1
|
Caputo V, Libera M, Sisti S, Giuliani B, Diotti RA, Criscuolo E. The initial interplay between HIV and mucosal innate immunity. Front Immunol 2023; 14:1104423. [PMID: 36798134 PMCID: PMC9927018 DOI: 10.3389/fimmu.2023.1104423] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is still one of the major global health issues, and despite significant efforts that have been put into studying the pathogenesis of HIV infection, several aspects need to be clarified, including how innate immunity acts in different anatomical compartments. Given the nature of HIV as a sexually transmitted disease, one of the aspects that demands particular attention is the mucosal innate immune response. Given this scenario, we focused our attention on the interplay between HIV and mucosal innate response: the different mucosae act as a physical barrier, whose integrity can be compromised by the infection, and the virus-cell interaction induces the innate immune response. In addition, we explored the role of the mucosal microbiota in facilitating or preventing HIV infection and highlighted how its changes could influence the development of several opportunistic infections. Although recent progress, a proper characterization of mucosal innate immune response and microbiota is still missing, and further studies are needed to understand how they can be helpful for the formulation of an effective vaccine.
Collapse
|
2
|
Panwar H, Rokana N, Aparna SV, Kaur J, Singh A, Singh J, Singh KS, Chaudhary V, Puniya AK. Gastrointestinal stress as innate defence against microbial attack. J Appl Microbiol 2020; 130:1035-1061. [PMID: 32869386 DOI: 10.1111/jam.14836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The human gastrointestinal (GI) tract has been bestowed with the most difficult task of protecting the underlying biological compartments from the resident commensal flora and the potential pathogens in transit through the GI tract. It has a unique environment in which several defence tactics are at play while maintaining homeostasis and health. The GI tract shows myriad number of environmental extremes, which includes pH variations, anaerobic conditions, nutrient limitations, elevated osmolarity etc., which puts a check to colonization and growth of nonfriendly microbial strains. The GI tract acts as a highly selective barrier/platform for ingested food and is the primary playground for balance between the resident and uninvited organisms. This review focuses on antimicrobial defense mechanisms of different sections of human GI tract. In addition, the protective mechanisms used by microbes to combat the human GI defence systems are also discussed. The ability to survive this innate defence mechanism determines the capability of probiotic or pathogen strains to confer health benefits or induce clinical events respectively.
Collapse
Affiliation(s)
- H Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - N Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S V Aparna
- Department of Dairy Microbiology, College of Dairy Science and Technology, Kerala Veterinary and Animal Science University, Mannuthy, Thrissur, India
| | - J Kaur
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - A Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - J Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - K S Singh
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - V Chaudhary
- Department of Microbiology, Punjab Agriculture University, Ludhiana, Punjab, India
| | - A K Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Herzberg MC, Vacharaksa A, Gebhard KH, Giacaman RA, Ross KF. Plausibility of HIV-1 Infection of Oral Mucosal Epithelial Cells. Adv Dent Res 2011; 23:38-44. [PMID: 21441479 DOI: 10.1177/0022034511399283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The AIDS pandemic continues. Little is understood about how HIV gains access to permissive cells across mucosal surfaces, yet such knowledge is crucial to the development of successful topical anti-HIV-1 agents and mucosal vaccines. HIV-1 rapidly internalizes and integrates into the mucosal keratinocyte genome, and integrated copies of HIV-1 persist upon cell passage. The virus does not appear to replicate, and the infection may become latent. Interactions between HIV-1 and oral keratinocytes have been modeled in the context of key environmental factors, including putative copathogens and saliva. In keratinocytes, HIV-1 internalizes within minutes; in saliva, an infectious fraction escapes inactivation and is harbored and transferable to permissive target cells for up to 48 hours. When incubated with the common oral pathogen Porphyromonas gingivalis, CCR5- oral keratinocytes signal through protease-activated receptors and Toll-like receptors to induce expression of CCR5, which increases selective uptake of infectious R5-tropic HIV-1 into oral keratinocytes and transfer to permissive cells. Hence, oral keratinocytes-like squamous keratinocytes of other tissues-may be targets for low-level HIV-1 internalization and subsequent dissemination by transfer to permissive cells.
Collapse
Affiliation(s)
- M C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | |
Collapse
|
4
|
Campo J, Perea MA, del Romero J, Cano J, Hernando V, Bascones A. Oral transmission of HIV, reality or fiction? An update. Oral Dis 2006; 12:219-28. [PMID: 16700731 DOI: 10.1111/j.1601-0825.2005.01187.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human immunodeficiency virus (HIV) and many other viruses can be isolated in blood and body fluids, including saliva, and can be transmitted by genital-genital and especially anal-genital sexual activity. The risk of transmission of HIV via oral sexual practices is very low. Unlike other mucosal areas of the body, the oral cavity appears to be an extremely uncommon transmission route for HIV. We present a review of available evidence on the oral-genital transmission of HIV and analyse the factors that act to protect oral tissues from infection, thereby reducing the risk of HIV transmission by oral sex. Among these factors we highlight the levels of HIV RNA in saliva, presence of fewer CD4+ target cells, presence of IgA antibodies in saliva, presence of other infections in the oral cavity and the endogenous salivary antiviral factors lysozyme, defensins, thrombospondin and secretory leucocyte protease inhibitor (SLPI).
Collapse
Affiliation(s)
- J Campo
- Department of Buccofacial Medicine and Surgery, School of Dentistry, Complutense University of Madrid, Spain.
| | | | | | | | | | | |
Collapse
|