1
|
Liu N, Li YF, Zhao XT, Li YH, Cui RS. Inhibition of the basolateral amygdala to prelimbic cortex pathway enhances risk-taking during risky decision-making shock task in rats. Physiol Behav 2025; 292:114819. [PMID: 39862941 DOI: 10.1016/j.physbeh.2025.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Many animal studies have explored decision-making under risk and punishment, particularly regarding potential rewards, but less focus has been placed on contexts involving net losses. Understanding decision-making under net loss conditions can shed light on the neural mechanisms involved. The basolateral amygdala to prelimbic cortex (BLA→PL) pathway is crucial for risky decision-making. In this study, we investigated how rats make decisions under no-reward but shock conditions, specifically examining the role of the BLA→PL pathway. In the risky decision-making shock task (RDST), rats chose between a "small/certain" lever, which consistently delivered one pellet, and a "large/risky" lever, offering variable rewards with a 50 % probability of reward and a 50 % probability of 1-s foot-shock. The results showed that the shock condition decreased the preference for the large/risky lever, despite increasing rewards. Importantly, inhibiting the BLA→PL pathway significantly increased the selection of the "large/risky" lever compared to the control. Although rats in the clozapine N-oxide (CNO) group did not exhibit significant differences in response latency between levers, they exhibited heightened sensitivity to rewards and losses, suggesting that the BLA→PL pathway affects the encoding of the relationship between aversive stimuli and reward-seeking. Overall, these results provide valuable insights into the neural mechanisms of risk-taking, particularly regarding how inhibition in the BLA→PL pathway can influence reward processing and decision-making under no-reward but shock conditions, with implications for understanding risk-related psychiatric disorders.
Collapse
Affiliation(s)
- Ni Liu
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China
| | - Yu-Fei Li
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China
| | - Xiao-Tong Zhao
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China
| | - Yong-Hui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, PR China
| | - Rui-Si Cui
- Beijing Key Laboratory of Learning and Cognition, College of Psychology, Capital Normal University, Beijing, PR China.
| |
Collapse
|
2
|
Sonneborn A, Bartlett L, Olson RJ, Milton R, Abbas AI. Divergent subregional information processing in mouse prefrontal cortex during working memory. Commun Biol 2024; 7:1235. [PMID: 39354065 PMCID: PMC11445572 DOI: 10.1038/s42003-024-06926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Working memory (WM) is a critical cognitive function allowing recent information to be temporarily held in mind to inform future action. This process depends on coordination between prefrontal cortex (PFC) subregions and other connected brain areas. However, few studies have examined the degree of functional specialization between these subregions throughout WM using electrophysiological recordings in freely-moving mice. Here we record single-units in three neighboring mouse medial PFC (mPFC) subregions-supplementary motor area (MOs), dorsomedial PFC (dmPFC), and ventromedial (vmPFC)-during a freely-behaving non-match-to-position WM task. The MOs is most active around task phase transitions, when it transiently represents the starting sample location. Dorsomedial PFC contains a stable population code, including persistent sample-location-specific firing during the delay period. Ventromedial PFC responds most strongly to reward-related information during choices. Our results reveal subregionally segregated WM computation in mPFC and motivate more precise consideration of the dynamic neural activity required for WM.
Collapse
Affiliation(s)
- Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lowell Bartlett
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Randall J Olson
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Russell Milton
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Atheir I Abbas
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA.
| |
Collapse
|
3
|
Sonneborn A, Bartlett L, Olson RJ, Milton R, Abbas AI. Divergent Subregional Information Processing in Mouse Prefrontal Cortex During Working Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591167. [PMID: 38712304 PMCID: PMC11071486 DOI: 10.1101/2024.04.25.591167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Working memory (WM) is a critical cognitive function allowing recent information to be temporarily held in mind to inform future action. This process depends on coordination between key subregions in prefrontal cortex (PFC) and other connected brain areas. However, few studies have examined the degree of functional specialization between these subregions throughout the phases of WM using electrophysiological recordings in freely-moving animals, particularly mice. To this end, we recorded single-units in three neighboring medial PFC (mPFC) subregions in mouse - supplementary motor area (MOs), dorsomedial PFC (dmPFC), and ventromedial (vmPFC) - during a freely-behaving non-match-to-position WM task. We found divergent patterns of task-related activity across the phases of WM. The MOs is most active around task phase transitions and encodes the starting sample location most selectively. Dorsomedial PFC contains a more stable population code, including persistent sample-location-specific firing during a five second delay period. Finally, the vmPFC responds most strongly to reward-related information during the choice phase. Our results reveal anatomically and temporally segregated computation of WM task information in mPFC and motivate more precise consideration of the dynamic neural activity required for WM.
Collapse
Affiliation(s)
- Alex Sonneborn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
| | - Lowell Bartlett
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
| | - Randall J. Olson
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
| | - Russell Milton
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
| | - Atheir I. Abbas
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
- Department of Psychiatry, Oregon Health and Science University, Portland, OR
- VA Portland Health Care System, Portland, OR
| |
Collapse
|
4
|
Keefer SE, Petrovich GD. Necessity and recruitment of cue-specific neuronal ensembles within the basolateral amygdala during appetitive reversal learning. Neurobiol Learn Mem 2022; 194:107663. [PMID: 35870716 PMCID: PMC10326893 DOI: 10.1016/j.nlm.2022.107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Through Pavlovian appetitive conditioning, environmental cues can become predictors of food availability. Over time, however, the food, and thus the value of the associated cues, can change based on environmental variations. This change in outcome necessitates updating of the value of the cue to appropriately alter behavioral responses to these cues. The basolateral amygdala (BLA) is critical in updating the outcomes of learned cues. However, it is unknown if the same BLA neuronal ensembles that are recruited in the initial associative memory are required when the new cue-outcome association is formed during reversal learning. The current study used the Daun02 inactivation method that enables selective targeting and disruption of activated neuronal ensembles in Fos-lacZ transgenic rats. Rats were implanted with bilateral cannulas that target the BLA and underwent appetitive discriminative conditioning in which rats had to discriminate between two auditory stimuli. One stimulus (CS+) co-terminated with food delivery, and the other stimulus was unrewarded (CS-; counterbalanced). Rats were then tested for CS+ or CS- memory retrieval and infused with either Daun02 or a vehicle solution into the BLA to inactivate either CS+ or CS- neuronal ensembles that were activated during that test. To assess if the same neuronal ensembles are necessary to update the value of the new association when the outcomes are changed, rats underwent reversal learning: the CS+ was no longer followed by food (reversal CS-, rCS-), and the CS- was now followed by food (reversal CS+; rCS+). The group that received Daun02 following CS+ session showed a decrease in conditioned responding and increased latency to the rCS- (previously CS+) during the first session of reversal learning, specifically during the first trial. This indicates that the neuronal ensemble that was activated during the recall of the CS+ memory was the same neuronal ensemble needed for learning the new outcome of the same CS, now rCS-. Additionally, the group that received Daun02 following CS- session was slower to respond to the rCS+ (previously CS-) during reversal learning. This indicates that the neuronal ensemble that was activated during the recall of the CS- memory was the same neuronal ensemble needed for learning the new outcome of the same CS. These results demonstrate that different neuronal ensembles within the BLA mediate memory recall of CS+ and CS- cues and reactivation of each cue-specific neuronal ensemble is necessary to update the value of that specific cue to respond appropriately during reversal learning. These results also indicate substantial plasticity within the BLA for behavioral flexibility as both groups eventually showed similar terminal levels of reversal learning.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| |
Collapse
|
5
|
de Landeta AB, Pereyra M, Miranda M, Bekinschtein P, Medina JH, Katche C. Functional connectivity of anterior retrosplenial cortex in object recognition memory. Neurobiol Learn Mem 2021; 186:107544. [PMID: 34737148 DOI: 10.1016/j.nlm.2021.107544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Recognition memory can rely on three components: "what", "where" and "when". Recently we demonstrated that the anterior retrosplenial cortex (aRSC), like the perirhinal cortex (PRH) and unlike the hippocampus (HP), is required for consolidation of the "what" component. Here, we aimed at studying which brain structures interact with the aRSC to process object recognition (OR) memory in rats. We studied the interaction of six brain structures that are connected to the aRSC during OR memory processing: PRH, medial prefrontal cortex (mPFC), anteromedial thalamic nuclei (AM), medial entorhinal cortex (MEC), anterior cingulate cortex (ACC) and the dorsal HP (dHP). We previously described the role of the PRH and dHP, so we first studied the participation of the mPFC, AM, MEC and ACC in OR memory consolidation by bilateral microinfusions of the GABAA receptor agonist muscimol. We observed an impairment in OR long-term memory (LTM) when inactivating the mPFC, the AM and the MEC, but not the ACC. Then, we studied the functional connections by unilateral inactivation of the aRSC and each one of the six structures in the same (ipsilateral) or the opposite (contralateral) hemisphere. Our results showed an amnesic LTM effect in rats with ipsilateral inactivations of aRSC-PRH, aRSC-mPFC, aRSC-AM, or aRSC-MEC. On the other hand, we observed memory impairment when aRSC-ACC were inactivated in opposite hemispheres, and no effect when the aRSC-dHP connection was inactivated. Thus, our ipsilateral inactivation findings reveal that the aRSC and, at least one brain region required in OR LTM processing are essential to consolidate OR memory. In conclusion, our results show that several cortico-cortical and cortico-thalamic pathways are important for OR memory consolidation.
Collapse
Affiliation(s)
- Ana Belén de Landeta
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Pereyra
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina
| | - Magdalena Miranda
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratorio de Memoria y Cognición Molecular, Instituto de Neurociencia Cognitiva y Traslacional, CONICET-Fundación INECO-Universidad Favaloro, Buenos Aires, Argentina
| | - Jorge H Medina
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina; Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Prevention of age-associated neuronal hyperexcitability with improved learning and attention upon knockout or antagonism of LPAR2. Cell Mol Life Sci 2020; 78:1029-1050. [PMID: 32468095 PMCID: PMC7897625 DOI: 10.1007/s00018-020-03553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that synaptic lysophosphatidic acids (LPAs) augment glutamate-dependent cortical excitability and sensory information processing in mice and humans via presynaptic LPAR2 activation. Here, we studied the consequences of LPAR2 deletion or antagonism on various aspects of cognition using a set of behavioral and electrophysiological analyses. Hippocampal neuronal network activity was decreased in middle-aged LPAR2−/− mice, whereas hippocampal long-term potentiation (LTP) was increased suggesting cognitive advantages of LPAR2−/− mice. In line with the lower excitability, RNAseq studies revealed reduced transcription of neuronal activity markers in the dentate gyrus of the hippocampus in naïve LPAR2−/− mice, including ARC, FOS, FOSB, NR4A, NPAS4 and EGR2. LPAR2−/− mice behaved similarly to wild-type controls in maze tests of spatial or social learning and memory but showed faster and accurate responses in a 5-choice serial reaction touchscreen task requiring high attention and fast spatial discrimination. In IntelliCage learning experiments, LPAR2−/− were less active during daytime but normally active at night, and showed higher accuracy and attention to LED cues during active times. Overall, they maintained equal or superior licking success with fewer trials. Pharmacological block of the LPAR2 receptor recapitulated the LPAR2−/− phenotype, which was characterized by economic corner usage, stronger daytime resting behavior and higher proportions of correct trials. We conclude that LPAR2 stabilizes neuronal network excitability upon aging and allows for more efficient use of resting periods, better memory consolidation and better performance in tasks requiring high selective attention. Therapeutic LPAR2 antagonism may alleviate aging-associated cognitive dysfunctions.
Collapse
|