1
|
van Halteren AGS, Suwandi JS, Tuit S, Borst J, Laban S, Tsonaka R, Struijk A, Wiekmeijer AS, van Pel M, Roep BO, Zwaginga JJ, Lankester AC, Schepers K, van Tol MJD, Fibbe WE. A unique immune signature in blood separates therapy-refractory from therapy-responsive acute graft-versus-host disease. Blood 2023; 141:1277-1292. [PMID: 36044666 PMCID: PMC10651784 DOI: 10.1182/blood.2022015734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is an immune cell‒driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants. Onset of aGVHD was associated with the appearance of CD11b+CD163+ myeloid cells in the blood and accumulation in the skin and GI tract. Distinct T-cell populations, including TCRγδ+ cells, expressing activation markers and chemokine receptors guiding homing to the skin and GI tract were found in the same blood samples. CXCR3+ T cells released inflammation-promoting factors after overnight stimulation. These results indicate that lymphoid and myeloid compartments are triggered at aGVHD onset. Immunoglobulin M (IgM) presumably class switched, plasmablasts, and 2 distinct CD11b- dendritic cell subsets were other prominent immune populations found early during the course of aGVHD in patients refractory to both first- and second-line (MSC-based) therapy. In these nonresponding patients, effector and regulatory T cells with skin- or gut-homing receptors also remained proportionally high over time, whereas their frequencies declined in therapy responders. Our results underscore the additive value of high-dimensional immune cell profiling for clinical response evaluation, which may assist timely decision-making in the management of severe aGVHD.
Collapse
Affiliation(s)
- Astrid G. S. van Halteren
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica S. Suwandi
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Tuit
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jelske Borst
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra Laban
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Medical Statistics Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Ada Struijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Melissa van Pel
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart O. Roep
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jaap Jan Zwaginga
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Pediatric Stem Cell Transplantation Unit, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Koen Schepers
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten J. D. van Tol
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem E. Fibbe
- Department of Internal Medicine and Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Buder K, Zirngibl M, Bapistella S, Meerpohl JJ, Strahm B, Bassler D, Weitz M. Extracorporeal photopheresis versus alternative treatment for chronic graft-versus-host disease after haematopoietic stem cell transplantation in children and adolescents. Cochrane Database Syst Rev 2022; 6:CD009898. [PMID: 35679154 PMCID: PMC9181448 DOI: 10.1002/14651858.cd009898.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chronic graft-versus-host disease (cGvHD) is a major cause of morbidity and mortality after haematopoietic stem cell transplantation, occurring in 6% to 65% of the paediatric recipients. Currently, the therapeutic mainstay for cGvHD is treatment with corticosteroids, frequently combined with other immunosuppressive agents in people with steroid-refractory manifestations. There is no established standard treatment for steroid-refractory cGvHD. The therapeutic options for these patients include extracorporeal photopheresis (ECP), an immunomodulatory treatment that involves ex vivo collection of mononuclear cells from peripheral blood, exposure to the photoactive agent 8-methoxypsoralen, ultraviolet radiation and re-infusion of the processed cell product. The mechanisms of action of ECP are not completely understood. This is the second update of a Cochrane Review first published in 2014 and first updated in 2015. OBJECTIVES To evaluate the effectiveness and safety of ECP for the management of cGvHD in children and adolescents after haematopoietic stem cell transplantation. SEARCH METHODS We searched the Cochrane Register of Controlled Trials (CENTRAL) (2021), MEDLINE (PubMed) and Embase databases from their inception to 25 January 2021. We searched the reference lists of potentially relevant studies without any language restrictions. We searched five conference proceedings and nine clinical trial registries on 9 November 2020 and 12 November 2020, respectively. SELECTION CRITERIA We aimed to include randomised controlled trials (RCTs) comparing ECP with or without alternative treatment versus alternative treatment alone in children and adolescents with cGvHD after haematopoietic stem cell transplantation. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. We resolved disagreements in the selection of trials by consultation with a third review author. MAIN RESULTS We found no studies meeting the criteria for inclusion in this 2021 review update. AUTHORS' CONCLUSIONS We could not evaluate the efficacy of ECP in the treatment of cGvHD in children and adolescents after haematopoietic stem cell transplantation since the second review update again found no RCTs. Current recommendations are based on retrospective or observational studies only. Thus, ideally, ECP should be applied in the context of controlled trials only. However, performing RCTs in this population will be challenging due to the limited number of eligible participants, variable disease presentation and the lack of well-defined response criteria. International collaboration, multicentre trials and appropriate funding for such trials will be needed. If treatment decisions based on clinical data are made in favour of ECP, recipients should be carefully monitored for beneficial and harmful effects. In addition, efforts should be made to share this information with other clinicians, for example by setting up registries for children and adolescents treated with ECP.
Collapse
Affiliation(s)
- Kathrin Buder
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| | - Matthias Zirngibl
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| | - Sascha Bapistella
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| | - Joerg J Meerpohl
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Brigitte Strahm
- Pediatric Hematology and Oncology Centre for Pediatrics and Adolescent Medicine, University Medical School Freiburg, Freiburg, Germany
| | - Dirk Bassler
- Department of Neonatology, University Hospital Zürich, Zürich, Switzerland
| | - Marcus Weitz
- Department of General Paediatrics and Haematology/Oncology, University Hospital Tübingen, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
3
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
4
|
Schlottmann F, Bucan V, Vogt PM, Krezdorn N. A Short History of Skin Grafting in Burns: From the Gold Standard of Autologous Skin Grafting to the Possibilities of Allogeneic Skin Grafting with Immunomodulatory Approaches. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:225. [PMID: 33801228 PMCID: PMC7998351 DOI: 10.3390/medicina57030225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Due to groundbreaking and pioneering developments in the last century, significant improvements in the care of burn patients have been achieved. In addition to the still valid therapeutic standard of autologous split-thickness skin grafting, various commercially available skin substitutes are currently available. Significant progress in the field of tissue engineering has led to the development of promising therapeutic approaches. However, scientific advances in the field of allografting and transplant immunology are of great importance. The achievement of various milestones over the past decades has provided thought-provoking impulses in the field of skin allotransplantation. Thus, biologically viable skin allotransplantation is still not a part of the clinical routine. The purpose of this article is to review the achievements in burn surgery with regards to skin allotransplantation in recent years.
Collapse
Affiliation(s)
- Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand- and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; (V.B.); (P.M.V.); (N.K.)
| | | | | | | |
Collapse
|
5
|
|
6
|
Summers C, Sheth VS, Bleakley M. Minor Histocompatibility Antigen-Specific T Cells. Front Pediatr 2020; 8:284. [PMID: 32582592 PMCID: PMC7283489 DOI: 10.3389/fped.2020.00284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Minor Histocompatibility (H) antigens are major histocompatibility complex (MHC)/Human Leukocyte Antigen (HLA)-bound peptides that differ between allogeneic hematopoietic stem cell transplantation (HCT) recipients and their donors as a result of genetic polymorphisms. Some minor H antigens can be used as therapeutic T cell targets to augment the graft-vs.-leukemia (GVL) effect in order to prevent or manage leukemia relapse after HCT. Graft engineering and post-HCT immunotherapies are being developed to optimize delivery of T cells specific for selected minor H antigens. These strategies have the potential to reduce relapse risk and thereby permit implementation of HCT approaches that are associated with less toxicity and fewer late effects, which is particularly important in the growing and developing pediatric patient. Most minor H antigens are expressed ubiquitously, including on epithelial tissues, and can be recognized by donor T cells following HCT, leading to graft-vs.-host disease (GVHD) as well as GVL. However, those minor H antigens that are expressed predominantly on hematopoietic cells can be targeted for selective GVL. Once full donor hematopoietic chimerism is achieved after HCT, hematopoietic-restricted minor H antigens are present only on residual recipient malignant hematopoietic cells, and these minor H antigens serve as tumor-specific antigens for donor T cells. Minor H antigen-specific T cells that are delivered as part of the donor hematopoietic stem cell graft at the time of HCT contribute to relapse prevention. However, in some cases the minor H antigen-specific T cells delivered with the graft may be quantitatively insufficient or become functionally impaired over time, leading to leukemia relapse. Following HCT, adoptive T cell immunotherapy can be used to treat or prevent relapse by delivering large numbers of donor T cells targeting hematopoietic-restricted minor H antigens. In this review, we discuss minor H antigens as T cell targets for augmenting the GVL effect in engineered HCT grafts and for post-HCT immunotherapy. We will highlight the importance of these developments for pediatric HCT.
Collapse
Affiliation(s)
- Corinne Summers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Vipul S Sheth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Inman CF, Eldershaw SA, Croudace JE, Davies NJ, Sharma-Oates A, Rai T, Pearce H, Sirovica M, Chan YLT, Verma K, Zuo J, Nagra S, Kinsella F, Nunnick J, Amel-Kashipaz R, Craddock C, Malladi R, Moss P. Unique features and clinical importance of acute alloreactive immune responses. JCI Insight 2018; 3:97219. [PMID: 29769441 PMCID: PMC6012511 DOI: 10.1172/jci.insight.97219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/19/2018] [Indexed: 01/22/2023] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) can cure some patients with hematopoietic malignancy, but this relies on the development of a donor T cell alloreactive immune response. T cell activity in the first 2 weeks after allo-SCT is crucial in determining outcome, despite the clinical effects of the early alloreactive immune response often not appearing until later. However, the effect of the allogeneic environment on T cells is difficult to study at this time point due to the effects of profound lymphopenia. We approached this problem by comparing T cells at week 2 after allograft to T cells from autograft patients. Allograft T cells were present in small numbers but displayed intense proliferation with spontaneous cytokine production. Oligoclonal expansions at week 2 came to represent a substantial fraction of the established T cell pool and were recruited into tissues affected by graft-versus-host disease. Transcriptional analysis uncovered a range of potential targets for immune manipulation, including OX40L, TWEAK, and CD70. These findings reveal that recognition of alloantigen drives naive T cells toward a unique phenotype. Moreover, they demonstrate that early clonal T cell responses are recruited to sites of subsequent tissue damage and provide a range of targets for potential therapeutic immunomodulation. Alloreactive response T cells at 2 weeks after allo-SCT displayed intense proliferation with spontaneous cytokine production, and were recruited into tissues affected by GvHD.
Collapse
Affiliation(s)
- Charlotte F Inman
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Suzy A Eldershaw
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Joanne E Croudace
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Nathaniel J Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Archana Sharma-Oates
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tanuja Rai
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Mirjana Sirovica
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Y L Tracey Chan
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Kriti Verma
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Sandeep Nagra
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Francesca Kinsella
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and
| | - Jane Nunnick
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Rasoul Amel-Kashipaz
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Charles Craddock
- Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ram Malladi
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, and.,Birmingham Health Partners, Department of Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
8
|
Sykes M. Immune monitoring of transplant patients in transient mixed chimerism tolerance trials. Hum Immunol 2018; 79:334-342. [PMID: 29289741 PMCID: PMC5924718 DOI: 10.1016/j.humimm.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
This review focuses on mechanistic studies performed in recipients of non-myeloablative bone marrow transplant regimens developed at Massachusetts General Hospital in HLA-identical and HLA-mismatched haploidentical combinations, initially as a platform for treatment of hematologic malignancies with immunotherapy in the form of donor leukocyte infusions, and later in combination with donor kidney transplantation for the induction of allograft tolerance. In patients with permanent mixed chimerism, central deletion may be a major mechanism of long-term tolerance. In patients in whom donor chimerism is only transient, the kidney itself plays a significant role in maintaining long-term tolerance. A high throughput sequencing approach to identifying and tracking a significant portion of the alloreactive T cell receptor repertoire has demonstrated biological significance in transplant patients and has been useful in pointing to clonal deletion as a long-term tolerance mechanism in recipients of HLA-mismatched combined kidney and bone marrow transplants with only transient chimerism.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, NY, USA; Department of Medicine, Columbia University Medical Center, NY, USA; Department of Microbiology & Immunology, Columbia University Medical Center, NY, USA; Department of Surgery, Columbia University Medical Center, NY, USA.
| |
Collapse
|
9
|
Verma K, Jyotsana N, Buenting I, Luther S, Pfanne A, Thum T, Ganser A, Heuser M, Weissinger EM, Hambach L. miR-625-3p is upregulated in CD8+ T cells during early immune reconstitution after allogeneic stem cell transplantation. PLoS One 2017; 12:e0183828. [PMID: 28854245 PMCID: PMC5576678 DOI: 10.1371/journal.pone.0183828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/11/2017] [Indexed: 01/24/2023] Open
Abstract
Alloreactive CD8+ T-cells mediate the curative graft-versus-leukaemia effect, the anti-viral immunity and graft-versus-host-disease (GvHD) after allogeneic stem cell transplantation (SCT). Thus, immune reconstitution with CD8+ T-cells is critical for the outcome of patients after allogeneic SCT. Certain miRNAs such as miR-146a or miR-155 play an important role in the regulation of post-transplant immunity in mice. While some miRNAs e.g. miR-423 or miR-155 are regulated in plasma or full blood during acute GvHD also in man, the relevance and expression profile of miRNAs in T-cells after allogeneic SCT is unknown. miR-625-3p has recently been described to be overexpressed in colorectal malignancies where it promotes migration, invasion and apoptosis resistance. Since similar regulative functions in cancer and T-cells have been described for an increasing number of miRNAs, we assumed a role for the cancer-related miR-625-3p also in T-cells. Here, we studied miR-625-3p expression selectively in CD8+ T-cells both in vitro and during immune reconstitution after allogeneic SCT in man. T-cell receptor stimulation lead to miR-625-3p upregulation in human CD8+ T-cells in vitro. Maintenance of elevated miR-625-3p expression levels was dependent on ongoing T-cell proliferation and was abrogated by withdrawal of interleukin 2 or the mTOR inhibitor rapamycin. Finally, miR-625-3p expression was analyzed in human CD8+ T-cells purified from 137 peripheral blood samples longitudinally collected from 74 patients after allogeneic SCT. miR-625-3p expression was upregulated on day 25 and on day 45, i.e. during the early phase of CD8+ T-cell reconstitution after allogeneic SCT and subsequently declined with completion of CD8+ T-cell reconstitution until day 150. In conclusion, this study has shown for the first time that miR-625-3p is regulated in CD8+ T-cells during proliferation in vitro and during early immune reconstitution after allogeneic SCT in vivo. These results warrant further studies to identify the targets and function of miR-625-3p in CD8+ T-cells and to analyze its predictive value for an effective immune reconstitution.
Collapse
Affiliation(s)
- Kriti Verma
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Center for Transplantation (IFB-Tx), Hannover, Germany
| | - Nidhi Jyotsana
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ivonne Buenting
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Susanne Luther
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Angelika Pfanne
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Arnold Ganser
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Eva M. Weissinger
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lothar Hambach
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
10
|
Abstract
Alloreactive T lymphocytes are the primary mediators of allograft rejection. The size and diversity of the HLA-alloreactive T cell repertoire has thus far precluded the ability to follow these T cells and thereby to understand their fate in human transplant recipients. This review summarizes the history, challenges, and recent advances in the study of alloreactive T cells. We highlight the historical development of assays to measure alloreactivity and discuss how high-throughput T cell receptor (TCR) sequencing-based assays can provide a new window into the fate of alloreactive T cells in human transplant recipients. A specific approach combining a classical in vitro assay, the mixed lymphocyte reaction, with deep T cell receptor sequencing is described as a tool to track the donor-reactive T cell repertoire for any specific HLA-mismatched donor-recipient pair. This assay can provide mechanistic insights and has potential as a noninvasive, highly specific biomarker for rejection and tolerance.
Collapse
|
11
|
Schetelig J, de Wreede LC, van Gelder M, Andersen NS, Moreno C, Vitek A, Karas M, Michallet M, Machaczka M, Gramatzki M, Beelen D, Finke J, Delgado J, Volin L, Passweg J, Dreger P, Henseler A, van Biezen A, Bornhäuser M, Schönland SO, Kröger N. Risk factors for treatment failure after allogeneic transplantation of patients with CLL: a report from the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 2017; 52:552-560. [PMID: 28112746 DOI: 10.1038/bmt.2016.329] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 11/09/2022]
Abstract
For young patients with high-risk CLL, BTK-/PI3K-inhibitors or allogeneic stem cell transplantation (alloHCT) are considered. Patients with a low risk of non-relapse mortality (NRM) but a high risk of failure of targeted therapy may benefit most from alloHCT. We performed Cox regression analyses to identify risk factors for 2-year NRM and 5-year event-free survival (using EFS as a surrogate for long-term disease control) in a large, updated EBMT registry cohort (n= 694). For the whole cohort, 2-year NRM was 28% and 5-year EFS 37%. Higher age, lower performance status, unrelated donor type and unfavorable sex-mismatch had a significant adverse impact on 2-year NRM. Two-year NRM was calculated for good- and poor-risk reference patients. Predicted 2-year-NRM was 11 and 12% for male and female good-risk patients compared with 42 and 33% for male and female poor-risk patients. For 5-year EFS, age, performance status, prior autologous HCT, remission status and sex-mismatch had a significant impact, whereas del(17p) did not. The model-based prediction of 5-year EFS was 55% and 64%, respectively, for male and female good-risk patients. Good-risk transplant candidates with high-risk CLL and limited prognosis either on or after failure of targeted therapy should still be considered for alloHCT.
Collapse
Affiliation(s)
- J Schetelig
- Medical Department I, University Hospital, Technische Universität Dresden, Dresden, Germany.,Clinical Trials Unit, DKMS, gemeinnützige GmbH, Tübingen, Germany
| | - L C de Wreede
- Clinical Trials Unit, DKMS, gemeinnützige GmbH, Tübingen, Germany.,Department Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - M van Gelder
- Department of Internal Medicine, Division of Hematology, University Medical Center Maastricht, The Netherlands
| | - N S Andersen
- BMT Unit, Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | - C Moreno
- Hematologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - A Vitek
- Department of Hematology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - M Karas
- Department of Hematology/Oncology, Charles University Hospital, Pilsen, Czech Republic
| | - M Michallet
- Hématologie, Center Hospitalier Lyon-Sud, Lyon, France
| | - M Machaczka
- Department of Medicine at Huddinge, Hematology Center Karolinska and Karolinska Institutet, Stockholm, Sweden
| | - M Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - D Beelen
- Department of Bone Marrow Transplantation, University Hospital, Essen, Germany
| | - J Finke
- Department of Medicine-Hematology, University of Freiburg, Oncology, Freiburg, Germany
| | - J Delgado
- Department of Hematology, Hospital Clinic, Institute of Hematology & Oncology, Barcelona, Spain
| | - L Volin
- Stem Cell Transplantation Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - J Passweg
- Department for Hematology, University Hospital, Basel, Switzerland
| | - P Dreger
- Medizinische Klinik und Poliklinik V, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - A Henseler
- Department Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - A van Biezen
- Department Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - M Bornhäuser
- Medical Department I, University Hospital, Technische Universität Dresden, Dresden, Germany
| | - S O Schönland
- Medizinische Klinik und Poliklinik V, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - N Kröger
- Bone Marrow Transplantation Center, University Hospital Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Shinohara A, Inamoto Y, Kurosawa S, Hiramoto N, Ueda R, Tanaka T, Tada K, Kobayashi Y, Morikawa N, Okinaka K, Kim SW, Tajima K, Fukuda T. High non-relapse mortality and low relapse incidence in gender-mismatched allogeneic hematopoietic stem cell transplantation from a parous female donor with a male child. Leuk Lymphoma 2016; 58:578-585. [PMID: 27892749 DOI: 10.1080/10428194.2016.1205743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To clarify the influence of exposure to a male fetus during a female donor's (FD) pregnancy in allogeneic hematopoietic stem cell transplantation (HSCT), we retrospectively examined 292 HSCT patients. The 5-year non-relapse mortality (NRM) was 33.5% among 31 male recipients who had HSCT from FD with a male child (MC), 23.0% among 40 male recipients who had HSCT from FD without MC and 19.6% among 221 other recipients. The 5-year relapse incidence (RI) was 22.6%, 42.0%, and 43.1% for the respective group. In multivariate analysis, male recipients who had HSCT from FD with MC had an increased risk of NRM (hazard ratio [HR] 1.92, 95% CI 1.08-3.42, p = .03), a reduced risk of RI (HR 0.42, 95% CI 0.18-0.96, p = .04), resulting in no significant difference regarding overall survival. Male child of FD is suggested to influence NRM and RI in gender-mismatched HSCT.
Collapse
Affiliation(s)
- Akihito Shinohara
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan.,b Department of Hematology & Oncology, Graduate School of Medicine , the University of Tokyo , Tokyo , Japan.,c Department of Hematology , Tokyo Women's Medical University , Tokyo , Japan
| | - Yoshihiro Inamoto
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Saiko Kurosawa
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Nobuhiro Hiramoto
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Ryosuke Ueda
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Takashi Tanaka
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Kohei Tada
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Yujin Kobayashi
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Noriyuki Morikawa
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Keiji Okinaka
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Sung-Won Kim
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Kinuko Tajima
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| | - Takahiro Fukuda
- a Department of Hematopoietic Stem Cell Transplantation , National Cancer Center Hospital , Tokyo , Japan
| |
Collapse
|
13
|
Griffioen M, van Bergen CAM, Falkenburg JHF. Autosomal Minor Histocompatibility Antigens: How Genetic Variants Create Diversity in Immune Targets. Front Immunol 2016; 7:100. [PMID: 27014279 PMCID: PMC4791598 DOI: 10.3389/fimmu.2016.00100] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/01/2016] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) can be a curative treatment for hematological malignancies. Unfortunately, the desired anti-tumor or graft-versus-leukemia (GvL) effect is often accompanied with undesired side effects against healthy tissues known as graft-versus-host disease (GvHD). After HLA-matched alloSCT, GvL and GvHD are both mediated by donor-derived T-cells recognizing polymorphic peptides presented by HLA surface molecules on patient cells. These polymorphic peptides or minor histocompatibility antigens (MiHA) are produced by genetic differences between patient and donor. Since polymorphic peptides may be useful targets to manipulate the balance between GvL and GvHD, the dominant repertoire of MiHA needs to be discovered. In this review, the diversity of autosomal MiHA characterized thus far as well as the various molecular mechanisms by which genetic variants create immune targets and the role of cryptic transcripts and proteins as antigen sources are described. The tissue distribution of MiHA as important factor in GvL and GvHD is considered as well as possibilities how hematopoietic MiHA can be used for immunotherapy to augment GvL after alloSCT. Although more MiHA are still needed for comprehensive understanding of the biology of GvL and GvHD and manipulation by immunotherapy, this review shows insight into the composition and kinetics of in vivo immune responses with respect to specificity, diversity, and frequency of specific T-cells and surface expression of HLA-peptide complexes and other (accessory) molecules on the target cell. A complex interplay between these factors and their environment ultimately determines the spectrum of clinical manifestations caused by immune responses after alloSCT.
Collapse
Affiliation(s)
- Marieke Griffioen
- Department of Hematology, Leiden University Medical Center , Leiden , Netherlands
| | | | | |
Collapse
|
14
|
Michonneau D, Sagoo P, Breart B, Garcia Z, Celli S, Bousso P. The PD-1 Axis Enforces an Anatomical Segregation of CTL Activity that Creates Tumor Niches after Allogeneic Hematopoietic Stem Cell Transplantation. Immunity 2016; 44:143-154. [DOI: 10.1016/j.immuni.2015.12.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
|
15
|
Weitz M, Strahm B, Meerpohl JJ, Schmidt M, Bassler D. Extracorporeal photopheresis versus alternative treatment for chronic graft-versus-host disease after haematopoietic stem cell transplantation in paediatric patients. Cochrane Database Syst Rev 2015; 2015:CD009898. [PMID: 26666581 PMCID: PMC7093760 DOI: 10.1002/14651858.cd009898.pub3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (GvHD) is a major cause of morbidity and mortality after haematopoietic stem cell transplantation occurring in 6% to 65% of the recipients. Currently, the therapeutic mainstay for chronic GvHD are corticosteroids that are frequently combined with other immunosuppressive agents in people with steroid-refractory manifestations. There is no established standard treatment for steroid-refractory chronic GvHD. The therapeutic options for these patients include extracorporeal photopheresis (ECP), an immunomodulatory treatment that involves ex vivo collection of mononuclear cells from peripheral blood, exposure to the photoactive agent 8-methoxypsoralen, ultraviolet radiation and re-infusion of the processed cell product. The mechanisms of action of ECP are not completely understood. This is an updated version of a Cochrane review first published in 2014. OBJECTIVES To evaluate the effectiveness and safety of ECP for the management of chronic GvHD in children and adolescents after haematopoietic stem cell transplantation. SEARCH METHODS We searched the Cochrane Register of Controlled Trials (CENTRAL) (Issue 9, 2015), MEDLINE and EMBASE databases from their inception to 23 September 2015. We searched the reference lists of potentially relevant studies without any language restriction. We searched eight trial registers and five conference proceedings on 29 September 2015. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing ECP with or without alternative treatment versus alternative treatment alone in paediatric patients with chronic GvHD after haematopoietic stem cell transplantation. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. We resolved disagreements in the selection of trials by consultation with a third review author. MAIN RESULTS No additional studies were identified in this 2015 review update, in total leading to no studies meeting the criteria for inclusion in this review. AUTHORS' CONCLUSIONS The efficacy of ECP in the treatment of chronic GvHD in paediatric patients after haematopoietic stem cell transplantation based on RCTs cannot be evaluated since the original version of this review and the first review update found no RCTs. Current recommendations are based on retrospective or observational studies only. Thus, ideally, ECP should be applied in the context of controlled trials only. However, performing RCTs in this patient population will be challenging due to the limited number of patients, the variable disease presentation and the lack of well-defined response criteria. International collaboration, multicentre trials and appropriate funding for such trials will be needed. If treatment decisions based on clinical data are made in favour of ECP, patients should be carefully monitored for beneficial and harmful effects. In addition, efforts should be made to share this information with other clinicians, for example by setting up registries for paediatric patients that are treated with ECP.
Collapse
Affiliation(s)
- Marcus Weitz
- University Children's HospitalPediatric NephrologySteinwiesstrasse 75ZurichSwitzerland8032
| | - Brigitte Strahm
- University Medical School FreiburgPediatric Hematology and Oncology Centre for Pediatrics and Adolescent MedicineMathildenstrasse 1FreiburgGermany79106
| | - Joerg J Meerpohl
- Medical Center ‐ University of FreiburgCochrane GermanyBerliner Allee 29FreiburgGermany79110
| | - Maria Schmidt
- University Children's HospitalPediatric NephrologySteinwiesstrasse 75ZurichSwitzerland8032
| | - Dirk Bassler
- University Hospital ZurichDepartment of NeonatologyFrauenklinikstrasse 10ZurichSwitzerland
| | | |
Collapse
|
16
|
Oostvogels R, Lokhorst HM, Mutis T. Minor histocompatibility Ags: identification strategies, clinical results and translational perspectives. Bone Marrow Transplant 2015; 51:163-71. [PMID: 26501766 DOI: 10.1038/bmt.2015.256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 12/14/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) and donor lymphocyte infusion are effective treatment modalities for various hematological malignancies. Their therapeutic effect, the graft-versus-tumor (GvT) effect, is based mainly on an alloimmune response of donor T cells directed at tumor cells, in which differences in the expression of minor histocompatibility Ags (mHags) on the cells of the patient and donor have a crucial role. However, these differences are also responsible for induction of sometimes detrimental GvHD. As relapse and development of GvHD pose major threats for a large proportion of allotransplanted patients, additional therapeutic strategies are required. To augment the GvT response without increasing the risk of GvHD, specific mHag-directed immunotherapeutic strategies have been developed. Over the past years, much effort has been put into the identification of therapeutically relevant mHags to enable these strategies for a substantial proportion of patients. Currently, the concept of mHag-directed immunotherapy is tested in clinical trials on feasibility, safety and efficacy. In this review, we will summarize the recent developments in mHag identification and the clinical data on mHag-specific immune responses and mHag-directed therapies in patients with hematological malignancies. Finally, we will outline the current challenges and future prospectives in the field.
Collapse
Affiliation(s)
- R Oostvogels
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - H M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - T Mutis
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Eikmans M, van Halteren AGS, van Besien K, van Rood JJ, Drabbels JJM, Claas FHJ. Naturally acquired microchimerism: implications for transplantation outcome and novel methodologies for detection. CHIMERISM 2015; 5:24-39. [PMID: 24762743 DOI: 10.4161/chim.28908] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microchimerism represents a condition where one individual harbors genetically distinct cell populations, and the chimeric population constitutes <1% of the total number of cells. The most common natural source of microchimerism is pregnancy. The reciprocal cell exchange between a mother and her child often leads to the stable engraftment of hematopoietic and non-hematopoietic stem cells in both parties. Interaction between cells from the mother and those from the child may result in maternal immune cells becoming sensitized to inherited paternal alloantigens of the child, which are not expressed by the mother herself. Vice versa, immune cells of the child may become sensitized toward the non-inherited maternal alloantigens of the mother. The extent of microchimerism, its anatomical location, and the sensitivity of the techniques used for detecting its presence collectively determine whether microchimerism can be detected in an individual. In this review, we focus on the clinical consequences of microchimerism in solid organ and hematopoietic stem cell transplantation, and propose concepts derived from data of epidemiologic studies. Next, we elaborate on the latest molecular methodology, including digital PCR, for determining in a reliable and sensitive way the extent of microchimerism. For the first time, tools have become available to isolate viable chimeric cells from a host background, so that the challenges of establishing the biologic mechanisms and function of these cells may finally be tackled.
Collapse
Affiliation(s)
- Michael Eikmans
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| | - Astrid G S van Halteren
- Immunology Laboratory; Willem Alexander Children's Hospital; Leiden University Medical Center; Leiden, the Netherlands
| | | | - Jon J van Rood
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands; Europdonor Foundation; Leiden, the Netherlands
| | - Jos J M Drabbels
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion; Leiden University Medical Center; Leiden, the Netherlands
| |
Collapse
|
18
|
van Halteren AGS, Dierselhuis MP, Netelenbos T, Fechter M. Donor parity no longer a barrier for female-to-male hematopoietic stem cell transplantation. CHIMERISM 2015; 5:56-8. [PMID: 24933732 DOI: 10.4161/chim.29562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a widely applied treatment for disorders mainly involving the hematopoietic system. The success of this treatment depends on many different patient- and donor-specific factors. Based on higher CD34+ yields and superior clinical outcomes associated with the use of male donors, males are generally seen as the preferred HSCT donor. In addition, female donors are notorious for bearing memory type lymphocytes induced by previous pregnancies; such alloimmune cells may provoke unwanted immune reactions such as graft-vs.-host disease in transplant recipients. Consequently, many transplant centers try to avoid parous donors, particularly when searching the best unrelated donor for a male patient. We recently showed that parous women with female offspring have an anti-male directed tolerogenic immune status comparable to that of nulliparous donors. As discussed in this article addendum, the sex of the donor's offspring combined with the presence of HY-specific T regulator cells are possibly better selection criteria than parity status per se.
Collapse
Affiliation(s)
- Astrid G S van Halteren
- Immunology Laboratory; Willem Alexander Children's Hospital/Leiden University Medical Center; Leiden, the Netherlands
| | - Miranda P Dierselhuis
- Department of Pediatrics; Willem Alexander Children's Hospital/Leiden University Medical Center; Leiden, the Netherlands
| | - Tanja Netelenbos
- Department of Immunohematology & Blood Transfusion/Leiden University Medical Center; Leiden, the Netherlands
| | | |
Collapse
|
19
|
Spierings E. Minor histocompatibility antigens: past, present, and future. ACTA ACUST UNITED AC 2015; 84:374-60. [PMID: 25262921 DOI: 10.1111/tan.12445] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 01/02/2023]
Abstract
Minor histocompatibility (H) antigens are key molecules driving allo-immune responses in both graft-versus-host-disease (GvHD) and in graft-versus-leukemia (GvL) reactivity in human leukocyte antigen (HLA)-matched hematopoietic stem-cell transplantation (HSCT). Dissection of the dual function of minor H antigens became evident through their different modes of tissue and cell expression, i.e. hematopoietic system-restricted or broad. Broadly expressed minor H antigens can cause both GvHD and GvL effects, while hematopoietic system-restricted minor H antigens are more prone to induce GvL responses. This phenomenon renders the latter group of minor H antigens as curative tools for HSCT-based immunotherapy of hematological malignancies and disorders, in which minor H antigen-specific responses are enhanced in order to eradicate the malignant cells. This article describes the immunogenetics of minor H antigens and methods that have been developed to identify them. Moreover, it summarizes the clinical relevance of minor H antigens in transplantation, with special regards to allogeneic HSCT and solid-organ transplantation.
Collapse
Affiliation(s)
- Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
20
|
The number of T cell allo-epitopes associates with CD4+ and CD8+ T-cell infiltration in pediatric cutaneous GVHD. Cell Immunol 2015; 295:112-7. [DOI: 10.1016/j.cellimm.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
|
21
|
van der Torren CR, van Hensbergen Y, Luther S, Aghai Z, Rychnavská ZS, Slot M, Scherjon S, Kröger N, Ganser A, Weissinger EM, Goulmy E, Hambach L. Possible role of minor h antigens in the persistence of donor chimerism after stem cell transplantation; relevance for sustained leukemia remission. PLoS One 2015; 10:e0119595. [PMID: 25774796 PMCID: PMC4361395 DOI: 10.1371/journal.pone.0119595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 01/14/2015] [Indexed: 12/22/2022] Open
Abstract
Persistent complete donor chimerism is an important clinical indicator for remissions of hematological malignancies after HLA-matched allogeneic stem cell transplantation (SCT). However, the mechanisms mediating the persistence of complete donor chimerism are poorly understood. The frequent coincidence of complete donor chimerism with graft-versus-leukemia effects and graft-versus-host disease suggests that immune responses against minor histocompatibility antigens (mHags) are playing an important role in suppressing the host hematopoiesis after allogeneic SCT. Here, we investigated a possible relationship between donor immune responses against the hematopoiesis-restricted mHag HA-1 and the long-term kinetics of host hematopoietic chimerism in a cohort of 10 patients after allogeneic HLA-matched, HA-1 mismatched SCT. Functional HA-1 specific CTLs (HA-1 CTLs) were detectable in 6/10 patients lysing host-type hematopoietic cells in vitro. Presence of HA-1 CTLs in the peripheral blood coincided with low host hematopoiesis levels quantified by highly sensitive mHag specific PCR. Additionally, co-incubation of host type CD34+ cells with HA-1 CTLs isolated after allogeneic SCT prevented progenitor and cobblestone area forming cell growth in vitro and human hematopoietic engraftment in immunodeficient mice. Conversely, absence or loss of HA-1 CTLs mostly coincided with high host hematopoiesis levels and/or relapse. In summary, in this first study, presence of HA-1 CTLs paralleled low host hematopoiesis levels. This coincidence might be supported by the capacity of HA-1 CTLs isolated after allogeneic SCT to specifically eliminate host type hematopoietic stem/progenitor cells. Additional studies involving multiple mismatched mHags in more patients are required to confirm this novel characteristic of mHag CTLs as factor for the persistence of complete donor chimerism and leukemia remission after allogeneic SCT.
Collapse
Affiliation(s)
- Cornelis R. van der Torren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Yvette van Hensbergen
- Sanquin Blood Supply Foundation, Division of Research, Department of Transfusion Medicine, Leiden, The Netherlands
| | - Susanne Luther
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zohara Aghai
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Zuzana Stachová Rychnavská
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon Slot
- Sanquin Blood Supply Foundation, Division of Research, Department of Transfusion Medicine, Leiden, The Netherlands
| | - Sicco Scherjon
- Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicolaus Kröger
- Department of Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Eva M. Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Els Goulmy
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Lothar Hambach
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
22
|
van Rood JJ, Claas FH, Brand A, Tilanus MG, van Kooten C. Half a century of Dutch transplant immunology. Immunol Lett 2014; 162:145-9. [DOI: 10.1016/j.imlet.2014.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Ex vivo detection of CD8 T cells specific for H-Y minor histocompatibility antigens in allogeneic hematopoietic stem cell transplant recipients. Transpl Immunol 2014; 30:128-35. [DOI: 10.1016/j.trim.2014.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/18/2022]
|
24
|
Abstract
H-Y antigens are a group of minor histocompatibility antigens encoded on the Y-chromosome with homologous H-X antigens on the X-chromosome. The disparate regions of the H-Y antigens are highly immunogenic and play an important role in understanding human alloimmunity. In this review, we investigate the history of H-Y antigen discovery along with their critical contributions in transplantation and pregnancy. In hematopoietic cell transplantation, male recipients with female donors who become seropositive for B-cell responses as H-Y antibodies following transplantation have increased rates of chronic graft-versus-host disease and decreased rates of relapse. Conversely, female patients who receive male kidney allografts are more likely than other gender combinations to develop H-Y antibodies and reject their allografts. Finally, in the setting of pregnancy, mothers who initially gave birth to boys are more likely to have subsequent pregnancy complications, including miscarriages, in association with H-Y antibody development. H-Y antigens continue to serve as a model for alloimmunity in new clinical scenarios. Our development of more sensitive antibody detection and next-generation DNA sequencing promises to further advance our understanding and better predict the clinical consequences of alloimmunity.
Collapse
Affiliation(s)
- Rakesh Popli
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bita Sahaf
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hideki Nakasone
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joyce Yeuk Yu Lee
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David B. Miklos
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Ramírez N, Beloki L, Ciaúrriz M, Rodríguez-Calvillo M, Escors D, Mansilla C, Bandrés E, Olavarría E. Impact of T cell selection methods in the success of clinical adoptive immunotherapy. Cell Mol Life Sci 2014; 71:1211-24. [PMID: 24077876 PMCID: PMC11113470 DOI: 10.1007/s00018-013-1463-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022]
Abstract
Chemotherapy and/or radiotherapy regular regimens used for conditioning of recipients of hematopoietic stem cell transplantation (SCT) induce a period of transient profound immunosuppression. The onset of a competent immunological response, such as the appearance of viral-specific T cells, is associated with a lower incidence of viral infections after haematopoietic transplantation. The rapid development of immunodominant peptide virus screening together with advances in the design of genetic and non-genetic viral- and tumoural-specific cellular selection strategies have opened new strategies for cellular immunotherapy in oncologic recipients who are highly sensitive to viral infections. However, the rapid development of cellular immunotherapy in SCT has disclosed the role of the T cell selection method in the modulation of functional cell activity and of in vivo secondary effects triggered following immunotherapy.
Collapse
Affiliation(s)
- Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Miriam Ciaúrriz
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Mercedes Rodríguez-Calvillo
- Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - David Escors
- Immunomodulation Research Group, Navarrabiomed, Miguel Servet Foundation, Pamplona, Navarre Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| | - Eva Bandrés
- Immunology Unit, Complejo Hospitalario de Navarra, Navarra Health Service, Pamplona, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed, Miguel Servet Foundation, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
- Department of Haematology, Complejo Hospitalario de Navarra, Navarra Health Service, Irunlarrea 3 Street, 31008 Pamplona, Navarre Spain
| |
Collapse
|
26
|
Dierselhuis MP, Jankowska-Gan E, Blokland E, Pool J, Burlingham WJ, van Halteren AGS, Goulmy E. HY immune tolerance is common in women without male offspring. PLoS One 2014; 9:e91274. [PMID: 24646895 PMCID: PMC3960116 DOI: 10.1371/journal.pone.0091274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022] Open
Abstract
Background Sex difference is an established risk factor for hematopoietic stem cell transplantation (HSCT)-related complications like graft versus host disease (GVHD). CD8pos cytotoxic T cells specific for Y chromosome-encoded minor Histocompatibility antigens (HY) play an important role therein. Prior to HSC donation, female donors may encounter HY antigens through fetomaternal or transmaternal cell flow, potentially leading to the induction of HY-specific cytotoxic or regulatory immune responses. Whether HY priming occurs independent of parity, and whether HY priming is dependent on the presence of male microchimerism, is as yet unknown. Methods We investigated the presence of HY-specific regulatory T cells (Treg) and male microchimerism in 45 healthy women with a fully documented pregnancy and family history. HY peptide-induced linked suppression, a commonly reported functional feature of CD4pos and CD8pos Treg, was measured by trans vivo Delayed Type Hypersensitivity testing. As source of HY antigens, male microchimerism was analyzed by real-time PCR and defined by the presence of male DNA in at least one purified leukocyte cell type. Results HLA class I or class II restricted HY-specific Treg were detected in 26/42 (62%) women eligible for analysis. The prevalence of HY-specific Treg was significantly higher in women who had never given birth to sons than in women with male offspring (p = 0.004). Male microchimerism could be detected in 24 out of 45 (53%) women but did not correlate with the presence of HY specific Treg. Conclusions HY-specific Treg in women with male offspring have been described previously. Here we show for the first time that, in fact, HY specific Treg are more common in nulliparous women and in parous women with female offspring. Their presence is independent of the presence of male microchimerism. Whether HY-specific Treg presence in female stem cell grafts might decrease the GVHD incidence in male HSCT recipients needs to be investigated.
Collapse
Affiliation(s)
- Miranda P Dierselhuis
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewa Jankowska-Gan
- Dept. of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Els Blokland
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Pool
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - William J Burlingham
- Dept. of Surgery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Astrid G S van Halteren
- Immunology Laboratory/Dept. of Pediatrics (WAKZ), Leiden University Medical Center, Leiden, The Netherlands
| | - Els Goulmy
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Weitz M, Strahm B, Meerpohl JJ, Bassler D. Extracorporeal photopheresis versus alternative treatment for chronic graft-versus-host disease after haematopoietic stem cell transplantation in paediatric patients. Cochrane Database Syst Rev 2014:CD009898. [PMID: 24569961 DOI: 10.1002/14651858.cd009898.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Chronic graft-versus-host disease (GvHD) is a major cause of morbidity and mortality after haematopoietic stem cell transplantation occurring in 6% to 65% of the recipients. Currently, the therapeutic mainstay for chronic GvHD are corticosteroids that are frequently combined with other immunosuppressive agents in people with steroid-refractory manifestations. There is no established standard treatment for steroid-refractory chronic GvHD. The therapeutic options in these people include extracorporeal photopheresis (ECP), an immunomodulatory treatment that involves ex vivo collection of mononuclear cells from peripheral blood, exposure to the photoactive agent 8-methoxypsoralen, ultraviolet radiation and re-infusion of the processed cell product. The mechanisms of action of ECP are not completely understood. OBJECTIVES To evaluate the effectiveness and safety of ECP for the management of chronic GvHD in children and adolescents after haematopoietic stem cell transplantation. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (Issue 9, 2012), MEDLINE and EMBASE databases from their inception to 12 September 2012. We searched the reference lists of potentially relevant studies without any language restriction. We searched eight trial registers and five conference proceedings. We also contacted experts in the field. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing ECP with or without alternative treatment versus alternative treatment alone in paediatric patients with chronic GvHD after haematopoietic stem cell transplantation. DATA COLLECTION AND ANALYSIS Two review authors independently performed the study selection. We resolved disagreements in the selection of trials by consultation with a third review author. MAIN RESULTS We found no studies meeting the criteria for inclusion in this review. AUTHORS' CONCLUSIONS The efficacy of ECP in the treatment of chronic GvHD in paediatric patients after haematopoietic stem cell transplantation based on RCTs can currently not be evaluated since we have found no such studies. Current recommendations are based on retrospective or observational studies only. Thus, ideally, ECP should be applied in the context of controlled trials only. However, performing RCTs in this patient population will be challenging due to the limited number of patients, the variable disease presentation and the lack of well-defined response criteria. International collaboration, multicentre trials and appropriate funding for such trials will be needed. If treatment decisions based on clinical grounds in favour of ECP are made, people should be carefully monitored for beneficial and harmful effects and efforts should be made to share this information with other clinicians, for example by setting up registries for paediatric patients that are treated with ECP.
Collapse
Affiliation(s)
- Marcus Weitz
- Department of Pediatrics, University of Tuebingen, Hoppe-Seyler-Strasse 1, Tübingen, Germany, 72076
| | | | | | | |
Collapse
|
28
|
Klammer M, Roddie PH. Current progress in the development of a cell-based vaccine for the immunotherapy of acute myeloid leukemia. Expert Rev Vaccines 2014; 5:211-22. [PMID: 16608421 DOI: 10.1586/14760584.5.2.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence that immunological control contributes to the elimination of residual leukemia has emerged from allogeneic hematopoietic stem cell transplantation. This review assesses the current understanding of immunobiology of acute myeloid leukemia and how dendritic cells and T cells may be harnessed using in vitro and in vivo priming techniques. Preclinical and clinical dendritic cell vaccine trials reported to date are considered and the prospects for immunotherapy with dendritic cell-based vaccine constructs evaluated.
Collapse
Affiliation(s)
- Matthias Klammer
- Western General Hospital, University of Edinburgh-Leukaemia Research Fund, John Hughes Bennett Laboratory and Department of Haematology, Western General Hospital, Edinburgh, UK.
| | | |
Collapse
|
29
|
Hess SM, Young EF, Miller KR, Vincent BG, Buntzman AS, Collins EJ, Frelinger JA, Hess PR. Deletion of naïve T cells recognizing the minor histocompatibility antigen HY with toxin-coupled peptide-MHC class I tetramers inhibits cognate CTL responses and alters immunodominance. Transpl Immunol 2013; 29:138-45. [PMID: 24161680 DOI: 10.1016/j.trim.2013.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022]
Abstract
Alloreactive T-cell responses directed against minor histocompatibility (H) antigens, which arise from diverse genetic disparities between donor and recipient outside the MHC, are an important cause of rejection of MHC-matched grafts. Because clinically significant responses appear to be directed at only a few antigens, the selective deletion of naïve T cells recognizing donor-specific, immunodominant minor H antigens in recipients before transplantation may be a useful tolerogenic strategy. We have previously demonstrated that peptide-MHC class I tetramers coupled to a toxin can efficiently eliminate specific TCR-transgenic T cells in vivo. Here, using the minor histocompatibility antigen HY as a model, we investigated whether toxic tetramers could inhibit the subsequent priming of the two H2-D(b)-restricted, immunodominant T-cell responses by deleting precursor CTL. Immunization of female mice with male bone marrow elicited robust CTL activity against the Uty and Smcy epitopes, with Uty constituting the major response. As hypothesized, toxic tetramer administration prior to immunization increased survival of cognate peptide-pulsed cells in an in vivo CTL assay, and reduced the frequency of corresponding T cells. However, tetramer-mediated decreases in either T-cell population magnified CTL responses against the non-targeted epitope, suggesting that D(b)-Uty(+) and D(b)-Smcy(+) T cells compete for a limited common resource during priming. Toxic tetramers conceivably could be used in combination to dissect manipulate CD8(+) T-cell immunodominance hierarchies, and to prevent the induction of donor-specific, minor H antigen CTL responses in allotransplantation.
Collapse
Affiliation(s)
- Sabrina M Hess
- Immunology Program, Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
O'Keefe CL, Risitano AM, Maciejewski JP. Clinical Implications of T Cell Receptor Repertoire Analysis after Allogeneic Stem Cell Transplantation. Hematology 2013; 9:189-98. [PMID: 15204100 DOI: 10.1080/10245330410001701530] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Stem cell transplantation (SCT) constitutes a major challenge to the immune system. Long-term impairment of immunity against various common infectious stimuli leads to increased susceptibility to infectious diseases; in contrast, an immune response against the recipient may cause the devastating graft-versus-host disease (GvHD). Recovery of the immune system (both qualitative and quantitative) after SCT is perhaps the most important factor in determining the clinical outcome. Consequently, immune reconstitution has been extensively studied using different approaches, including quantitative analysis of immune cells as well as their phenotypic characterization. Analysis of diversity and clonality is an important tool in determining competence of the immune system, assuming that a broad diversity assures efficient response to different stimuli and clonal dominance reflects ongoing, potentially relevant immune responses. Detailed analysis of the immune repertoire through the flow cytometric and molecular study of the T cell receptor repertoire has been applied to gain quantitative and qualitative insights about the T cell immune competence and responsiveness. After SCT, a contraction of the T cell pool and a reduction in T cell receptor diversity is clearly associated with clinical immunodeficiency. Reconstitution of the immune system is often characterized by dominance of oligoclonal T cell populations, reflecting specific antigen-driven immune responses. Detailed characterization of T lymphocytes by T cell receptor analysis is possible, and may lead to the identification of individual clones involved in specific immune reactions, such as alloresponses in GvHD, the closely related graft-versus-leukemia effect and opportunistic viral agents such as CMV or EBV.
Collapse
Affiliation(s)
- Christine L O'Keefe
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | |
Collapse
|
31
|
Spierings E, Kim YH, Hendriks M, Borst E, Sergeant R, Canossi A, Oudshoorn M, Loiseau P, Dolstra H, Markiewicz M, Leffell MS, Pereira N, Kircher B, Turpeinen H, Eliaou JF, Gervais T, Laurin D, Enczmann J, Martinetti M, Thomson J, Oguz F, Santarone S, Partanen J, Siekiera U, Alessandrino EP, Kalayoglu S, Brand R, Goulmy E. Multicenter analyses demonstrate significant clinical effects of minor histocompatibility antigens on GvHD and GvL after HLA-matched related and unrelated hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19:1244-53. [PMID: 23756210 DOI: 10.1016/j.bbmt.2013.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/02/2013] [Indexed: 12/28/2022]
Abstract
The effect of minor H antigen mismatching on the occurrence of graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) after HLA-matched hematopoietic stem cell transplantation (HSCT) has mainly been demonstrated in single-center studies. Yet, the International Histocompatibility and Immunogenetics Workshops (IHIW) provide a collaborative platform to execute crucial large studies. In collaboration with 20 laboratories of the IHIW, the roles of 10 autosomal and 10 Y chromosome-encoded minor H antigens were investigated on GvHD and relapse incidence in 639 HLA-identical related donor (IRD) and 210 HLA-matched unrelated donor (MUD) HSCT recipients. Donor and recipient DNA samples were genotyped for the minor H antigens HA-1, HA-2, HA-3, HA-8, HB-1, ACC-1, ACC-2, SP110, PANE1, UGT2B17, and HY. The correlations with the primary outcomes GvHD (acute or chronic GvHD), survival, and relapse were statistically analyzed. The results of these multicenter analyses show that none of the HLA class I-restricted HY antigens were found to be associated with any of the primary outcomes. Interestingly, of the HLA class II-restricted HY antigens analyzed, HLA-DQ5 positive recipients showed a significantly increased GvHD-free survival in female-to-male HSCT compared with male-to-female HSCT (P = .013). Yet, analysis of the overall gender effect, thus independent of the known HY antigens, between the gender groups demonstrated an increased GvHD incidence in the female-to-male transplantations (P < .005) and a decreased GvHD-free survival in the female-to-male transplantations (P < .001). Of all autosomally encoded minor H antigens, only mismatching for the broadly expressed minor H antigen HA-8 increased the GvHD incidence in IRD HSCT (Hazard ratio [HR] = 5.28, P < .005), but not in MUD HSCT. Most striking was the influence of hematopoietic restricted minor H antigens on GvL as mismatching for hematopoietic minor H antigens correlated with lower relapse rates (P = .078), higher relapse-free survival (P = .029), and higher overall survival (P = .032) in recipients with GvHD, but not in those without GvHD. In conclusion, the significant GvHD effect of the broadly expressed minor H antigen HA-8 favors matching for HA-8 in IRD, but not in MUD, patient/donor pairs. The GvHD-GvL association demonstrating a significant lower relapse in hematopoietic minor H antigen mismatched patient/donor pairs underlines their clinical applicability for adoptive immunotherapy, enhancing the GvL effect in a GvHD controllable manner.
Collapse
Affiliation(s)
- Eric Spierings
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Linscheid C, Petroff MG. Minor histocompatibility antigens and the maternal immune response to the fetus during pregnancy. Am J Reprod Immunol 2013; 69:304-14. [PMID: 23398025 PMCID: PMC4048750 DOI: 10.1111/aji.12075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/20/2012] [Indexed: 12/21/2022] Open
Abstract
The tolerance of the semiallogeneic fetus by the maternal immune system is an important area of research for understanding how the maternal and fetal systems interact during pregnancy to ensure a successful outcome. Several lines of research reveal that the maternal immune system can recognize and respond to fetal minor histocompatibility antigens during pregnancy. Reactions to these antigens arise because of allelic differences between the mother and fetus and have been shown more broadly to play an important role in mediating transplantation outcomes. This review outlines the discovery of minor histocompatibility antigens and their importance in solid organ and hematopoietic stem cell transplantations, maternal T-cell responses to minor histocompatibility antigens during pregnancy, expression of minor histocompatibility antigens in the human placenta, and the potential involvement of minor histocompatibility antigens in the development and manifestation of pregnancy complications.
Collapse
Affiliation(s)
- Caitlin Linscheid
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
| | - Margaret G. Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
33
|
Tilburgs T, Strominger JL. CD8+ effector T cells at the fetal-maternal interface, balancing fetal tolerance and antiviral immunity. Am J Reprod Immunol 2013; 69:395-407. [PMID: 23432707 DOI: 10.1111/aji.12094] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/16/2013] [Indexed: 12/20/2022] Open
Abstract
During pregnancy CD8+ effector T cells need optimal immune regulation to prevent a detrimental response to allogeneic fetal cells while providing immune protection to infections. A significant proportion of (prospective) mothers carry naïve or memory CD8+ T cells with a TCR that can directly bind to paternal MHC molecules. In addition, a high percentage of pregnant women develop specific T cell responses to fetal minor histocompatibility antigens (mHags). Under normal conditions, fetal-maternal MHC and mHag mismatches lead to elevated lymphocyte activation but do not induce pregnancy failure. Furthermore, viral infections alter the maternal CD8+ T cell response by changing the CD8+ T cell repertoire and increasing the influx of CD8+ T cells to decidual tissue. The normally high T cell activation threshold at the fetal-maternal interface may prevent efficient clearance of viral infections. Conversely, the increased inflammatory response due to viral infections may break fetal-maternal tolerance and lead to pregnancy complications. The aim of this review is to discuss the recent studies of CD8+ T cells in pregnancy, identify potential mechanisms for antigen-specific immune recognition of fetal extravillous trophoblast (EVT) cells by CD8+ T cells, and discuss the impact of viral infections and virus-specific CD8+ T cells during pregnancy.
Collapse
Affiliation(s)
- Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | | |
Collapse
|
34
|
Schmitt M, Freund M. Blood. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Occurrence and Impact of Minor Histocompatibility Antigens' Disparities on Outcomes of Hematopoietic Stem Cell Transplantation from HLA-Matched Sibling Donors. BONE MARROW RESEARCH 2012. [PMID: 23193478 PMCID: PMC3502767 DOI: 10.1155/2012/257086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have examined the alleles of eleven minor histocompatibility antigens (MiHAs) and investigated the occurrence of immunogenic MiHA disparities in 62 recipients of allogeneic hematopoietic cell transplantation (allo-HCT) with myeloablative conditioning performed between 2000 and 2008 and in their HLA-matched sibling donors. Immunogenic MiHA mismatches were detected in 42 donor-recipient pairs: in 29% MiHA was mismatched in HVG direction, in another 29% in GVH direction; bidirectional MiHA disparity was detected in 10% and no MiHA mismatches in 32%. Patients with GVH-directed HY mismatches had lower both overall survival and disease-free survival at 3 years than patients with compatible HY; also higher incidence of both severe acute GvHD and extensive chronic GVHD was observed in patients with GVH-directed HY mismatch. On contrary, GVH-directed mismatches of autosomally encoded MiHAs had no negative effect on overall survival. Results of our study help to understand why posttransplant courses of allo-HCT from siblings may vary despite the complete high-resolution HLA matching of a donor and a recipient.
Collapse
|
36
|
Kotsiou E, Davies JK. New ways to separate graft-versus-host disease and graft-versus-tumour effects after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2012; 160:133-45. [PMID: 23121307 DOI: 10.1111/bjh.12115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/13/2012] [Indexed: 12/25/2022]
Abstract
A major challenge to transplant immunologists and physicians remains the separation of harmful graft-versus-host disease (GvHD) and beneficial graft-versus-tumour (GvT) effects after allogeneic haematopoietic stem cell transplantation. Recent advances in our understanding of the allogeneic immune response provide potential new opportunities to achieve this goal. Three potential new approaches that capitalize on this new knowledge are considered in depth; the manipulation of organ-specific cytokines and other pro-inflammatory signals, the selective manipulation of donor effector T cell migration, and the development of cell-mediated immunosuppressive strategies using donor-derived regulatory T cells. These new approaches could provide strategies for local control of allogeneic immune responses, a new paradigm to separate GvHD and GvT effects. Although these strategies are currently in their infancy and have challenges to successful translation to clinical practice, all have exciting potential for the future.
Collapse
Affiliation(s)
- Eleni Kotsiou
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | | |
Collapse
|
37
|
Effect of MHC and non-MHC donor/recipient genetic disparity on the outcome of allogeneic HCT. Blood 2012; 120:2796-806. [PMID: 22859606 DOI: 10.1182/blood-2012-04-347286] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The outcome of allogeneic hematopoietic cell transplantation is influenced by donor/recipient genetic disparity at loci both inside and outside the MHC on chromosome 6p. Although disparity at loci within the MHC is the most important risk factor for the development of severe GVHD, disparity at loci outside the MHC that encode minor histocompatibility (H) antigens can elicit GVHD and GVL activity in donor/recipient pairs who are otherwise genetically identical across the MHC. Minor H antigens are created by sequence and structural variations within the genome. The enormous variation that characterizes the human genome suggests that the total number of minor H loci is probably large and ensures that all donor/recipient pairs, despite selection for identity at the MHC, will be mismatched for many minor H antigens. In addition to mismatch at minor H loci, unrelated donor/recipient pairs exhibit genetic disparity at numerous loci within the MHC, particularly HLA-DP, despite selection for identity at HLA-A, -B, -C, and -DRB1. Disparity at HLA-DP exists in 80% of unrelated pairs and clearly influences the outcome of unrelated hematopoietic cell transplantation; the magnitude of this effect probably exceeds that associated with disparity at any locus outside the MHC.
Collapse
|
38
|
Bleakley M, Turtle CJ, Riddell SR. Augmentation of anti-tumor immunity by adoptive T-cell transfer after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2012; 5:409-25. [PMID: 22992235 PMCID: PMC3590108 DOI: 10.1586/ehm.12.28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (HCT) is currently the standard of care for most patients with high-risk acute leukemias and some other hematologic malignancies. Although HCT can be curative, many patients who undergo allogeneic HCT will later relapse. There is, therefore, a critical need for the development of novel post-HCT therapies for patients who are at high risk for disease recurrence following HCT. One potentially efficacious approach is adoptive T-cell immunotherapy, which is currently undergoing a renaissance that has been inspired by scientific insight into the key issues that impeded its previous clinical application. Translation of the next generation of adoptive T-cell therapies to the allogeneic HCT setting, using donor T cells of defined specificity and function, presents a unique set of challenges and opportunities. The challenges, progress and future of adoptive T-cell therapy following allogeneic HCT are discussed in this review.
Collapse
Affiliation(s)
- Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | |
Collapse
|
39
|
van der Zouwen B, Kruisselbrink AB, Jordanova ES, Rutten CE, von dem Borne PA, Falkenburg JHF, Jedema I. Alloreactive effector T cells require the local formation of a proinflammatory environment to allow crosstalk and high avidity interaction with nonhematopoietic tissues to induce GVHD reactivity. Biol Blood Marrow Transplant 2012; 18:1353-67. [PMID: 22796533 DOI: 10.1016/j.bbmt.2012.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022]
Abstract
Based on clinical observations that donor T cells specific for minor histocompatibility antigens (MiHA) ubiquitously expressed on both hematopoietic and nonhematopoietic cells were detected in patients showing evident graft-versus-leukemia/lymphoma (GVL) reactivity with no or limited coinciding graft-versus-host disease (GVHD), we hypothesized that nonhematopoietic tissues may be relatively unsusceptible to the cytotoxic effect of MiHA-specific T cells under normal, noninflammatory conditions. To test this hypothesis, we investigated the reactivity of alloreactive T cells specific for ubiquitously expressed MiHA against skin-derived primary human fibroblasts. We demonstrated that this reactivity was not merely determined by their antigen-specificity, but was highly dependent on adhesion molecule expression. ICAM-1 expression on the fibroblasts upregulated under proinflammatory conditions and induced during cross-talk with the T cells was demonstrated to be a crucial factor facilitating formation of high avidity interactions with the T cells and subsequent efficient target cell destruction. Furthermore, we provide supporting evidence for the role of ICAM-1 in vivo by demonstrating that ICAM-1 expression on nonhematopoietic target cells was dependent on the presence of infiltrating activated T cells, as was illustrated by restricted ICAM-1 expression at the sites of T cell infiltration in skin biopsies of patients with acute GVHD (aGVHD), by the absence of ICAM-1 expression in the same biopsies in areas without T cell infiltration and by the absence of ICAM-1 expression in biopsies of patients without GVHD independent of the presence of infiltrating nonactivated T cells. In conclusion, under noninflammatory conditions, nonhematopoietic tissues are unsusceptible to the GVHD reactivity of alloreactive T cells due to their inability to establish high avidity interactions.
Collapse
Affiliation(s)
- Boris van der Zouwen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lissauer D, Piper K, Goodyear O, Kilby MD, Moss PAH. Fetal-specific CD8+ cytotoxic T cell responses develop during normal human pregnancy and exhibit broad functional capacity. THE JOURNAL OF IMMUNOLOGY 2012; 189:1072-80. [PMID: 22685312 DOI: 10.4049/jimmunol.1200544] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tolerance of the semiallogeneic fetus presents a significant challenge to the maternal immune system during human pregnancy. T cells with specificity for fetal epitopes have been detected in women with a history of previous pregnancy, but it has been thought that such fetal-specific cells were generally deleted during pregnancy as a mechanism to maintain maternal tolerance of the fetus. We used MHC-peptide dextramer multimers containing an immunodominant peptide derived from HY to identify fetal-specific T cells in women who were pregnant with a male fetus. Fetal-specific CD8(+) T lymphocytes were observed in half of all pregnancies and often became detectable from the first trimester. The fetal-specific immune response increased during pregnancy and persisted in the postnatal period. Fetal-specific cells demonstrated an effector memory phenotype and were broadly functional. They retained their ability to proliferate, secrete IFN-γ, and lyse target cells following recognition of naturally processed peptide on male cells. These data show that the development of a fetal-specific adaptive cellular immune response is a normal consequence of human pregnancy and that unlike reports from some murine models, fetal-specific T cells are not deleted during human pregnancy. This has broad implications for study of the natural physiology of pregnancy and for the understanding of pregnancy-related complications.
Collapse
Affiliation(s)
- David Lissauer
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Umbilical cord blood (UCB) is used for HSCT. It is known that UCB can comprise Ag-specific T cells. Here we question whether solely transmaternal cell flow may immunize UCB. Twenty-three female UCB samples were collected from healthy mothers and analyzed for minor histocompatibility Ag HY-specific responses. Forty-two of 104 tetramer(pos) T-cell clones, isolated from 16 of 17 UCB samples, showed male-specific lysis in vitro. Male microchimerism was present in 6 of 12 UCB samples analyzed. In conclusion, female UCB comprises HY-specific cytotoxic T cells. The immunization is presumably caused by transmaternal cell flow of male microchimerism present in the mother. The presence of immune cells in UCB that are not directed against maternal foreign Ags is remarkable and may explain the reported clinical observation of improved HSCT outcome with younger sibling donors.
Collapse
|
42
|
Kim YH, Faaij CM, van Halteren AG, Schrama E, de Jong TA, Schøller J, Egeler RM, Pavel S, Vyth-Dreese FA, van Tol MJ, Goulmy E, Spierings E. In Situ Detection of HY-Specific T Cells in Acute Graft-versus-Host Disease–Affected Male Skin after Sex-Mismatched Stem Cell Transplantation. Biol Blood Marrow Transplant 2012; 18:381-7. [DOI: 10.1016/j.bbmt.2011.10.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
|
43
|
Abstract
Chronic graft-versus-host disease (cGVHD ) is a leading cause of allogeneic hematopoietic stem-cell transplantation-related mortality and morbidity. It is an immune-mediated disorder that can target almost any organ in the body, often with devastating consequences. The immune-suppressive medications currently used to treat it are equally toxic and are often not very effective. At this time, our understanding of its pathophysiology is limited. The discovery of potential biomarkers offers new possibilities in the clinical management of cGVHD. They could potentially be used for diagnosing cGVHD, for predicting or evaluating response to therapy and for unique insights into the pathophysiology underlying the clinical manifestations of cGVHD. Understanding the biological origins of these biomarkers can help us construct a more comprehensive and clinically relevant model for the pathogenesis of this disease. In this article, we review existing evidence for candidate biomarkers that have been identified in the framework of how they may contribute to the pathophysiology of cGVHD. Issues regarding the discovery and application of biomarkers are discussed.
Collapse
Affiliation(s)
- Jacob Rozmus
- Division of Oncology, Hematology and BMT, Department of Pediatrics, BC Children’s Hospital/University of British Columbia, Vancouver, BC, Canada
| | - Kirk R Schultz
- Division of Oncology, Hematology and BMT, Department of Pediatrics, BC Children’s Hospital/University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
IL-7 receptor expression identifies suicide gene-modified allospecific CD8+ T cells capable of self-renewal and differentiation into antileukemia effectors. Blood 2011; 117:6469-78. [PMID: 21531977 DOI: 10.1182/blood-2010-11-320366] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In allogeneic hematopoietic cell transplantation (HSCT), donor T lymphocytes mediate the graft-versus-leukemia (GVL) effect, but induce graft-versus-host disease (GVHD). Suicide gene therapy-that is, the genetic induction of a conditional suicide phenotype into donor T cells-allows dissociating the GVL effect from GVHD. Genetic modification with retroviral vectors after CD3 activation reduces T-cell alloreactivity. We recently found that alloreactivity is maintained when CD28 costimulation, IL-7, and IL-15 are added. Herein, we used the minor histocompatibility (mH) antigens HA-1 and H-Y as model alloantigens to directly explore the antileukemia efficacy of human T cells modified with the prototypic suicide gene herpes simplex virus thymidine kinase (tk) after activation with different stimuli. Only in the case of CD28 costimulation, IL-7, and IL-15, the repertoire of tk(+) T cells contained HA-1- and H-Y-specific CD8(+) cytotoxic T cells (CTL) precursors. Thymidine kinase-positive HA-1- and H-Y-specific CTLs were capable of self-renewal and differentiation into potent antileukemia effectors in vitro, and in vivo in a humanized mouse model. Self-renewal and differentiation coincided with IL-7 receptor expression. These results pave the way to the clinical investigation of T cells modified with a suicide gene after CD28 costimulation, IL-7, and IL-15 for a safe and effective GVL effect.
Collapse
|
45
|
Abstract
BACKGROUND Approximately half recurrent miscarriage (RM) cases remain unexplained after standard investigations. Secondary RM (SRM) is, in contrast to primary RM, preceded by a birth, which increases the transfer of fetal cells into the maternal circulation. Mothers of boys are often immunized against male-specific minor histocompatibility (H-Y) antigens, and H-Y immunity can cause graft-versus-host disease after stem-cell transplantation. We proposed the H-Y hypothesis that aberrant H-Y immunity is a causal factor for SRM. METHODS This is a critical review of the H-Y hypothesis based on own publications and papers identified by systematic PubMed and EMBASE searches. RESULTS SRM is more common after the birth of a boy and the subsequent live birth rate is reduced for SRM patients with a firstborn boy. The male:female ratio of children born prior and subsequent to SRM is 1.49 and 0.76 respectively. Maternal carriage of HLA-class II alleles presenting H-Y antigens to immune cells is associated with a reduced live birth rate and increased risk of obstetric complications in surviving pregnancies in SRM patients with a firstborn boy. In early pregnancy, both antibodies against HLA and H-Y antigens are increased in SRM patients compared with controls. Presence of these antibodies in early pregnancy is associated with a lower live birth rate and a low male:female ratio in subsequent live births, respectively. Births of boys are also associated with subsequent obstetric complications in the background population. CONCLUSIONS Epidemiological, immunogenetic and immunological studies support the hypothesis that aberrant maternal H-Y immune responses have a pathogenic role in SRM.
Collapse
Affiliation(s)
- Henriette Svarre Nielsen
- The Fertility Clinic 4071, University Hospital Copenhagen, Blegdamsvej 9, Rigshospitalet, Copenhagen Ø, Denmark.
| |
Collapse
|
46
|
Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 2011; 89:396-407. [PMID: 21301477 PMCID: PMC3061548 DOI: 10.1038/icb.2010.124] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Minor histocompatibility (H) antigens are major targets of a graft-versus-leukemia (GVL) effect mediated by donor CD8(+) and CD4(+) T cells following allogeneic hematopoietic cell transplantation (HCT) between human leukocyte antigen identical individuals. In the 15 years since the first molecular characterization of human minor H antigens, significant strides in minor H antigen discovery have been made as a consequence of advances in cellular, genetic and molecular techniques. Much has been learned about the mechanisms of minor H antigen immunogenicity, their expression on normal and malignant cells, and their role in GVL responses. T cells specific for minor H antigens expressed on leukemic cells, including leukemic stem cells, can be isolated and expanded in vitro and infused into allogeneic HCT recipients to augment the GVL effect to prevent and treat relapse. The first report of the adoptive transfer of minor H antigen-specific T-cell clones to patients with leukemic relapse in 2010 illustrates the potential for the manipulation of alloreactivity for therapeutic benefit. This review describes the recent developments in T-cell recognition of human minor H antigens, and efforts to translate these discoveries to reduce leukemia relapse after allogeneic HCT.
Collapse
Affiliation(s)
- Marie Bleakley
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-981024, USA.
| | | |
Collapse
|
47
|
Bleakley M, Riddell SR. Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 2011. [PMID: 21301477 DOI: 10.1038/icb.2010.124.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Minor histocompatibility (H) antigens are major targets of a graft-versus-leukemia (GVL) effect mediated by donor CD8(+) and CD4(+) T cells following allogeneic hematopoietic cell transplantation (HCT) between human leukocyte antigen identical individuals. In the 15 years since the first molecular characterization of human minor H antigens, significant strides in minor H antigen discovery have been made as a consequence of advances in cellular, genetic and molecular techniques. Much has been learned about the mechanisms of minor H antigen immunogenicity, their expression on normal and malignant cells, and their role in GVL responses. T cells specific for minor H antigens expressed on leukemic cells, including leukemic stem cells, can be isolated and expanded in vitro and infused into allogeneic HCT recipients to augment the GVL effect to prevent and treat relapse. The first report of the adoptive transfer of minor H antigen-specific T-cell clones to patients with leukemic relapse in 2010 illustrates the potential for the manipulation of alloreactivity for therapeutic benefit. This review describes the recent developments in T-cell recognition of human minor H antigens, and efforts to translate these discoveries to reduce leukemia relapse after allogeneic HCT.
Collapse
Affiliation(s)
- Marie Bleakley
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-981024, USA.
| | | |
Collapse
|
48
|
Dierselhuis MP, Schrama E, Scott DW, Spierings E. Gene Therapy with IgG-HY Fusion Proteins to Reduce Male-Specific T-Cell ReactivityIn Vitro. Hum Gene Ther 2011; 22:44-54. [DOI: 10.1089/hum.2010.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Miranda P. Dierselhuis
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Ellen Schrama
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - David W. Scott
- Department of Surgery and Center for Vascular and Inflammatory Diseases, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Eric Spierings
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
49
|
Exogenous Addition of Minor H Antigen HA-1+ Dendritic Cells to Skin Tissues Ex Vivo Causes Infiltration and Activation of HA-1-Specific Cytotoxic T Cells. Biol Blood Marrow Transplant 2011; 17:69-77. [DOI: 10.1016/j.bbmt.2010.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 08/05/2010] [Indexed: 11/18/2022]
|
50
|
Blood. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|