beta-cell death and for tracing the events that characterize the pathology of the disease.
Collapse
Affiliation(s)
- Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Pui Lee
- Division of Nephrology, Hypertension, and Transplantation, Department of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | |
Collapse
|
33
|
Jin M, Smith C, Hsieh HY, Gibson DF, Tait JF. Essential Role of B-helix Calcium Binding Sites in Annexin V-Membrane Binding. J Biol Chem 2004; 279:40351-7. [PMID: 15280367 DOI: 10.1074/jbc.m405846200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of annexin V have shown up to 10 bound calcium ions in three different types of binding sites, but previous work concluded that only one of these sites accounted for nearly all of the membrane binding affinity of the molecule. In this study we mutated residues contributing to potential calcium binding sites in the AB and B helices in each of the four domains (eight sites in total) and in DE helices in the first, second, and third domains (three sites in total). We measured the affinity of each protein for phospholipid vesicles and cell membranes by quantitative calcium titration under low occupancy conditions (< 1% saturation of available membrane binding sites). Affinity was calculated from the midpoint and slope of the calcium titration curve and the concentration of membrane binding sites. The results showed that all four AB sites were essential for high affinity binding, as were three of the four B sites (in domains 1, 2, and 3); the DE site in the first domain made a slight contribution to affinity. Multisite mutants showed that each domain contributed additively and independently to binding affinity; in contrast, AB and B sites within the same domain were interdependent. The number of functionally important sites identified was consistent with the Hill coefficient observed in calcium titrations. This study shows an essential and previously unappreciated role for B-helix calcium binding sites in the membrane binding of annexins and indicates that all four domains of the molecule are required for maximum membrane binding affinity.
Collapse
Affiliation(s)
- Ming Jin
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
34
|
Lim WH, Mathew TH, Cooper JE, Bowden S, Russ GR. Use of cidofovir in polyomavirus BK viral nephropathy in two renal allograft recipients. Nephrology (Carlton) 2004; 8:318-23. [PMID: 15012704 DOI: 10.1111/j.1440-1797.2008.00214.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polyomavirus BK viral allograft nephropathy is a potentially reversible cause of deteriorating function of kidney allografts. Initial treatment involves reducing immunosuppressive medications, with low-dose cidofovir an effective alternative in refractory cases. We describe two cases of BK viral allograft nephropathy responding to low-dose cidofovir after a reduction in immunosuppressive medications failed to clear the virus or stabilize the deterioration in renal function. There were no significant side-effects from this treatment in either patient.
Collapse
Affiliation(s)
- Wai H Lim
- Renal Unit and Department of Pathology, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
| | | | | | | | | |
Collapse
|
35
|
Tait JF, Gibson DF, Smith C. Measurement of the affinity and cooperativity of annexin V–membrane binding under conditions of low membrane occupancy. Anal Biochem 2004; 329:112-9. [PMID: 15136173 DOI: 10.1016/j.ab.2004.02.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Indexed: 11/19/2022]
Abstract
We developed a method for measuring the binding affinity of annexin V for phospholipid vesicles and cells at very low levels of membrane occupancy. The annexin V-117 mutant was labeled with fluorescein iodoacetamide on its single N-terminal cysteine residue; binding to phospholipid vesicles containing phosphatidylserine (PS) and 2% rhodamine-phosphatidylethanolamine was measured by fluorescence quenching due to resonance energy transfer; binding to cells with exposed PS was measured by fluorometry after elution of bound protein. The equilibrium constant was calculated as a function of the midpoint of the calcium titration curve, the Hill coefficient, and the concentration of membrane binding sites. Calcium titrations at very low ratios of protein to membrane revealed Hill coefficients of approximately 8 for both vesicles and cells, far higher than previously measured, but as the protein-membrane ratio was increased above 3% of maximum membrane occupancy, the value of the Hill coefficient progressively decreased to a limiting value of about 2. High Hill coefficients were also observed for measurements performed at different ionic strengths and with membrane PS content varied over the range from 20 to 50%. This method allows the accurate determination of the affinity and cooperativity of annexin V-membrane binding and will be useful for the evaluation of modified annexin V derivatives intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Jonathan F Tait
- Department of Laboratory Medicine, Medicine (Medical Genetics), University of Washington, Box 357110 Seattle, WA 98195, USA.
| | | | | |
Collapse
|
36
|
Lahorte CMM, Vanderheyden JL, Steinmetz N, Van de Wiele C, Dierckx RA, Slegers G. Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 2004; 31:887-919. [PMID: 15138718 DOI: 10.1007/s00259-004-1555-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review provides a critical and thorough overview of the radiopharmaceutical development and in vivo evaluation of all apoptosis-detecting radioligands that have emerged so far, along with their possible applications in nuclear medicine. The following SPECT and PET radioligands are discussed: all forms of halogenated Annexin V (i.e. (123)I-labelled, (124)I-labelled, (125)I-labelled, (18)F-labelled), (99m)Tc/(94m)Tc-labelled Annexin V derivatives using different chelators and co-ligands (i.e. BTAP, Hynic, iminothiolane, MAG(3), EDDA, EC, tricarbonyl, SDH) or direct (99m)Tc-labelling, (99m)Tc-labelled Annexin V mutants and (99m)Tc/(18)F-radiopeptide constructs (i.e. AFIM molecules), (111)In-DTPA-PEG-Annexin V, (11)C-Annexin V and (64)Cu-, (67)Ga- and (68)Ga-DOTA-Annexin V. In addition, the potential role and clinical relevance of anti-PS monoclonal antibodies and other alternative apoptosis markers are reviewed, including: anti-Annexin V monoclonal antibodies, radiolabelled caspase inhibitors and substrates and mitochondrial membrane permeability targeting radioligands. Nevertheless, major emphasis is placed on the group of Annexin V-based radioligands, in particular (99m)Tc-Hynic-Annexin V, since this molecule is by far the most extensively investigated and best-characterised apoptosis marker at present. Furthermore, the newly emerging imaging modalities for in vivo detection of programmed cell death, such as MRI, MRS, optical, bioluminescent and ultrasound imaging, are briefly described. Finally, some future perspectives are presented with the aim of promoting the development of potential new strategies in pursuit of the ideal cell death-detecting radioligand.
Collapse
Affiliation(s)
- Christophe M M Lahorte
- Department of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
37
|
Lahorte C, Van De Wiele C, Bacher K, Van Den Bossche B, Thierens H, Van Belle S, Slegers G, Dierckx R. Nucl Med Commun 2003; 24:871-880. [DOI: 10.1097/00006231-200308000-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Lahorte CMM, van de Wiele C, Bacher K, van den Bossche B, Thierens H, van Belle S, Slegers G, Dierckx RA. Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans. Nucl Med Commun 2003; 24:871-80. [PMID: 12869819 DOI: 10.1097/01.mnm.0000084585.29433.58] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study reports on the optimization of the labelling procedure of clinical grade 123I-rh-annexin V and on the investigation of the biodistribution and dosimetry of 123I-rh-annexin V, a tracer proposed for the study of apoptosis in mice and humans. Research grade 123I-rh-annexin V was prepared as described previously, whereas clinical grade 123I-rh-annexin V was prepared according to a modified IodoGen method. NMRI mice, 3-4 weeks of age, received research grade 123I-rh-annexin V (74.0+/-3.7 kBq/mouse) by intravenous (i.v.) injection and killed at preset time points. Afterwards, the collected organs, blood, urine and faeces were counted for radioactivity and determined as %ID/g tissue or %ID over time. Secondly, six volunteers with normal liver and kidney function underwent whole-body scans up to 21 h after i.v. injection of clinical grade 123I-rh-annexin V (345+/-38 MBq). Time-activity curves were generated for the organs of interest, e.g., thyroid, heart, liver, kidneys and whole body, by fitting the organ specific geometric mean counts, obtained from region of interest analysis of acquired images in humans. The MIRD formulation was applied to calculate the absorbed radiation doses for various organs. Clinical grade 123I-rh-annexin V was obtained in radiochemical yields of 87.0+/-6.5% and radiochemical purities >98%. In mice, research grade 123I-rh-annexin V accumulated primarily in liver, kidney, stomach and lung tissue, limiting its usefulness for imaging of ongoing apoptosis in the abdominal and thoracic region. Clearance was predominantly urinary. In humans, acquired images with the clinical grade radioligand showed low lung uptake, resulting in good imaging conditions for the thoracic region. On the other hand, delayed imaging of the abdominal region was impeded due to extensive bowel activity. The highest absorbed doses were received by the thyroid, the kidneys, the heart wall, the liver and bone surfaces. The average effective dose of 123I-rh-annexin V was estimated to be 0.02 mSv.MBq-1. The amount of 123I-rh-annexin V required for in vivo imaging, results in an acceptable effective dose to the patient.
Collapse
Affiliation(s)
- C M M Lahorte
- Department of Radiopharmacy, Faculty of Pharmaceutical Sciences, Gent University, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Flotats A, Carrió I. Non-invasive in vivo imaging of myocardial apoptosis and necrosis. Eur J Nucl Med Mol Imaging 2003; 30:615-30. [PMID: 12638039 DOI: 10.1007/s00259-003-1136-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Myocardial necrosis plays an important role in the pathogenesis of various cardiovascular disorders and can result from different myocardial insults. Its non-invasive identification and localisation therefore may help in the diagnosis of these disorders, as well as in prognosis and assessment of treatment response. Apoptosis, or programmed cell death, is important in the spectrum of myocardial damage since it is gradually becoming more apparent that cell death may begin as apoptosis and not as necrosis. First attempts to directly visualise the area of myocardial necrosis were based on recognition of myocardial infarction with "hot spot imaging agents" in patients with chest pain. Since then, the study of myocardial necrosis with gamma imaging agents has gone beyond the detection of myocardial infarction, and attempts have been made to diagnose other cardiovascular disorders associated with cardiac cell death such as heart transplant rejection, myocarditis, cardiotoxicity and cardiomyopathies. Traditionally, two hot spot imaging agents have been used for the detection of myocardial necrosis, (99m)Tc-pyrophosphate and (111)In-antimyosin. In addition, preliminary studies have demonstrated promising results with (99m)Tc-glucarate. Recently, (99m)Tc-annexin V has been successfully used for non-invasive gamma imaging of apoptosis after acute myocardial infarction, acute myocardial ischaemia, acute cardiac allograft rejection and malignant intracardiac tumours. This review article focusses on the characteristics of these different myocardial necrotic and apoptotic markers and compares their role in the assessment of myocardial damage.
Collapse
|
40
|
Ding R, Medeiros M, Dadhania D, Muthukumar T, Kracker D, Kong JM, Epstein SR, Sharma VK, Seshan SV, Li B, Suthanthiran M. Noninvasive diagnosis of BK virus nephritis by measurement of messenger RNA for BK virus VP1 in urine. Transplantation 2002; 74:987-94. [PMID: 12394843 DOI: 10.1097/00007890-200210150-00016] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Polyoma virus type BK (BKV) nephritis has emerged as an important cause of renal allograft dysfunction and graft failure. Its diagnosis is contingent on the invasive procedure of allograft biopsy. A noninvasive diagnostic test for BKV nephritis could improve clinical outcome. METHODS We obtained 25 urine specimens from 8 renal allograft recipients with biopsy-confirmed BKV nephritis, 31 samples from 28 recipients in whom BKV nephritis was excluded by allograft biopsy, and 74 specimens from 34 patients with stable allograft function. RNA was isolated from the urinary cells and reverse transcribed to complementary DNA. We designed gene-specific oligonucleotide primers and probes for the measurement of messenger RNA (mRNA) encoding BKV VP1 protein and a constitutively expressed 18S ribosomal RNA (rRNA) by real-time quantitative polymerase chain reaction. We explored the hypothesis that BKV VP1 mRNA levels predict BKV nephritis. RESULTS The levels of BKV VP1 mRNA but not the levels of 18S rRNA predicted BKV nephritis. Analysis involving the receiver operating characteristic curve demonstrated that BKV nephritis can be predicted with a sensitivity of 93.8% and a specificity of 93.9% with the use of a cutoff value of 6.5 x 10 BKV VP1 mRNA copy number per nanogram of total RNA ( <0.00001). In the receiver operating characteristic curve analysis, the calculated area under the curve was 0.949 (95% confidence interval, 0.912 to 0.987, <0.00001) for BKV VP1 mRNA levels and 0.562 (95% confidence interval, 0.417 to 0.708, >0.2) for 18S rRNA. CONCLUSIONS Measurement of BKV VP1 mRNA in urinary cells offers a noninvasive and accurate means of diagnosing BKV nephritis.
Collapse
Affiliation(s)
- Ruchuang Ding
- Division of Nephrology, Departments of Medicine and Transplantation Medicine, Weill Medical College of Cornell University, New York-Presbyterian Hospital, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ramos E, Drachenberg CB, Papadimitriou JC, Hamze O, Fink JC, Klassen DK, Drachenberg RC, Wiland A, Wali R, Cangro CB, Schweitzer E, Bartlett ST, Weir MR. Clinical course of polyoma virus nephropathy in 67 renal transplant patients. J Am Soc Nephrol 2002; 13:2145-51. [PMID: 12138148 DOI: 10.1097/01.asn.0000023435.07320.81] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polyoma virus (PV) can cause interstitial nephritis and lead to graft failure in renal transplant recipients. The clinical course of patients with polyoma virus nephritis (PVN) is not well understood, partially due to its relatively low incidence. This study is a retrospective analysis of our experience over 4 yr. The specific purpose is to outline the clinical course and outcome of patients with PVN and to study the relationship between immunosuppression and the disease process. Between June 1997 and March 2001, 67 patients with graft dysfunction were found to have biopsy-proven PVN. The diagnosis was made at a mean of 12.8 +/- 9.9 mo posttransplantation. The majority of patients were men (79%) with a mean age of 54 +/- 14 yr (range, 28 to 75). All patients received immunosuppression with a calcineurin inhibitor (tacrolimus in 89% of patients). All patients except two received mycophenolate mofetil and prednisone. After the diagnosis of PVN, maintenance immunosuppression was reduced in 52 patients and remained unchanged in 15 patients. After reduction of immunosuppression, eight patients (15.3%) developed acute rejection and six (11.5%) became negative for PV in biopsy and urine. After a mean observation period of 12.6 mo (mean of 26 mo posttransplantation), 16.4% of patients had lost their grafts (8 of 52 in the reduction group and 3 of 15 in the no change group). In comparison to a case-matched polyoma virus-negative control group, the PVN patients were older (P =.0004) and there was a predominance of men (P = 0.02). Kaplan-Meier analysis demonstrated that patients with PVN had reduced graft survival compared with negative controls (P =.0004). It is concluded that PVN is a serious hazard for renal transplant recipients and contributes directly to graft loss. Antiviral drugs are needed, as the reduction of immunosuppression alone may not significantly improve graft function in patients with already established PVN. Although multiple factors probably play a role in the development of PVN, judicious use of immunosuppressive agents is indicated to minimize the occurrence of this infection.
Collapse
Affiliation(s)
- Emilio Ramos
- Departments of Medicine, Pathology, Pharmacy Services, and Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Drachenberg RC, Drachenberg CB, Papadimitriou JC, Ramos E, Fink JC, Wali R, Weir MR, Cangro CB, Klassen DK, Khaled A, Cunningham R, Bartlett ST. Morphological spectrum of polyoma virus disease in renal allografts: diagnostic accuracy of urine cytology. Am J Transplant 2002. [PMID: 12099383 DOI: 10.1034/j.1600-6143.2001.10414.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The morphological features of polyoma virus disease (PVDz) in 571 concurrent urine and biopsy samples from 413 patients are described. In 54 patients PV was found in both biopsy and urine samples. Histologically, PV presented as: (a) mild, viral cytopathic/cytolytic changes, with absent or minimal inflammation involving isolated tubules; (b) moderate and severe, cytopathic/cytolytic changes associated with patchy or diffuse tubulo-interstitial inflammation and atrophy; (c) advanced, graft sclerosis with rare or absent viral cytopathic changes, indistinguishable from chronic allograft nephropathy. Histological progression from mild to moderate or severe disease was seen in 28 patients. The mean post-transplantation time at diagnosis was similar in patients with mild or moderate-severe renal involvement (1.05 and 1.3 years, respectively). All patients presented with similarly increased values of serum creatinine (mean 1.35 mg/dL). There was strong correlation between the number of PV infected cells in urine and the concurrent biopsies (p = 0.0001). In 13 patients PV was found only in urine; of these, two developed PVDz later. The positive predictive value of a positive urine was 90%, the negative predictive value of a negative urine was 99% and the accuracy of the test was 97%. We conclude that urine cytology is useful to evaluate renal transplant patients with PV reactivation because sloughed tubular cells are found in urine and positive urine samples are a consistent manifestation of PV renal involvement.
Collapse
Affiliation(s)
- R C Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Poduval RD, Meehan SM, Woodle ES, Thistlethwaite JR, Haas M, Cronin DC, Vats A, Josephson MA. Successful retransplantation after renal allograft loss to polyoma virus interstitial nephritis. Transplantation 2002; 73:1166-9. [PMID: 11965053 DOI: 10.1097/00007890-200204150-00029] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although polyoma virus infection is being increasingly recognized as a cause of renal allograft dysfunction and failure, the risk of polyoma recurrence in a subsequent transplant is unknown. We present the first reported case of successful retransplantation after polyoma virus-induced renal allograft loss. CASE REPORT A 40-year-old Caucasian woman received a cadaveric kidney transplant. Baseline immunosuppression included corticosteroids, mycophenolate mofetil, and tacrolimus. Her post-transplant clinical course was complicated by an early acute rejection episode on posttransplant day (PTD) 6, that warranted treatment with OKT3. A biopsy performed on PTD 154 to evaluate a rise in creatinine revealed polyoma virus interstitial nephritis. Despite reduction in immunosuppression, the renal function progressively worsened and dialysis was initiated by PTD 160, followed by transplant nephrectomy on PTD 184. Four months later, she received a living related kidney from her sister. Immunosuppression was initiated with prednisone, azathioprine, and tacrolimus. She had immediate graft function with a decrease in serum creatinine from 12.8 to 1.1 mg/dl. Three and one-half years after her second renal transplant, her allograft functions well, with a serum creatinine of 1 mg/dl. Both quantitative and qualitative assays of blood and urine (by PCR) remain negative for BK virus, indicating the absence of virus reactivation. CONCLUSION Judicious retransplantation should be considered as a therapeutic option in the management of polyoma virus induced graft failure. Previous graft loss secondary to polyoma virus infection is not a contraindication to retransplantation.
Collapse
Affiliation(s)
- Rajiv D Poduval
- Division of Nephrology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|