1
|
Damme KSF, Han YC, Han Z, Reber PJ, Mittal VA. Motor precision deficits in clinical high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 2024; 274:1427-1435. [PMID: 37458819 PMCID: PMC10792107 DOI: 10.1007/s00406-023-01645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/25/2023] [Indexed: 08/02/2023]
Abstract
Motor deficits appear prior to psychosis onset, provide insight into vulnerability as well as mechanisms that give rise to emerging illness, and are predictive of conversion. However, to date, the extant literature has often targeted a complex abnormality (e.g., gesture dysfunction, dyskinesia), or a single fundamental domain (e.g., accuracy) but rarely provided critical information about several of the individual components that make up more complex behaviors (or deficits). This preliminary study applies a novel implicit motor task to assess domains of motor accuracy, speed, recognition, and precision in individuals at clinical high risk for psychosis (CHR-p). Sixty participants (29 CHR-p; 31 healthy volunteers) completed clinical symptom interviews and a novel Serial Interception Sequence Learning (SISL) task that assessed implicit motor sequence accuracy, speed, precision, and explicit sequence recognition. These metrics were examined in multilevel models that enabled the examination of overall effects and changes in motor domains over blocks of trials and by positive/negative symptom severity. Implicit motor sequence accuracy, speed, and explicit sequence recognition were not detected as impacted in CHR-p. When compared to healthy controls, individuals at CHR-p were less precise in motor responses both overall (d = 0.91) and particularly in early blocks which normalized over later blocks. Within the CHR-p group, these effects were related to positive symptom levels (t = - 2.22, p = 0.036), such that individuals with higher symptom levels did not improve in motor precision over time (r's = 0.01-0.05, p's > 0.54). CHR-p individuals showed preliminary evidence of motor precision deficits but no other motor domain deficits, particularly in early performance that normalized with practice.
Collapse
Affiliation(s)
- Katherine S F Damme
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA.
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA.
| | - Y Catherine Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Ziyan Han
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Paul J Reber
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Rd, Evanston, IL, 60208, USA
- Institute for Innovations in Developmental Sciences (DevSci), Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research (IPR), Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Han Z, Sanchez D, Levitan CA, Sherman A. Stimulus-locked auditory information facilitates real-time visuo-motor sequence learning. Psychon Bull Rev 2024; 31:828-838. [PMID: 37735341 PMCID: PMC11061001 DOI: 10.3758/s13423-023-02378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Prior research investigating whether and how multisensory information facilitates skill learning is quite mixed; whereas some research points to congruent information improving learning, other work suggests that people become reliant on the redundant information, such that its removal ultimately detracts from the ability to perform a unisensory task. We examined this question using the Serial Interception Sequence Learning (SISL) task, a visuo-motor paradigm in which participants implicitly learn a sequence embedded in noise. We investigated whether adding auditory information in different ways would enhance real time sequence learning and whether any benefits of multisensory learning would persist with visual-only testing. Auditory information was used either as feedback on the visuo-motor task (Experiments 1 and 2) or was presented synchronously with visual information during learning (Experiment 3). Robust sequence-specific performance advantages occurred across conditions and experiments; however, auditory information enhanced real-time performance only when it was synchronized with visual information. Participants were significantly more accurate, faster, and more precise with stimulus-locked auditory information during training. Notably, these benefits did not generalize to the visual-only context, suggesting that the benefits of stimulus-locked auditory information are primarily useful only when the perceptual information is present.
Collapse
Affiliation(s)
- Ziyan Han
- Department of Cognitive Science, Occidental College, Los Angeles, CA, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | | | - Carmel A Levitan
- Department of Cognitive Science, Occidental College, Los Angeles, CA, USA
| | - Aleksandra Sherman
- Department of Cognitive Science, Occidental College, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Yewbrey R, Mantziara M, Kornysheva K. Cortical Patterns Shift from Sequence Feature Separation during Planning to Integration during Motor Execution. J Neurosci 2023; 43:1742-1756. [PMID: 36725321 PMCID: PMC10010461 DOI: 10.1523/jneurosci.1628-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Performing sequences of movements from memory and adapting them to changing task demands is a hallmark of skilled human behavior, from handwriting to playing a musical instrument. Prior studies showed a fine-grained tuning of cortical primary motor, premotor, and parietal regions to motor sequences: from the low-level specification of individual movements to high-level sequence features, such as sequence order and timing. However, it is not known how tuning in these regions unfolds dynamically across planning and execution. To address this, we trained 24 healthy right-handed human participants (14 females, 10 males) to produce four five-element finger press sequences with a particular finger order and timing structure in a delayed sequence production paradigm entirely from memory. Local cortical fMRI patterns during preparation and production phases were extracted from separate No-Go and Go trials, respectively, to tease out activity related to these perimovement phases. During sequence planning, premotor and parietal areas increased tuning to movement order or timing, regardless of their combinations. In contrast, patterns reflecting the unique integration of sequence features emerged in these regions during execution only, alongside timing-specific tuning in the ventral premotor, supplementary motor, and superior parietal areas. This was in line with the participants' behavioral transfer of trained timing, but not of order to new sequence feature combinations. Our findings suggest a general informational state shift from high-level feature separation to low-level feature integration within cortical regions for movement execution. Recompiling sequence features trial-by-trial during planning may enable flexible last-minute adjustment before movement initiation.SIGNIFICANCE STATEMENT Musicians and athletes can modify the timing and order of movements in a sequence trial-by-trial, allowing for a vast repertoire of flexible behaviors. How does the brain put together these high-level sequence features into an integrated whole? We found that, trial-by-trial, the control of sequence features undergoes a state shift from separation during planning to integration during execution across a network of motor-related cortical areas. These findings have implications for understanding the hierarchical control of skilled movement sequences, as well as how information in brain areas unfolds across planning and execution.
Collapse
Affiliation(s)
- Rhys Yewbrey
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Myrto Mantziara
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
| | - Katja Kornysheva
- Bangor Imaging Unit, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
4
|
Feng Z, Zhu S, Duan J, Lu Y, Li L. Cross-modality effect in implicit learning of temporal sequence. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-022-04228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Lagarrigue Y, Cappe C, Tallet J. Regular rhythmic and audio-visual stimulations enhance procedural learning of a perceptual-motor sequence in healthy adults: A pilot study. PLoS One 2021; 16:e0259081. [PMID: 34780497 PMCID: PMC8592429 DOI: 10.1371/journal.pone.0259081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022] Open
Abstract
Procedural learning is essential for the effortless execution of many everyday life activities. However, little is known about the conditions influencing the acquisition of procedural skills. The literature suggests that sensory environment may influence the acquisition of perceptual-motor sequences, as tested by a Serial Reaction Time Task. In the current study, we investigated the effects of auditory stimulations on procedural learning of a visuo-motor sequence. Given that the literature shows that regular rhythmic auditory rhythm and multisensory stimulations improve motor speed, we expected to improve procedural learning (reaction times and errors) with repeated practice with auditory stimulations presented either simultaneously with visual stimulations or with a regular tempo, compared to control conditions (e.g., with irregular tempo). Our results suggest that both congruent audio-visual stimulations and regular rhythmic auditory stimulations promote procedural perceptual-motor learning. On the contrary, auditory stimulations with irregular or very quick tempo alter learning. We discuss how regular rhythmic multisensory stimulations may improve procedural learning with respect of a multisensory rhythmic integration process.
Collapse
Affiliation(s)
- Yannick Lagarrigue
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- * E-mail:
| | - Céline Cappe
- Cerco, Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS, UMR 5549, Toulouse, France
| | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
6
|
Salet JM, Kruijne W, van Rijn H. Implicit learning of temporal behavior in complex dynamic environments. Psychon Bull Rev 2021; 28:1270-1280. [PMID: 33821462 PMCID: PMC8367878 DOI: 10.3758/s13423-020-01873-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 11/08/2022]
Abstract
Humans can automatically detect and learn to exploit repeated aspects (regularities) of the environment. Timing research suggests that such learning is not only used to anticipate what will happen, but also when it will happen. However, in timing experiments, the intervals to be timed are presented in isolation from other stimuli and explicitly cued, contrasting with naturalistic environments in which intervals are embedded in a constant stream of events and individuals are hardly aware of them. It is unclear whether laboratory findings from timing research translate to a more ecologically valid, implicit environment. Here we show in a game-like experiment, specifically designed to measure naturalistic behavior, that participants implicitly use regular intervals to anticipate future events, even when these intervals are constantly interrupted by irregular yet behaviorally relevant events. This finding extends previous research by showing that individuals not only detect such regularities but can also use this knowledge to decide when to act in a complex environment. Furthermore, this finding demonstrates that this type of learning can occur independently from the ordinal sequence of motor actions, which contrasts this work with earlier motor learning studies. Taken together, our results demonstrate that regularities in the time between events are implicitly monitored and used to predict and act on what happens when, thereby showing that laboratory findings from timing research can generalize to naturalistic environments. Additionally, with the development of our game-like experiment, we demonstrate an approach to test cognitive theories in less controlled, ecologically more valid environments.
Collapse
Affiliation(s)
- Josh M Salet
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands.
| | - Wouter Kruijne
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Hedderik van Rijn
- Department of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| |
Collapse
|
7
|
Hong JY, Gallanter E, Müller-Oehring EM, Schulte T. Phases of procedural learning and memory: characterisation with perceptual-motor sequence tasks. JOURNAL OF COGNITIVE PSYCHOLOGY 2019; 31:543-558. [PMID: 33868637 DOI: 10.1080/20445911.2019.1642897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Procedural learning and memory has been conceptualised as consisting of cognitive and autonomous phases. Although the Serial Reaction Time Task (SRTT) is a popular task used to study procedural memory (PM), it has not been used to explore the different phases of PM. The present study employed a modified SRTT and investigated whether it can distinguish phases of PM. Our results revealed that performance at the beginning of typing a repeating sequence was marked by a steep learning curve, followed by gradual improvements and ending in high performance levels without further improvement. Steep performance increases characterise the effortful learning of the cognitive phase, gradual increases at higher performances characterise emerging automatisation of the associative phase, and sustained highest performance characterises autonomous procedures when PM has formed. Our study presents an easy-to-use measure, capable of distinguishing phases of PM, and which can be useful to assess PM during brain development.
Collapse
Affiliation(s)
- Jui-Yang Hong
- Neuroscience Program, Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Eden Gallanter
- Neuroscience Program, Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA, USA.,Graduate School of Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| | - Eva M Müller-Oehring
- Neuroscience Program, Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA, USA.,Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tilman Schulte
- Neuroscience Program, Biosciences Division, Center for Health Sciences, SRI International, Menlo Park, CA, USA.,Graduate School of Clinical Psychology, Palo Alto University, Palo Alto, CA, USA
| |
Collapse
|
8
|
Heideman SG, van Ede F, Nobre AC. Early Behavioural Facilitation by Temporal Expectations in Complex Visual-motor Sequences. Neuroscience 2018; 389:74-84. [PMID: 29802816 DOI: 10.1016/j.neuroscience.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/02/2017] [Accepted: 03/12/2017] [Indexed: 11/28/2022]
Abstract
In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals.
Collapse
Affiliation(s)
- Simone G Heideman
- Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK; Brain and Cognition Lab, Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK.
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK; Brain and Cognition Lab, Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK.
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK; Brain and Cognition Lab, Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
9
|
Heideman SG, van Ede F, Nobre AC. Early behavioural facilitation by temporal expectations in complex visual-motor sequences. ACTA ACUST UNITED AC 2017; 110:487-496. [PMID: 28323028 PMCID: PMC5742633 DOI: 10.1016/j.jphysparis.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 02/02/2017] [Accepted: 03/12/2017] [Indexed: 11/09/2022]
Abstract
We show incidental spatial-temporal sequence learning in an adapted SRT task. Incidentally acquired temporal expectations have the largest effect for short intervals. The facilitation for short intervals mirrors explicit temporal orienting results.
In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals.
Collapse
Affiliation(s)
- Simone G Heideman
- Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK; Brain and Cognition Lab, Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK.
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK; Brain and Cognition Lab, Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK.
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK; Brain and Cognition Lab, Department of Experimental Psychology, Tinbergen Building, 9 South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
10
|
Thomaschke R, Hoffmann J, Haering C, Kiesel A. Time-Based Expectancy for Task Relevant Stimulus Features. TIMING & TIME PERCEPTION 2016. [DOI: 10.1163/22134468-00002069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When a particular target stimulus appears more frequently after a certain interval than after another one, participants adapt to such regularity, as evidenced by faster responses to frequent interval-target combinations than to infrequent ones. This phenomenon is known as time-based expectancy. Previous research has suggested that time-based expectancy is primarily motor-based, in the sense that participants learn to prepare a particular response after a specific interval. Perceptual time-based expectancy — in the sense of learning to perceive a certain stimulus after specific interval — has previously not been observed. We conducted a Two-Alternative-Forced-Choice experiment with four stimuli differing in shape and orientation. A subset of the stimuli was frequently paired with a certain interval, while the other subset was uncorrelated with interval. We varied the response relevance of the interval-correlated stimuli, and investigated under which conditions time-based expectancy transfers from trials with interval-correlated stimuli to trials with interval-uncorrelated stimuli. Transfer was observed only where transfer of perceptual expectancy and transfer of response expectancy predicted the same behavioral pattern, not when they predicted opposite patterns. The results indicate that participants formed time-based expectancy for stimuli as well as for responses. However, alternative interpretations are also discussed.
Collapse
|
11
|
Bednark JG, Campbell MEJ, Cunnington R. Basal ganglia and cortical networks for sequential ordering and rhythm of complex movements. Front Hum Neurosci 2015; 9:421. [PMID: 26283945 PMCID: PMC4515550 DOI: 10.3389/fnhum.2015.00421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/10/2015] [Indexed: 11/14/2022] Open
Abstract
Voluntary actions require the concurrent engagement and coordinated control of complex temporal (e.g., rhythm) and ordinal motor processes. Using high-resolution functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis (MVPA), we sought to determine the degree to which these complex motor processes are dissociable in basal ganglia and cortical networks. We employed three different finger-tapping tasks that differed in the demand on the sequential temporal rhythm or sequential ordering of submovements. Our results demonstrate that sequential rhythm and sequential order tasks were partially dissociable based on activation differences. The sequential rhythm task activated a widespread network centered around the supplementary motor area (SMA) and basal-ganglia regions including the dorsomedial putamen and caudate nucleus, while the sequential order task preferentially activated a fronto-parietal network. There was also extensive overlap between sequential rhythm and sequential order tasks, with both tasks commonly activating bilateral premotor, supplementary motor, and superior/inferior parietal cortical regions, as well as regions of the caudate/putamen of the basal ganglia and the ventro-lateral thalamus. Importantly, within the cortical regions that were active for both complex movements, MVPA could accurately classify different patterns of activation for the sequential rhythm and sequential order tasks. In the basal ganglia, however, overlapping activation for the sequential rhythm and sequential order tasks, which was found in classic motor circuits of the putamen and ventro-lateral thalamus, could not be accurately differentiated by MVPA. Overall, our results highlight the convergent architecture of the motor system, where complex motor information that is spatially distributed in the cortex converges into a more compact representation in the basal ganglia.
Collapse
Affiliation(s)
- Jeffery G Bednark
- Queensland Brain Institute, The University of Queensland St. Lucia, QLD, Australia
| | - Megan E J Campbell
- Queensland Brain Institute, The University of Queensland St. Lucia, QLD, Australia
| | - Ross Cunnington
- Queensland Brain Institute, The University of Queensland St. Lucia, QLD, Australia ; School of Psychology, The University of Queensland St. Lucia, QLD, Australia
| |
Collapse
|
12
|
Sanchez DJ, Yarnik EN, Reber PJ. Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning? PSYCHOLOGICAL RESEARCH 2014; 79:327-43. [PMID: 24668505 DOI: 10.1007/s00426-014-0561-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/06/2014] [Indexed: 11/25/2022]
Abstract
Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603-623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations.
Collapse
Affiliation(s)
- Daniel J Sanchez
- Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, IL, 60208, USA
| | | | | |
Collapse
|
13
|
Gobel EW, Blomeke K, Zadikoff C, Simuni T, Weintraub S, Reber PJ. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease. Neuropsychology 2013; 27:314-21. [PMID: 23688213 DOI: 10.1037/a0032305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. METHOD Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. RESULTS Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. CONCLUSION The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.
Collapse
Affiliation(s)
- Eric W Gobel
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sanchez DJ, Reber PJ. Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning. Cognition 2012; 126:341-51. [PMID: 23280147 DOI: 10.1016/j.cognition.2012.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/18/2022]
Abstract
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a "scaffolding" role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory.
Collapse
Affiliation(s)
- Daniel J Sanchez
- Department of Psychology, Northwestern University, Evanston, IL 60208, United States
| | | |
Collapse
|
15
|
Barker LA. Defining the Parameters of Incidental Learning on a Serial Reaction Time (SRT) Task: Do Conscious Rules Apply? Brain Sci 2012; 2:769-89. [PMID: 24961269 PMCID: PMC4061816 DOI: 10.3390/brainsci2040769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/29/2012] [Accepted: 12/12/2012] [Indexed: 11/17/2022] Open
Abstract
There is ongoing debate about the contribution of explicit processes to incidental learning, particularly attention, working memory and control mechanisms. Studies generally measure explicit process contributions to incidental learning by comparing dual- to single-task sequence learning on some variant of a Serial Reaction Time (SRT), usually adopting an auditory tone counting task as the secondary task/memory load. Few studies have used secondary working memory stimuli with the SRT task, those that have typically presented secondary stimuli, before, after or between primary task stimuli. Arguably, this design is problematic because participants may potentially “switch” attention between sequential stimulus sources limiting the potential of both tasks to simultaneously index shared cognitive resources. In the present study secondary Visual and Verbal, memory tasks were temporally synchronous and spatially embedded with the primary SRT task for Visual and Verbal dual-task conditions and temporally synchronous but spatially displaced for Visual-Spatial and Verbal-Spatial Above/Below conditions, to investigate modality specific contributions of visual, verbal and spatial memory to incidental and explicit sequence learning. Incidental learning scores were not different as an effect of condition but explicit scores were. Explicit scores significantly and incrementally diminished from the Single-task through Visual-Spatial Below conditions; percentage accuracy scores on secondary tasks followed a significant corresponding pattern suggesting an explicit learning/secondary memory task trade-off as memory demands of tasks increased across condition. Incidental learning boundary conditions are unlikely to substantially comprise working memory processes.
Collapse
Affiliation(s)
- Lynne A Barker
- Brain, Behaviour and Cognition Group, Department of Psychology, Sheffield Hallam University, Collegiate Crescent Campus, Sheffield, S10 2BP, UK.
| |
Collapse
|
16
|
Kornysheva K, Sierk A, Diedrichsen J. Interaction of temporal and ordinal representations in movement sequences. J Neurophysiol 2012; 109:1416-24. [PMID: 23221413 DOI: 10.1152/jn.00509.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The production of movement sequences requires an accurate control of muscle activation in time. How does the nervous system encode the precise timing of these movements? One possibility is that the timing of movements (temporal sequence) is an emergent property of the dynamic state of the nervous system and therefore intimately linked to a representation of the sequence of muscle commands (ordinal sequence). Alternatively, timing may be represented independently of the motor effectors and would be transferable to a new ordinal sequence. Some studies have found that a learned temporal sequence cannot be transferred to a new ordinal sequence, thus arguing for an integrated representation. Others have observed temporal transfer across movement sequences and have advocated an independent representation of temporal information. Using a modified serial reaction time task, we tested alternative models of the representation of temporal structure and the interaction between the output of separate ordinal and temporal sequence representations. Temporal transfer depended on whether a novel ordinal sequence was fixed within each test block. Our results confirm the presence of an independent representation of temporal structure and advocate a nonlinear multiplicative neural interaction of temporal and ordinal signals in the production of movements.
Collapse
Affiliation(s)
- Katja Kornysheva
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
| | | | | |
Collapse
|
17
|
Cued memory reactivation during sleep influences skill learning. Nat Neurosci 2012; 15:1114-6. [PMID: 22751035 PMCID: PMC3498459 DOI: 10.1038/nn.3152] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/31/2012] [Indexed: 02/05/2023]
Abstract
Information acquired during waking can be reactivated during sleep, promoting memory stabilization. After people learned to produce two melodies in time with moving visual symbols, we produced a relative improvement in performance by presenting one melody during an afternoon nap. Electrophysiological signs of memory processing during sleep corroborated the notion that appropriate auditory stimulation that does not disrupt sleep can nevertheless bias memory consolidation in relevant brain circuitry.
Collapse
|
18
|
Gobel EW, Parrish TB, Reber PJ. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. Neuroimage 2011; 58:1150-7. [PMID: 21771663 DOI: 10.1016/j.neuroimage.2011.06.090] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/30/2022] Open
Abstract
Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time.
Collapse
Affiliation(s)
- Eric W Gobel
- Interdepartmental Neuroscience Program, Northwestern University, 320 E Superior St, Searle 5-474, Chicago, IL 60611, USA.
| | | | | |
Collapse
|